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M. Höhle Monitoring of infectious diseases 2/ 146

Introduction

Outline

1 Introduction

2 The R package surveillance

3 Univariate time series detectors

4 Multivariate surveillance

5 Space-Time Point Process Modelling

6 Discussion and Summary
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Introduction

Introduction

This short course is about the statistical analysis of routinely collected
surveillance data seen as

I multivariate time series of counts
I realizations of spatio-temporal point processes

Course aim is to explain concepts behind retrospective modelling and
prospective monitoring in infectious disease epidemiology.

The statistical methods of this talk are implemented in the R-package
surveillance available from the Comprehensive R Archive Network
(CRAN) (Höhle, 2007).
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Introduction

Aims of statistical surveillance

Public health surveillance

Ongoing systematic collection, analysis, interpretation and dissemination
of health data for the purpose of preventing and controlling disease, injury,
and other health problems (Thacker, 2000).

Course view:

Real-time online monitoring within a setting of statistical process
control.

Detect aberrations for public health events in a statistical setting with
a little less heuristics involved than sometimes applied at the moment.

Provide formal tool as a supplement to gut instinct.
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Examples of disease surveillance applications

In human epidemiology

Monitoring of congenital malformations (Chen, 1978)

Surveillance of notifiable diseases (Robert Koch Institute, 2009;
Widdowson et al., 2003)

Monitoring surgical outcomes (Steiner et al., 2000)

In veterinary epidemiology

Salmonella in livestock reports, Veterinary Laboratories Agency,
UK (Kosmider et al., 2006)

Rabies Surveillance (WHO Collaboration Centre for Rabies
Surveillance and Research, 2007)

Monitoring of abortions in dairy cattle (Carpenter et al., 2007)
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Example of surveillance data

Weekly number of adult male hepatitis A cases in the federal state of
Berlin during 2001-2006

During summer 2006 health authorities noticed an increased amount
of cases (Robert Koch Institute, 2006).

Hepatitis A in Berlin 2001−2006
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Example – Rabies among foxes in Hesse 1985-2006 (1)

Monthly counts are provided by the WHO Collaboration Centre for Rabies
Surveillance and Research. Thanks to Christoph Staubach, Federal
Research Institute for Animal Health, Germany.
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The observed count time series is {yt}254
t=1 = {y1:1985, . . . , y2:2006}.
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Example – Rabies among foxes in Hesse 1985-2006 (2)
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To illustrate seasonality:

1 divide monthly cases by the respective yearly average

2 compute monthly mean of this detrended time series
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Surveillance of acute respiratory diseases (1)

Since autumn 2004 the Governmental Institute of Public Health of
Lower Saxony carries out a surveillance of acute respiratory
diseases (Beyrer et al., 2006)

The surveillance consists of two modules
1 Voluntary reporting module for daycare facilities
2 Module containing the investigation of throat swabs from selected

medical practices (pediatrists and general practitioners)

Focus on module 2, where each throat swab is tested for five viral
agents: influenza virus, respiratory syncytial virus (RSV), adeno virus,
picorna virus and metapneumo virus
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Surveillance of acute respiratory diseases (2)

For each agent one has a binomial time series

yt ∼ Bin(nt , πt).

Example: Positive picorna virus tests during surveillance.
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Surveillance of acute respiratory diseases (2)

For each agent one has a binomial time series

yt ∼ Bin(nt , πt).

Example: Positive picorna virus tests during surveillance.
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Example – The EuroMOMO project (1)

European monitoring of excess mortality for public health action
(EuroMOMO)

Aim: develop and strengthen real-time monitoring of mortality across
Europe in order to enhance the management of serious public health
risks such as pandemic influenza, heat waves and cold snaps

Main outcome of mortality monitoring: excess mortality

In this course: Surveillance aspect illustrated by Danish mortality data
provided by Statens Serum Institut, Denmark
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Example – The EuroMOMO project (2)
Weekly number of deaths in six age groups (alternatively incidence per
100,000 persons in age group)
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Example – The EuroMOMO project (2)
Weekly number of deaths in six age groups (alternatively incidence per
100,000 persons in age group)
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M. Höhle Monitoring of infectious diseases 13/ 146

Introduction

The quality of surveillance data

Issues complicating statistical analysis of the time series

Lack of clear case definition

Under-reporting and reporting delays

Lack of denominator data

Seasonality

Low number of disease cases

Presence of past outbreaks

Heterogeneity caused by factors such as age, sex, vaccination status,
environmental factors
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What is surveillance? (1)

An open source package for the visualization, modeling and monitoring
of routinely collected public health surveillance data

Prospective monitoring for univariate count data time series:
I farrington – Farrington et al. (1996)
I cusum – Rossi et al. (1999) and extensions
I rogerson – Rogerson and Yamada (2004)
I bayes – Höhle (2007)
I glrnb – Höhle and Paul (2008)

Prospective changepoint detection for categorical time series:
I pairedbinCUSUM – surgical performance (Steiner et al., 2000)
I categoricalCUSUM – binomial-, beta-binomial-, multinomial logit- and

Bradley-Terry modelling (Höhle, 2010)
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What is surveillance? (2)

Retrospective count data time series models:
I hhh – Held et al. (2005); Paul et al. (2008)
I hhh4 – Paul and Held (2011)
I twins – Held et al. (2006)

Spatio-Temporal point process modelling and monitoring:
I twinSIR – discrete space - continuous time modelling (Höhle, 2010)
I twins – continuous space - continuous time modelling (Meyer et al.,

2010)
I stcd – continuous space - continuous time cluster detection (Assunção

and Correa, 2009)
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What is surveillance? (3)

Motivation: Provide data structure and implementational framework
for methodological developments

Spin-off: Tool for epidemiologists and others working in applied
disease monitoring

Availability: CRAN, current development version from

http://surveillance.r-forge.r-project.org/

To install the development version under R version 2.12:
install.packages(”surveillance”,repos=”http://r-forge.r-project.org”)

Package is available under the GNU General Public License (GPL) v.
2.0.

