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M. Höhle Statistical modelling in infectious disease epidemiology 1/ 51

Outline

1 Introduction

2 Mathematical models for communicable diseases
Discrete time stochastic Reed-Frost model
Continuous time deterministic SIR model

3 Statistical Surveillance of routine collected infectious disease data
Farrington algorithm
Cumulative Sum

4 Applying methods in practice – EHEC/HUS outbreak

5 Summing up
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Introduction

Definitions and aim of this lecture

Infectious disease epidemiology

Characterizes the epidemiological analysis of infectious diseases. Interest
lies in the detection and understanding of epidemics. One possible aim
would be the ability to better control outbreaks.

Aims of this lecture:

Give a taste of how statistical modelling can be of use in infectious
disease epidemiology.

Illustrate this by plenty of examples from theory and practice.
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Introduction

Statistical modelling of infectious diseases

Three reasons that classical statistical inference is not immediately
applicable for infectious disease data:

1 Data are rarely a result of planned experiments

2 Individuals are not independent (a case may also be a risk factor)

3 The infection process is only partially observable
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Introduction

A small outbreak experiment...
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Mathematical models for communicable diseases Discrete time stochastic Reed-Frost model

The Reed-Frost epidemic model

SIR compartmental model, where individuals are either Susceptible,
I nfectious or Recovered

Closed population with initially x0 = n susceptible and y0 = m
infectious individuals

Dynamics are described in discrete time by evolution of a Markov
chain

Yt+1|xt , yt ∼ Bin(xt , 1− (1− w)yt ),

Xt+1 = Xt − Yt+1,

where w is the probability for a contact of two individuals during one
unit of time and t = 1, 2, . . .

The final size of the epidemic is Z = Y1 + Y2 + Y3 + . . .
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Mathematical models for communicable diseases Discrete time stochastic Reed-Frost model
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Mathematical models for communicable diseases Discrete time stochastic Reed-Frost model

Estimation of model parameters

Estimation of w from data for times 0, 1, 2, . . . ,K using e.g.
maximum likelihood

L(w) =
K−1∏

t=0

θ
yt+1
t (1− θt)xt−yt+1 ,

where θt = 1− (1− w)yt .

Contribution of statistics: Interest is not only in point estimator ŵ ,
but also in a quantification of the uncertainty of ŵ , e.g. by stating a
95% confidence interval for w .
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Mathematical models for communicable diseases Discrete time stochastic Reed-Frost model

Research questions

What effect does a vaccination have?

What effect does an isolation measure have?

How could the model take different age categories into account?

Not every infected does actually become infectious.

The population is not closed, what now?

It’s the rodent, stupid!
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Mathematical models for communicable diseases Discrete time stochastic Reed-Frost model

Mathematical challenges

Mathematical abstractions of real world phenomena → equations

No outbreaks are similar → stochasticity

Different modes of transmission: person-to-person, air-borne,
water-borne, food-borne and vector-borne → direct and indirect
transmission

Population heterogeneity (e.g. different places of residence, contact
behaviour, susceptibility) needs to be taken into account

Conflict between observation frequency and speed of the epidemic →
time unit of a model

Not all relevant events for the course of the epidemic are observable
→ partial observability
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Mathematical models for communicable diseases Discrete time stochastic Reed-Frost model

Statistical challenges

Statistics in a nutshell:

Stochastic model + data →
Parameter estimation + quantification of uncertainty

Only one realization of the epidemic is observed.

The data used for estimation can contain serious problems, e.g.
under-reporting, changes in the test behaviour.

The analysis is conducted using available covariables, but no
information about the central risk factors is available.
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Mathematical models for communicable diseases Continuous time deterministic SIR model

CSFV in The Netherlands (1)

Classical Swine Fever Virus (CSFV) Characteristics
I Symptoms after infection: dullness and anorexia.
I Acute form: rapid mortality often without clinical symptoms.
I Secondary symptoms: diarrhea or respiratory problems.

Epidemic in the Netherlands lasted from 4 February 1997 to May
1998.