M. Höhle Monitoring of infectious diseases 18/ 146
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Data structure: The sts class (1)

A surveillance time series {yit ; t = 1, . . . , n, i = 1, . . . ,m} is
represented using objects of class sts (surveillance time series)

The sts S4 class has the following form
setClass( "sts", representation(epoch = "numeric",

freq = "numeric",

start = "numeric",

observed = "matrix",

state = "matrix",

alarm = "matrix",

upperbound = "matrix",

neighbourhood= "matrix",

populationFrac= "matrix",

map = "SpatialPolygonsDataFrame",

control = "list",

epochAsDate="logical",

multinomialTS="logical"))

Old S3 class disProg objects can be converted to sts objects using
the function disProg2sts.
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Data structure: The sts class (2)

observed A n ×m matrix of counts representing yit

start A vector of length two containing the origin of the time
series as c(year, week).

freq A numeric specifying the period of the time series, i.e. 52 for
weekly data, 12 for monthly data, etc.

alarm A n×m matrix of Booleans containing the result of applying
a surveillance algorithm to the time series

upperbound A n ×m matrix containing the number of cases which would
result in an alarm (specific interpretation is algorithm
dependent)

control List with control arguments used for the surveillance
algorithm
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Data structure: The sts class (3)

populationFrac Population data, either population data or denominator
data

map SpatialPolygonsDataFrame from package sp containing
geographical locations

neighbourhood A m ×m matrix of Booleans indicating neighbourhood
relationships between regions

epochAsDate Boolean, if TRUE then the epoch vector is interpreted as a
vector of class Date, i.e. dates in ISO 8601 date standard

multinomialTS If TRUE the populationFrac slot is interpreted as
denominator data (binomial, multinomial)
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Data I/O

To import data into R one can use read.table/read.csv, package
foreign (SAS, SPSS, Stata, Systat, dBase) or the RODBC database
interface (Acess, Excel, SQL databases).

An sts object is then created from the resulting matrix of counts.

R> ha.counts <- as.matrix(read.csv("../data/ha.csv"))

R> ha <- new("sts", epoch = 1:nrow(ha.counts), start = c(2001,

+ 1), freq = 52, observed = ha.counts, state = matrix(0,

+ nrow(ha.counts), ncol(ha.counts)))

All plotting, accessing, aggregating and application of surveillance
algorithms works on sts objects.
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Accessing sts objects (1)

Printing provides basic information about the time series:

R> print(ha)

-- An object of class sts --

freq: 52

start: 2001 1

dim(observed): 290 12

Head of observed:

chwi frkr lich mahe mitt neuk pank rein span zehl scho trko

[1,] 0 0 0 0 0 0 0 0 0 0 0 0

map:

[1] chwi frkr lich mahe mitt neuk pank rein scho span trko zehl

12 Levels: chwi frkr lich mahe mitt neuk pank rein scho span ... zehl

head of neighbourhood:

chwi frkr lich mahe mitt neuk pank rein span zehl scho trko

chwi NA NA NA NA NA NA NA NA NA NA NA NA
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Accessing sts objects (2)

Matrix like accessing such as ha[1:52,] or ha[,"mitt"] results in
sts objects containing the respective sub time series.

Functions such as dim, nrow and ncol are also defined:
R> dim(ha)

[1] 290 12

The time series can be aggregated temporally and spatially:
R> dim(aggregate(ha, by = "unit"))

[1] 290 1

R> dim(aggregate(ha, by = "time"))

[1] 1 12

Currently, the slots of sts objects are accessed directly:
R> head(ha@observed, n = 1)

chwi frkr lich mahe mitt neuk pank rein span zehl scho trko

[1,] 0 0 0 0 0 0 0 0 0 0 0 0
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Accessing sts objects (3)

Aggregation can also be of subsets.

Example: Aggregate weekly data into 4 week blocks (corresponding
to 13 observations per year)
R> ha4 <- aggregate(ha[, c("pank", "mitt", "frkr", "scho",

+ "chwi", "neuk")], nfreq = 13)

R> dim(ha4)

[1] 73 6
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Visualizing sts objects (1)
The plot function provides an interface to several visual
representations controlled by the type argument.

R> plot(ha4, type = observed ~ time)

time

N
o.

 in
fe

ct
ed

2001

1

2002

1

2003

1

2004

1

2005

1

2006

1

0
5

10
Infected
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Visualizing sts objects (2)

R> plot(ha4, type = observed ~ time | unit)

time

N
o.

 in
fe

ct
ed

2001

1

2003

1

2005

1

0
1

2
3

4
5

6 pank

time

N
o.

 in
fe

ct
ed

2001

1

2003

1

2005

1

0
1

2
3

4
5

6 mitt

time

N
o.

 in
fe

ct
ed

2001

1

2003

1

2005

1

0
1

2
3

4
5

6 frkr

time

N
o.

 in
fe

ct
ed

2001

1

2003

1

2005

1

0
1

2
3

4
5

6 scho

time

N
o.

 in
fe

ct
ed

2001

1

2003

1

2005

1

0
1

2
3

4
5

6 chwi

time

N
o.

 in
fe

ct
ed

2001

1

2003

1

2005

1

0
1

2
3

4
5

6 neuk
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Visualizing sts objects (3)
Using the maptools package shapefiles provides map visualizations

R> plot(ha4, type = observed ~ 1 | unit)
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Visualizing sts objects (4)

Using type = observed~1|time*unit one would have created an
animation of pictures for each time index

Plotting functionality is customizable as in R-graphics
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Univariate detectors

Statistical Framework for Aberration Detection

Univariate time series {yt , t = 1, 2, . . .} to monitor

At the unknown time τ , an important change in the process occurs.
For each time t we differentiate between two-states:

xt =

{
0 if t < τ (in-control),
1 otherwise (out-of-control).

At time s ≥ 1, the available information is ys = {yt ; t ≤ s}.
Detection is based on a statistic r(·) with resulting alarm time

TA = min{s ≥ 1 : r(ys) > g},

where g is a known threshold.
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Univariate detectors Farrington algorithm

Farrington algorithm (1) – basic model

Predict value yt0 at time t0 = (tm0 , t
y
0 ) using a set of reference values

from window of size 2w + 1 up to b years back.
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Fit overdispersed Poisson generalized linear model (GLM) to the
b(2w + 1) reference values where E(yt) = µt , Var(yt) = φ · µt with
logµt = α + βt and φ > 0.
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Farrington algorithm (2) – outbreak detection

Predict and compare:

An approximate (1− α)% prediction interval for yt0 based on the
GLM has upper limit U = µ̂t0 + z1−α

2
·
√

Var(yt0 − µ̂t0)

If observed yt0 is greater than U, then flag t0 as outbreak

Remarks:

Linear trend is only included if significant at 5% level, b ≥ 3 and no
over-extrapolation occurs.

Automatic correction for past outbreaks by computing Anscombe
residuals for reference values and re-fit GLM assigning lower weights
to values with large residuals.

Low count protection – the algorithm raises an alarm only if more
than 5 cases in past 4 weeks.
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Univariate detectors Farrington algorithm

Farrington algorithm in surveillance (1)

Function farrington takes an sts and a control object as
arguments

control is a list with the following components:

range Specifies the index of all timepoints in sts to monitor.
b Number of years to go back in time
w Window size

reweight Boolean stating whether to perform reweight step using
Anscombe residuals

trend If TRUE a trend is included in first fit and kept in case
the conditions are met. Otherwise no trend.

alpha An approximate two-sided (1− α)% prediction interval
is calculated
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Farrington algorithm in surveillance (2)

Results for w = 4, b = 5 and α = 0.01 starting at W40-2007:

Surveillance using farrington(4,0,5)
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Farrington algorithm in surveillance (4)
Argument powertrans in control indicates which power
transformation to use:

"2/3" skewness correction in low count scenario
"1/2" variance stabilizing square-root transformation
"none" no transformation
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Correcting for past outbreaks (1)

Problems arise when base-line counts contain outbreaks. A
reweighting procedure is used to downweight such observation.

Compute standardized Anscombe residuals for Poisson distribution:

st =
rt

φ̂
√

1− htt
, where rt =

3(y
2
3
t − µ̂

2
3
t )

2µ̂
1
6
t

Define weights ωt as

ωt =

{
γ 1
s2
t

if st > 1

γ otherwise
,

where γ ensures
∑k

i=1 ωt = n.
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Correcting for past outbreaks (2)

Refit the GLM using the ωt weights, i.e.

Var(yt) =
φµt
ωt

Effect of weights is to downweight large positive outliers in the data:

100 150 200 250 300

0
2

4
6

8
10

time in weeks

nu
m

be
r 

of
 c

as
es

100 150 200 250 300
0

2
4

6
8

10

time in weeks

nu
m

be
r 

of
 c

as
es

fit refit
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Univariate detectors Negative Binomial CUSUM

Theory: Negative Binomial CUSUM (1)

Likelihood ratio between the out-of-control and in-control models at
time s given that τ = t:

L(s, t) =
f (ys |τ = t)

f (ys |τ > s)
=

s∏

i=t

f (yi ;θ1)

f (yi ;θ0)
,

where f (·;θ) is the negative binomial PMF with parameter vector θ.

Cumulative Sum (CUSUM) procedure advantageous for detecting
sustained shifts:

r(ys) = max{1 ≤ t ≤ s : log L(s, t)}.
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Theory: Negative Binomial CUSUM (2)

The computation of r(ys) in recursive form:

r0 = 0,

rs = max

(
0, rs−1 + log

{
f (ys ;θ1)

f (ys ;θ0)

})
, s ≥ 1.

When there is evidence against in-control, the LLR contributions are
added up.

No credit in the direction of the in-control is given because rs cannot
get below zero.
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Theory: Negative Binomial CUSUM (3)

Negative-binomial response with fixed dispersion parameter α and
in-control mean modeled using a GLM with log-link

yt ∼ NegBin(µ0,t , α),

log(µ0,t) = log(popt) + β0 + β1 · t + ct ,

where ct is a cyclic function with period 52 or 53 depending on the
number of ISO weeks in the year of t and popt denotes the
population size in the respective age group at time t.

As a consequence, E(yt) = µ0,t and Var(yt) = µ0,t + α · µ2
0,t

Out-of-control model for given κ > 1:

µ1,t = κ · µ0,t .
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Application: Negative Binomial CUSUM (1)

Monitoring example: Age group 75-84 starting from week 40 in 2007
(i.e. 1st October 2007) using past 5 years as reference:

R> m <- glm.nb( `observed.[75,85)` ~ 1 + epoch + sin(2*pi*epochInPeriod) +

+ cos(2*pi*epochInPeriod) + offset(log(`population.[75,85)`)),

+ data=momo.df[phase1,])

R> mu0 <- predict(m, newdata=momo.df[phase2,],type="response")

Aim: to optimally detect a 20% increase in the mean, i.e. κ = 1.2.
Use g = 4.75 – consequences?

R> kappa <- 1.2

R> s.nb <- glrnb(momo[, "[75,85)"], control = list(range = phase2,

+ alpha = 1/m$theta, mu0 = mu0, c.ARL = 4.75, theta = log(kappa),

+ ret = "cases"))
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Application: Negative Binomial CUSUM (2)

For week 2 in 2008 an alarm is generated:
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Also shown is the number needed before alarm (NNBA), i.e. given
r(ys−1) find the minimum ys such that r(ys) > g .
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Application: Negative Binomial CUSUM (2)

For week 2 in 2008 an alarm is generated:

time (weeks)

N
o.

 o
f d

ea
th

s

2007

IV

2008

II

2008

III

2008

IV

0
10

0
20

0
30

0
40

0

µ0
GAM µ1

GAM NNBA

Also shown is the number needed before alarm (NNBA), i.e. given
r(ys−1) find the minimum ys such that r(ys) > g .
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Univariate detectors Binomial CUSUM

Binomial CUSUM (1)

Reweighted CUSUM originally developed by Rogerson and Yamada
(2004) for Poisson data.