I 429 infected farms detected and stamped out (∼ 700,000 pigs)
I 1286 herds pre-emptively-slaughtered (∼ 1.1 million pigs)
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Mathematical models for communicable diseases Continuous time deterministic SIR model

CSFV in the Netherlands (2)
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Mathematical models for communicable diseases Continuous time deterministic SIR model

The basic SIR model (1)

When the considered population is large, it can be sufficient to
disregard the stochasticity of the epidemic process and use
deterministic models.

Can formulate a continuous time deterministic SIR model by using
ordinary differential equations.

The deterministic system intends to model the mean behaviour of the
underlying stochastic system.

We assume a closed population (i.e. no demographics turnover) of
size N.
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Mathematical models for communicable diseases Continuous time deterministic SIR model

The basic SIR model (2)

Divide population into three groups (S)uscpetibles, (I)nfectious, and
(R)ecovered. At all times S(t) + I (t) + R(t) = N + a.

Describe dynamics using an ODE-system.

dS(t)

dt
= −βS(t)I (t)

dI (t)

dt
= βS(t)I (t)− γI (t)

dR(t)

dt
= γI (t)

Solve ODE with initial condition (N, a, 0) using numerical routines.
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Mathematical models for communicable diseases Continuous time deterministic SIR model

The basic SIR model (3)

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5
x 10

4 Number of infected for varying beta (gamma=0.3)

beta = 0.3
beta = 0.0003
beta = 0.00003
beta = 0.000003
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Mathematical models for communicable diseases Continuous time deterministic SIR model

The basic SIR model (4)
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Mathematical models for communicable diseases Continuous time deterministic SIR model

The basic reproduction rate R0

By definition: R0 is the number of new infections produced by one
infection in a virgin population, i.e. the initial growth rate.

If R0 < 1 the number of infected is expected to fade out right after
introduction. If R0 > 1 an epidemic will result.

In a simple SIR model

R0 =
βN

γ
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Mathematical models for communicable diseases Continuous time deterministic SIR model

The final size of an Epidemic

In a closed population the number of susceptibles can only decrease,
hence it must have a limit for t →∞.

Is the limit zero? Or will some fraction of the population escape from
ever getting infected?

Let f be the fraction of the (initially susceptible) population that got
infected. This is also called the final size of the epidemic.

It can be found as the solution to the equation

1− f = exp(−R0f ).
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Mathematical models for communicable diseases Continuous time deterministic SIR model

How to estimate the parameters from data?

Depends on the available data from the epidemic.

Final size data ⇒ use Equation (9), i.e.

R0 = − log(1− f )

f

Some function of recovery and infection times is observed at k
discrete time points ⇒ Least squares fit.
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Mathematical models for communicable diseases Continuous time deterministic SIR model

Least squares fit

We have k observations of type yi = g(x(ti ,θ)), where θ = (β, γ)′,
x(t) = (S(t), I (t))′ and g(·) is a function indicating that we might
only observe part of the state.

Least squares aims at finding θ, which minimizes the function

l(θ) =
k∑

i=1

(yi − g(x(tk ,θ)))2 ,

Solution θ̂ is found using numerical optimizing routines.

If g((S(t), I (t))′) = I (t) least squares corresponds to assuming
Gaussian distributed observations, i.e.

yi ∼ N(I (t), σ2)

where σ is variance of the observation noise.
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Mathematical models for communicable diseases Continuous time deterministic SIR model

Parameter Estimation for the CSFV Data
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Statistical Surveillance of routine collected infectious disease data

Aims of statistical surveillance

Public health surveillance

Ongoing systematic collection, analysis, interpretation and dissemination
of health data for the purpose of preventing and controlling disease, injury,
and other health problems (Thacker, 2000).

Course view:

Real-time online monitoring within a setting of statistical process
control.

Detect aberrations for public health events in a statistical setting with
a little less heuristics involved than sometimes applied at the moment.

Provide formal tool as a supplement to gut instinct.