Adopted to the binomial situation where yt ∼ Bin(nt , π0), t = 1, 2, . . .
denote the observations

Optimal detection from an in-control proportion π0 to an
out-of-control π1 by sequentially computing

Ct = max(0,Ct−1 + yt − ntk), t = 1, 2, . . . ,

with C0 = 0 and k = log
(π1(1− π0)

π0(1− π1)

)
− log

(1− π1

1− π0

)
.

An alarm is sounded the first time where Ct > h, and h is a known
threshold determining the properties of the detector.

Given h, one can compute the average time until the first false alarm
(ARL0) using e.g. the algorithm of Hawkins (1992).
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Binomial CUSUM (2)
Detection in the picorna time series for a change from π0 = 0.23 to
π1 = 0.60 corresponding to OR(π1, π0) = 5.
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CUSUM begins monitoring in week 41/2007 and is prospective, i.e.
only information up to the time point is used.

M. Höhle Monitoring of infectious diseases 48/ 146

Univariate detectors Binomial CUSUM

Time varying proportion Binomial CUSUM (1)
Time varying proportion in a logistic regression context

logit(π0,t) = β0 + β1 · t + β2 cos

(
2π

52
· t
)

+ β3 sin

(
2π

52
· t
)

Estimate β from past and predict π0,t for future time points.
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Develop optimal detector for a change from odds
π0,t

1−π0,t
to odds

R · π0,t

1−π0,t
similar to Steiner et al. (2000).
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Time varying proportion Binomial CUSUM (2)
New: Reweight CUSUM contributions in order to maintain a fixed
average time until first false alarm ARL0:

Ct = max

{
0,Ct−1 +

h

ht
(yt − ntkt)

}
,

where ht is computed as the threshold giving the desired ARL0 in a
setup with π0,t and π1,t .

time

P
ro

po
rt

io
n 

in
fe

ct
ed

2008

II

2008

III

0.
0

0.
4

0.
8

π0,t

π1,t

Threshold
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Time varying proportion Binomial CUSUM (3)

R> phase1 <- 1:(52 * 3)

R> phase2 <- 1:nrow(oPic) %without% phase1

R> m.logit <- glm(cbind(observed, population - observed) ~

+ 1 + I(epoch - mean(epoch)) + I(sin(epoch * 2 * pi/freq)) +

+ I(cos(epoch * 2 * pi/freq)), family = binomial,

+ data = as.data.frame(oPic)[phase1, ])

R> theta0 <- matrix(predict(m.logit, newdata = data.frame(epoch = phase2,

+ freq = 52), type = "response"), ncol = 1)

R> R <- 5

R> theta1 <- R * theta0/(1 - theta0 + R * theta0)

R> control <- list(range = phase2, distribution = "binomial",

+ ARL0 = 10 * 52, digits = 1, s = R, theta0t = theta0,

+ limit = 0)

R> s.binomCUSUM <- rogerson(oPic, control = control)
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Univariate detectors Performance

Evaluating the performance of a surveillance algorithm

Choice of threshold in surveillance algorithms should be based on
performance measure:

Location parameters of the run length distribution, e.g. the ARLs
E(TA|τ = 0) or E(TA|τ =∞)

Conditional expected delay E (TA − τ |τ,TA ≥ τ)

Probability of false alarm within first m time points, i.e.
P(TA ≤ m|τ =∞)

Sensitivity, Specificity, ROC-Curves

Computation of measures rarely available as closed formulas. Instead
Monte-Carlo sampling is used.
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Run-length of CUSUM detectors

Among all procedures with the same in-control ARL, the CUSUM has
the smallest expected time until it signals a change in the case, where
the process shifts to the out-of-control state (Moustakides, 1986).

In practice no single out-of-control state exists. Thus we select a
state where we want detection to be optimal and count on a robust
performance in case of another shift.

For further details see e.g. Hawkins and Olwell (1998) or Frisén (2003)
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Run-length of NegBin CUSUM (1)

Interest is in the PMF of TA. Compute this either by Monte Carlo
simulation or by using a Markov chain approximation.

Generalization of Bissell (1984) to time varying count data CUSUMs:
dynamics of rt described by a Markov chain:

State 0 rt = 0
State i rt ∈

(
(i − 1) · g

M , i ·
g
M

]
, i = 1, 2, . . . ,M

State M + 1 rt > g

Calculation of the (M + 2)× (M + 2) transition matrix Pt with
elements

pt,i ,j = P(rt ∈ State j |rt−1 ∈ State i), i , j = 0, 1, . . . ,M + 1

by approximations suggested in Hawkins and Olwell (1998)
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Run-length of NegBin CUSUM (2)

State M + 1 is absorbing.

The cumulative probability of an alarm at any step up to time n,
n ≥ 1, is:

P(TA ≤ n) =

[
n∏

t=1

Pt

]

0,M+1

The PMF of TA can thus be determined by subtraction

Now: Choose g such that P(TA ≤ 65|τ =∞) is below some
acceptable value, e.g. 10%.

R> pMarkovChain <- sapply(g.grid, function(g) {

+ TA <- LRCUSUM.runlength(mu = t(mu0), mu0 = t(mu0),

+ mu1 = kappa * t(mu0), h = g, dfun = dY, n = rep(600,

+ length(mu0)), alpha = 1/m$theta)

+ return(tail(TA$cdf, n = 1))

+ })
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Run-length of NegBin CUSUM (3)

P(TA ≤ 65|τ =∞) as a function of g – computed by both Monte
Carlo simulation and the Markov chain approximation (M = 5).
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The Markov chain approximation is 6.8 times faster than Monte Carlo
based on 1000 samples.
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Comparison with the Farrington algorithm

Fitted negative binomial model with mean µ0,t and dispersion αt ,
matching the quasi-Poisson model, as true model.

Based on 1000 realizations of I (TA ≤ 65|τ =∞) for the Farrington
et al. (1996) algorithm with 2

3 -power transform, b = 5, w = 4 and
α = 0.001, we obtain

P(TA ≤ 65|τ =∞) ≈ 0.19.

A rough estimate of this number would have been

1−
(

1− α

2

)65
= 0.03.

Note: Using farrington without reweighting and always including a
trend, we obtain the Monte Carlo estimate 0.04.
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Univariate detectors Likelihood ratio detectors

Generalized likelihood ratio detector (1)

A problem of the LR scheme is that detection is only optimal for
pre-specified θ1.

Generalization where θ1 is estimated for each instance:

Generalized likelihood ratio (GLR) based stopping rule

TA = inf

{
s ≥ 1 : max

1≤k≤s
sup
θ1∈Θ1

[
s∑

t=k

log

{
fθ1(yt |zt)
fθ0(yt |zt)

}]
≥ cγ

}

No recursive updating as in LR-CUSUM possible: worst case number
of operations to determine if TA ≤ m is O(m3)

Lai and Shan (1999) show for the Gaussian case how it is possible to
reduce this complexity by recursive least squares and clever treatment
of the sums and sups
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Generalized likelihood ratio detector (2)

The GLR detector rephrased:

ls,k = sup
θ1∈Θ1

[
s∑

t=k

log

{
fθ1(yt |zt)
fθ0(yt |zt)

}]

=

[
sup
θ1∈Θ1

s∑

t=k

log fθ1(yt |zt)
]
−
[

s∑

t=k

log fθ0(yt |zt)
]

=
s∑

t=k

log

{
fθ̂s,k (yt |zt)
fθ0(yt |zt)

}
,

where θ̂s,k = arg sup
θ1∈Θ1

s∑

t=k

log fθ1(yt |zt). Now GLR(s) = max
1≤k≤s

ls,k
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GLR detector (3) – Poisson and negative Binomial

For the Poisson case with logµ1,t = logµ0,t + κ, efficient
computations are possible since an efficient computation of κ̂s,k and
ls,k is available.

For the NegBin case with logµ1,t = logµ0,t + κ the MLE κ̂s,k has to
be found by iterative methods

Speedup the GLR detector by using a window-limited approach as
proposed by Willsky and Jones (1976). Maximization only for a
moving window of k ∈ {s −M, . . . , s}, where M ≥ 1

For details about the GLR detector see Höhle and Paul (2008)
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Applying the GLR detector to salmonella hadar (1)

A seasonal negative binomial GLM is fitted to the training period.
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The fitted model is used to predict µ0,t of the test period.
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Applying the GLR detector to salmonella hadar (2)

Predicting µ0,t using mgcv:

R> train <- 1:(4 * 52)

R> test <- (max(train) + 1):nrow(shadar)

R> m.hadar <- gam(observed ~ 1 + epoch + s(epoch%%52, bs = "cc",

+ fx = FALSE), family = negbin(theta = c(0.1, 1/0.2 *

+ 2)), data = as.data.frame(shadar[train, ]))

R> alpha.hat <- 1/m.hadar$family$getTheta()

R> mu0.hat <- predict(m.hadar, newdata = data.frame(epoch = test),

+ type = "response")

Running the detector:

R> cntrl = list(range = test, mu0 = mu0.hat, alpha = alpha.hat,

+ c.ARL = 7, Mtilde = 1, change = "intercept")

R> shadar.surv <- glrnb(shadar, control = cntrl)
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Applying the GLR detector to salmonella hadar (3)

Analysis of shadar using glrnb: intercept
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Average run length and probability of false alarm
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Multivariate surveillance

Towards multivariate surveillance (1)
A simple way to perform surveillance for a number of time series is to
monitor each independently
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Multivariate surveillance

Towards multivariate surveillance (2)

Results for current month (say August 2006) are easily accessed for
further report generation

R> control <- list(b = 3, w = 2, range = 53:73, alpha = 0.01,

+ limit54 = c(0, 1))

R> ha4.surv <- farrington(ha4, control = control)

R> sapply(c("observed", "upperbound", "alarm"), function(str) {

+ slot(ha4.surv, str)[nrow(ha4.surv), ]

+ })

observed upperbound alarm

pank 0 2.42 0

mitt 0 2.97 0

frkr 0 2.74 0

scho 1 2.42 0

chwi 0 2.23 0

neuk 2 1.40 1
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Towards multivariate surveillance (3)

An alarm plot gives an overview of alarms for the different time series

Shaded regions indicate alarms for the current month

Surveillance using farrington(2,0,3)
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Multivariate surveillance Case Study: Rabies in Hesse

Rabies surveillance in Hesse

Alarm plot created by applying the Farrington algorithm to each of 1
federal state, 3 administrative regions and 26 districts time series

Surveillance using farrington(2,0,4)
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Examination of the increased number of cases (1)

An inspection of the cases in year 2000 showed that problems
centered on the area around Offenbach and Frankfurt.

Source of the figure: C. Staubach, FLI
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Multivariate surveillance Case Study: Rabies in Hesse

Examination of the increased number of cases (2)

A map with the coordinates of the baits with vaccine dropped from
plane shows the problem:

Source of the figure: T. Müller, FLI
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Examination of the increased number of cases (3)

M. Höhle Monitoring of infectious diseases 75/ 146

Multivariate surveillance The HHH model and its spatial extensions

Outline

1 Introduction

2 The R package surveillance

3 Univariate time series detectors

4 Multivariate surveillance
Case Study: Rabies in Hesse
The HHH model and its spatial extensions

5 Space-Time Point Process Modelling

6 Discussion and Summary
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Multivariate surveillance The HHH model and its spatial extensions

Model-based surveillance1

So far the philosophy has been

Use of a simple statistical model to describe the incidence, e.g. using
a Poisson GLM

No modelling of epidemic behaviour

Comparison of observed cases with expected cases for the current
time point

Attempt to detect outbreaks instead of predicting them

Implicit assumption that no outbreak has happened in the past
(except the ad-hoc adjustment in Farrington et al. (1996))

1Slides 80–90 and 92–117 are slightly revised versions of work kindly provided by L.
Held and M. Paul, respectively

M. Höhle Monitoring of infectious diseases 77/ 146
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The HHH model (1)

Approach in Held et al. (2005) and (Paul et al., 2008): Development
of a realistic stochastic model for the statistical analysis of
surveillance data of infectious disease counts