M. Höhle Statistical modelling in infectious disease epidemiology 28/ 51



Statistical Surveillance of routine collected infectious disease data

Monitoring routine collected public health data

The development of automated algorithms for the detection of
abnormalities is demanded by the vast amount of data resulting from
public health reporting

This part is about prospective statistical monitoring of routinely
collected surveillance data seen as multiple time series of counts and
categories

The statistical methods of this talk are implemented in the R-package
surveillance available from the Comprehensive R Archive Network
(CRAN) (H., 2007), but basic ideas can just as well be implemented
in, e.g., Excel.
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Statistical Surveillance of routine collected infectious disease data

Examples of disease surveillance applications

In human epidemiology

Monitoring of congenital malformations (Chen, 1978)

Surveillance of notifiable diseases (Robert Koch Institute, 2009;
Widdowson et al., 2003)

Monitoring surgical outcomes (Steiner et al., 2000)

In veterinary epidemiology

Salmonella in livestock reports, Veterinary Laboratories Agency,
UK (Kosmider et al., 2006)

Rabies Surveillance (WHO Collaboration Centre for Rabies
Surveillance and Research, 2007)

Monitoring of abortions in dairy cattle (Carpenter et al., 2007)
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Statistical Surveillance of routine collected infectious disease data

The quality of surveillance data

Issues complicating the statistical analysis of the time series

Lack of clear case definitions

Under-reporting and reporting delays

Often no denominator data

Seasonality

Low number of disease cases

Presence of past outbreaks
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Statistical Surveillance of routine collected infectious disease data

Example of surveillance data
Weekly number of adult male hepatitis A cases in the federal state of
Berlin during 2001-2006
During the summer 2006 health authorities noticed an increased
amount of cases (Robert Koch Institute, 2006).

Hepatitis A in Berlin 2001−2006
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Statistical Surveillance of routine collected infectious disease data

Example of surveillance data
Weekly number of adult male hepatitis A cases in the federal state of
Berlin during 2001-2006
During the summer 2006 health authorities noticed an increased
amount of cases (Robert Koch Institute, 2006).

Six city districts aggregated into 4 week blocks
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Statistical Surveillance of routine collected infectious disease data Farrington algorithm

Farrington algorithm (1) – basic model

Predict value yt0 at time t0 = (tm0 , t
y
0 ) using a set of reference values

from window of size 2w + 1 up to b years back.
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Fit overdispersed Poisson generalized linear model (GLM) to the
b(2w + 1) reference values where E(yt) = µt and logµt = α + βt.
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Statistical Surveillance of routine collected infectious disease data Farrington algorithm

Farrington algorithm (2) – outbreak detection

Predict and compare:

An approximate (1− α)% prediction interval for yt0 based on the
GLM has upper limit U = µ̂t0 + z1−α

2
·
√

Var(yt0 − µ̂t0)

If observed yt0 is greater than U, then flag t0 as outbreak

Remark:

A description of the refinements of the algorithm is not given at this
point.
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Statistical Surveillance of routine collected infectious disease data Farrington algorithm

Farrington algorithm (3) – example in surveillance

Results for w = 2, b = 3 and α = 0.01:

Surveillance using farrington(2,0,3)
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Idea for improvement

Cast disease monitoring into context of statistical process control
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Statistical Surveillance of routine collected infectious disease data Cumulative Sum

CUSUM as Surveillance Algorithm (1)

A control chart known from statistical process control

Cumulative Sum (CUSUM)

In control situation X1, . . . ,Xn
iid∼ N(0, 1). Monitor shift to N(µ,1) by

St = max(0, St−1 + Xt − k), t = 1, . . . , n

where S0 = 0 and k is the reference value. Raise alarm if St > h, where h
is called the decision interval.

CUSUMs are better to detect sustained shifts

Given h and k we can determine the average run length (ARL)
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Statistical Surveillance of routine collected infectious disease data Cumulative Sum

CUSUM as Surveillance Algorithm (2)

CUSUM for count data Y1, . . . ,Yn
iid∼ Po(m) by transforming data to

normality (Rossi et al., 1999)

Xt =
Yt − 3m + 2

√
m · Yt

2
√

m

Risk-adjust the chart by letting m be time varying, e.g. as output of a
Poisson GLM model

log(mt) = α + βt +
S∑

s=1

(γs sin(ωst) + δs cos(ωst)),

where ωs = 2π
52 s are the Fourier frequencies.
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Statistical Surveillance of routine collected infectious disease data Cumulative Sum

CUSUM as Surveillance Algorithm (3)

Results for k = 0.59 and h = 3.80:

Surveillance using cusum: rossi
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Statistical Surveillance of routine collected infectious disease data Cumulative Sum

CUSUM as Surveillance Algorithm (4)

Simulation studies show: For low counts it is better to use CUSUM
directly on the counts instead of on transformed residuals

Proposals for this setting implemented in surveillance are:
I Function rogerson, which uses a reweighted Poisson

CUSUM (Rogerson and Yamada, 2004)
I Function glrnb, which uses a likelihood ratio and generalized

likelihood ratio detector (H. and Paul, 2008)

More flexibility to model the time series and to tune the detection
algorithm → more work for each time series
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Statistical Surveillance of routine collected infectious disease data Cumulative Sum

Evaluating performance of a surveillance algorithm

Choice of threshold in surveillance algorithms should be based on
performance measure:

Let N be a discrete random variable denoting the first time that
St > h, aka. the run-length

Location parameters of the run length distribution, e.g. the ARLs
E(N|τ = 0) or E(N|τ =∞).

Conditional expected delay E (N − τ |τ,N ≥ τ)

Probability of false alarm within first m time points, i.e.
P(N ≤ m|τ =∞).

Sensitivity, Specificity, ROC-Curves

Computation of measures rarely available as closed formulas. Instead
Monte-Carlo sampling is used.
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Applying methods in practice – EHEC/HUS outbreak

EHEC/HUS Outbreak in Germany 2011

The lecture contained an additional number of slides on the EHEC/HUS
break, i.e.

Epicurve and animation of reporting delays

Now-casting

Backprojection from disease onset to exposure times

These slides are not available in the internet accesible version of the slides.
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Summing up
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Summing up

Other tasks of a statistician...

Statistical analysis of which factors have an influence on the disease
incidence on district level.

Example 1: Association between Q fever 5 year incidence and the
density of Sheep, Goat and Cattle per ha agricultural used area in the
district.

Example 2: Hantavirus incidence per year and district in connection
with proxy variables for the bank vole population.

Example 3: Spatio-temporal association between invasive
meningococcal disease (continuous in space and time) and influenza
cases (notified cases in the respective district). Characterize spread
dynamics for different disease finetypes.
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Summing up

Addendum to initial statement

Addendum to why application of classical statistical inference is less trivial
in outbreak situations:

There is sometimes a need for urgency! (Giesecke, 2002)

Consistency is sometimes more important than accuracy:

Although this has the virtue of brevity, it is (aptly) not quite
true. Both are important, but in surveillance absolute
accuracy is unachievable. Consistency can be achieved and
failure to do so is extremely damaging to credibility among
the ignorant classes (especially journalists) as has been
observed. (Cowden, 2010)

Afterwards, you (and unfortunately also many others) always know
better.

Still there is lots to gain from mathematical and statistical modelling. A
precondition is a multi-disciplinary approach!
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Summing up

Additional information

Books which might provide further information:

Modern infectious disease epidemiology, J. Giesecke – nice overview
without too much mathematical detail, but little on modelling.

Analysis of infectious disease data, Niels G. Becker – nicely describes
a statistical oriented view to modelling. Nothing on SIR modelling.
Equations!

Modeling Infectious Diseases in Humans and Animals, M. J. Keeling
& P. Rohani – Very good overview on mathematical modelling. Little
on the statistical aspects. Equations!
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Summing up

Another outbreak experiment...
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