Compromise between mechanistic and empirical modelling

Model is based on a generalized branching process with immigration

Note: Branching process is a useful approximation of SIR-models in
the absence of information on susceptibles

Explicit decomposition of the incidence in endemic and epidemic
component

Past counts act additively on disease incidence→ model is not a GLM
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The HHH model (2)

For t = 1, 2, . . . we have yt ∼ Po(µt), where

µt = νt + λyt−1

log(νt) = α +
S∑

s=1

(γs sin(ωst) + δs cos(ωst))

Autoregressive coefficient 0 < λ < 1 determines stationarity of yt , can
be interpreted as epidemic proportion

log νt is modelled parametrically as in log-linear Poisson regression;
includes terms for seasonality

Adjustments for overdispersion straightforward: Replace Po(µt) by
NegBin(µt , ψ)-Likelihood

Model can be fitted by Maximum-Likelihood using function algo.hhh

in surveillance
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Multivariate HHH modelling

Suppose now multiple time series i = 1, . . . , n are available over the
same time horizon t = 1, . . . ,T

Notation: yi ,t is the number of disease cases observed in the the i-th
time series at time t

Examples:
I Incidence in different age groups
I Incidence of related diseases
I Incidence in different geographical regions

Idea: Include now also the number of counts from other time series as
autoregressive covariates → multi-type branching process
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Bivariate modelling

Joint analysis of two time series i = 1, 2

yi ,t ∼ NegBin(µi ,t , ψ)

µi ,t = νt + λyi ,t−1 + φyj ,t−1 where j 6= i

Note: ψ, νt , λ and φ may also depend on i
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Example: Influenza and meningococcal disease (1)

Interdependencies between disease cases caused by different
pathogens might be of particular interest to further understand the
dynamics of such diseases

For example, several studies describe an association between influenza
and meningococcal disease (Cartwright et al., 1991; Hubert et al.,
1992; Makras et al., 2001; Jensen et al., 2004)

Analysis of routinely collected surveillance data from Germany,
2001-2006, from SurvStat@RKI (Robert Koch Institute, 2009)
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Example: Influenza and meningococcal disease (2) – Data
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Univariate analysis of influenza infections

Results from analysing the influenza time series with HHH models
using the Poisson, Negative Binomial and an increasing number of
seasonal components

S λ̂ML (se) ψ̂ML (se) log L(y, θ) |θ| AIC

0 0.99 (0.01) - -4050.9 2 8105.9
0 0.98 (0.05) 2.41 (0.27) -1080.2 3 2166.5
1 0.86 (0.05) 2.74 (0.31) -1064.1 5 2138.2
2 0.76 (0.05) 3.12 (0.37) -1053.3 7 2120.6
3 0.74 (0.05) 3.39 (0.41) -1044.1 9 2106.3
4 0.74 (0.05) 3.44 (0.42) -1042.2 11 2106.3
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Univariate analysis of meningococcal infections

Results from analysing the meningococcal time series with HHH
models using the Poisson, Negative Binomial and a increasing number
of seasonal components

S λ̂ML (se) ψ̂ML (se) log L(y, θ) |θ| AIC

0 0.50 (0.04) - -919.2 2 1842.4
0 0.48 (0.05) 11.80 (2.09) -880.5 3 1767.0
1 0.16 (0.06) 20.34 (4.83) -845.6 5 1701.2
2 0.16 (0.06) 20.41 (4.86) -845.5 7 1705.0
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Multivariate analyses

Model S λ̂ML (se) φ̂ML (se)
flu men flu men flu men

1 3 1 0.74 (0.05) 0.16 (0.06) -
2 3 1 0.74 (0.05) 0.16 (0.06) 0.000 (0.000) -
3 3 1 0.74 (0.05) 0.10 (0.06) - 0.005 (0.001)
4 3 1 0.74 (0.05) 0.10 (0.06) 0.000 (0.000) 0.005 (0.001)

Model ψ̂ML (se) log L(y, θ) |θ| AIC
flu men

1 3.39 (0.41) 20.34 (4.83) -1889.7 14 3807.5
2 3.39 (0.41) 20.34 (4.83) -1889.7 15 3809.5
3 3.39 (0.41) 25.32 (6.98) -1881.0 15 3791.9
4 3.40 (0.41) 25.32 (6.98) -1881.0 16 3793.9
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Fitted time series
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Figure: Results from a multivariate analysis influenza and meningococcal
infections in Germany, 01/2001− 52/2006 using HHH
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HHH in surveillance

R> # weekly counts of influenza and meningococcal infections

R> # in Germany, 2001-2006

R> data("influMen")

R> # specify model with two autoregressive parameters lambda_i, overdispersion

R> # parameters psi_i, an autoregressive parameter phi for meningococcal infections

R> # (i.e. nu_flu,t = lambda_flu * y_flu,t-1

R> # and nu_men,t = lambda_men * y_men,t-1 + phi_men*y_flu,t-1 )

R> # and S=(3,1) Fourier frequencies

R> model <- list(lambda=c(TRUE,TRUE), neighbours=c(FALSE,TRUE),

+ linear=FALSE,nseason=c(3,1),negbin="multiple")

R> #Fit the model

R> res.hhh <- algo.hhh(influMen, control=model)

Algorithm claims to have converged

R> AIC(res.hhh)

[1] 3791.938
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Model formulation
Suppose now multiple time series are available:

yrt number of cases in unit r = 1, . . . ,R at time t = 1, . . . ,T

yrt |yt−1 ∼ NegBin(µrt , ψ) (ψ > 0)

µrt = νrt + λyr ,t−1

+ φ
∑

q 6=r

wqryq,t−1

(νrt , λ

, φ

> 0)

The unknown quantities are given e.g. by

� log(νrt) = log(ert) + α0 + α1 sin
(

2π
52 t
)

+ α2 cos
(

2π
52 t
)

ert : offset, e.g. population numbers

� log(λ) = β0

� neighbor-driven component: log(φ) = γ0

wqr : known weights, e.g. 1(q ∼ r), travel intensities
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Addressing unit-specific heterogeneity

Each of the three unknown quantities ν, λ, φ, may also depend
on unit r by using

unit-specific fixed effects:
log(φr ) = γr
 this allows us to explore interdependencies between different
pathogens (e.g. influenza and meningococcal disease)

linking parameters with known explanatory variables:
log(λrt) = β0 + xrtβ1

 for instance xrt = vaccination coverage in unit r at time t.

unit-specific random effects:

log(νr ) = α0 + ar , ar
iid∼ N(0, σ2

ν), r = 1, . . . ,R
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Random effects specification

Consider the model

µrt = νrt + φr
∑

q 6=r

wqryq,t−1

log(νrt) = α0 + ar +
(
season

)
+ · · ·

log(φr ) = γ0 + cr

where the random effects a = (a1, . . . , aR)> and c = (c1, . . . , cR)>

are assumed to be
(
a

c

)
∼ N

((
0

0

)
,

(
σ2
ν

ρσνσφ
ρσνσφ

σ2
φ

)
⊗ IR

)

Alternatively, a conditional autoregressive (CAR) model (Besag et al.,
1991) may be adopted for a, say.
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Estimation

Model does not belong to the class of GL(M)Ms

Fixed effects model:
maximum likelihood estimates are obtained via a (globally
convergent) Newton Raphson type algorithm.

Random effects model:
estimation involves a multidimensional integral
without closed form solution.
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Estimation – random effects model

We adopt a penalized likelihood approach (Breslow and Clayton (1993); Kneib

and Fahrmeir (2007)) with alternating steps:

1 Estimate regression parameters for given variance components.

2 Estimate variance components for given regression parameters based
on an approximate marginal likelihood
(using a first order Laplace approximation).

Note: CAR effects require reparameterization

All methods are incorporated in surveillance as function hhh4.
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Model choice

Classical model choice criteria such as AIC can be problematic in the
presence of random effects.

Models are validated based on probabilistic one-step-ahead
predictions.

The often used mean squared prediction error does not incorporate
prediction uncertainty.

We use strictly proper scoring rules
(Gneiting and Raftery (2007); Czado et al. (2009))

I evaluate a model based on the predictive distribution and
the later observed true value

I simultaneously address sharpness and calibration

I are negatively oriented (the smaller the better)
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Intermezzo: Scoring rules (1)

A scoring rule S(P, y) measures the predictive quality of a stated
predictive distribution P by comparing it with the actual observed
value y

Denote the expectation of S(P, ·) under distribution Q by S(P,Q). A
scoring rule is called proper if S(P,Q) is minimal if y is indeed a
realization from P. If the minimum is unique the scoring rule is called
strictly proper.

In practice scores are reported as averages over suitable sets of
forecasts

S =
1

n

n∑

i=1

S(P(i), y (i)),

where P(i) and y (i) refer to the i ’th predictive distribution and i ’th
observation, respectively
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Intermezzo: Scoring rules (2)

The most popular strictly proper scoring rule for count data is the
logarithmic score

logS(P, y) = − log(fP(Y = y)),

where fP(Y = y) is the PMF of the predictive distribution P.

To compare two models A and B compute n individual scores for both
models and use a Monte Carlo test to assess if difference

∆A,B = SA − SB

is significant.
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Case study: Influenza in Southern Germany

We considered several negative binomial models, which differ
depending on whether and how the autoregression is specified.

The endemic components always includes
I population fractions as offset
I linear trend and seasonal terms
I iid random intercepts

Model choice using the logarithmic score
I one-step-ahead predictions for the last two years
I average scores are based on these predictions
I differences in mean scores may be tested

e.g. via a Monte Carlo permutation test
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Results for model with constant λ and random φ

µrt = νrt + λyr ,t−1 + φr
∑

q 6=r

wqryq,t−1 with

log(φr ) = γ0 + cr and log(νrt) = α0 + ar + · · ·

R> #Load influenza data in Baden-Wuerttemberg and Bavaria

R> data("flu-BYBW")

R> # specify components of the model and fit it using hhh4

R> phi <- ~ -1 + ri(type ="iid", corr = "all")

R> nu <- addSeason2formula(~ -1+ri(type = "iid",corr = "all")+I((t-208)/100),S=3)

R> model <- list(end = list(f = nu, offset = population(sts.flu)),

+ ar = list(f = ~ 1),

+ ne = list(f = phi, weights = wji),

+ family = "NegBin1")

R> result <- hhh4(sts.flu, model)

Parameter estimates:

α̂0 (se) λ̂ (se) φ̂ (se) σ̂2
ν σ̂2

φ ρ̂νφ

0.22 (0.10) 0.41 (0.02) 0.22 (0.02) 0.51 0.96 0.56
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One-step-ahead predictive validation for 2007–2008
> pred <- oneStepAhead(result, nrow(sts.flu) - 2*52)

> scores(pred)

autoregressive: λ neighbor-driven: φ logS

p-value

constant random .563

random random .564
random constant .565
constant constant .565

random — .569
constant — .569

— random .588
— constant .591
— — .599

Monte Carlo p-values based on 9999 permutations

For comparison: logS = 0.564 for the best model with CAR instead of iid random effects in the
endemic component νrt .
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M. Höhle Monitoring of infectious diseases 100/ 146



Multivariate surveillance The HHH model and its spatial extensions

One-step-ahead predictive validation for 2007–2008
> pred <- oneStepAhead(result, nrow(sts.flu) - 2*52)

> scores(pred)

autoregressive: λ neighbor-driven: φ logS p-value

constant random .563

random random .564 .5979
random constant .565 .0830
constant constant .565 .0353

random — .569 .0018
constant — .569 .0006

— random .588 .0001
— constant .591 .0001
— — .599 .0001

Monte Carlo p-values based on 9999 permutations

For comparison: logS = 0.564 for the best model with CAR instead of iid random effects in the
endemic component νrt .
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Multivariate surveillance The HHH model and its spatial extensions

One-step-ahead predictive validation for 2007–2008
> pred <- oneStepAhead(result, nrow(sts.flu) - 2*52)

> scores(pred)

autoregressive: λ neighbor-driven: φ logS p-value

constant random .563

random random .564 .5979
random constant .565 .0830
constant constant .565 .0353

random — .569 .0018
constant — .569 .0006

— random .588 .0001
— constant .591 .0001
— — .599 .0001

Monte Carlo p-values based on 9999 permutations

For comparison: logS = 0.564 for the best model with CAR instead of iid random effects in the
endemic component νrt .
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Multivariate surveillance The HHH model and its spatial extensions

Summary

A flexible modelling framework was developed to identify outbreaks
and spatio-temporal patterns in infectious disease surveillance data.

Different types of variation and correlation can be incorporated within
a single model.

Random effects formulation enables a realistic analysis of a large
number of parallel time series.

Methods are particularly well suited for model validation based on
one-step-ahead predictions and strictly proper scoring rules.

For further details see Paul and Held (2011).
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Point Process Modelling

Outline

1 Introduction

2 The R package surveillance

3 Univariate time series detectors

4 Multivariate surveillance

5 Space-Time Point Process Modelling
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6 Discussion and Summary
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Point Process Modelling

Motivation and Aims (1)

Public health surveillance of infectious diseases is an essential
instrument in the attempt to control and prevent their spread

Vast amounts of data resulting from routine surveillance demands the
development of automated algorithms for the detection of
abnormalities

The spatial and temporal resolution of routine collected infectious
disease data is becoming better and better

Interest in developing models and aberration detection methods
taking this spatio-temporal aspect better into account
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Point Process Modelling

Motivation and Aims (2)

Aim 1

Establish a regression framework for point referenced infectious disease
surveillance data, where the transmission dynamics and its dependency on
covariates can be quantified within a spatio-temporal stochastic process
context

Aim 2

Use this regression framework as building block for model based
prospective space-time aberration detection, e.g. to detect disease clusters
while adjusting for trend, seasonality and other covariates
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Point Process Modelling

Example: Invasive meningococcal disease (IMD)
IMD is a life-threatening infectious disease triggered by the bacterium
Neisseria meningitidis (aka meningococcus)
Two most common finetypes in Germany in 2002–2008: 336 cases of
B:P1.7-2,4:F1-5, 300 cases of C:P1.5,2:F3-3
Case variables: date, residence postcode, age, gender
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Point Process Modelling

Spatial distribution
B:P1.7-2,4:F1-5
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Point Process Modelling

Spatio-temporal animation

B:P1.7-2,4:F1-5 C:P1.5,2:F3-3

M. Höhle Monitoring of infectious diseases 108/ 146

Point Process Modelling

Conditional intensity function (CIF)

A regular spatio-temporal point process N on R+ ×R2 can be uniquely
characterised by its left-continuous CIF λ∗(t, s).

Definition

λ∗(t, s) = lim
∆t→0, |ds|→0

P

(
N([t, t + ∆t)× ds) = 1

∣∣Ht−
)

∆t |ds|

Instantaneous event rate at (t, s) given all past events

Key to modelling, likelihood analysis and simulation of evolutionary
point processes

In application, N is only defined on a subset (0,T ]×W ⊂ R+ ×R2

(observation period and region)
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Point Process Modelling

Sources of inspiration (1)

Temporal self-exciting process (Hawkes, 1971)

λ∗(t) = ψ +

∫

(−∞,t)
g(t − u) dN(u)

= ψ +
∑

j :tj<t

g(t − tj)

Constant rate ψ of immigration independent of Ht−
Birth rate g(t) for offspring events, e.g. exponential decay
g(t) = α0 e−α1 t

Interpretation: branching process with immigration, cluster process
(immigrants & offspring)
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Point Process Modelling

Sources of inspiration (2)

Spatio-temporal ETAS model (Ogata, 1998)

λ∗(t, s) = ψ(s) +
∑

j :tj<t

κ(mj) g(t − tj) f (s− sj |mj)︸ ︷︷ ︸
“triggering function”

ψ(s) Inhomogeneous background seismicity rate

κ(mj) Magnitude-dependent impact factor, e.g. κ(mj) = eγmj

g(t) Aftershock rate, e.g. hyperbolic decay g(t) = K (t + c)−p

f (s|m) Spatial kernel, e.g. elliptic bivariate normal density
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Point Process Modelling

Sources of inspiration (3)

Additive-multiplicative SIR compartmental model (Höhle, 2009)

λ∗i (t) = Yi (t) ·
{

hi (t) + e∗i (t)
}

(i = 1, . . . , n)

Fixed, finite population with locations s1, . . . , sn
At-risk indicator Yi (t)

Superposition of endemic (h) and epidemic (e) rates:
I Multiple outbreaks initiated by “imported” cases

hi (t) = exp
(

h0(t) + zi (t)′β
)

I Infectious (“self-exciting”) character of the process based on the set
I ∗(t) of current infectives, e.g.

e∗i (t) =
∑

j∈I∗(t)

f (‖si − sj‖)
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Point Process Modelling

Additive-multiplicative continuous space-time

intensity model proposed

λ∗(t, s) = h(t, s) + e∗(t, s)
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Point Process Modelling

Additive-multiplicative continuous space-time

intensity model proposed

λ∗(t, s) = h(t, s) + e∗(t, s)

Multiplicative endemic component

h(t, s) = exp
(

oξ(s) + β′zτ(t),ξ(s)

)

Piecewise constant function on a spatio-temporal grid
{B1, . . . ,BD} × {A1, . . . ,AM} with time interval index τ(t), region
index ξ(s)

Region-specific offset oξ(s), e.g. the log-population density

Endemic linear predictor β′zτ(t),ξ(s) includes discretised time trend
and exogenous effects, e.g. the influenza cases
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Point Process Modelling

Additive-multiplicative continuous space-time

intensity model proposed

λ∗(t, s) = h(t, s) + e∗(t, s)

Additive epidemic (self-exciting) component

e∗(t, s) =
∑

j∈I∗(t,s;ε,δ)

eηj gα(t − tj) fσ(s− sj)

Individual infectivity weighting through linear predictor ηj = γ ′mj

based on the vector of unpredictable marks

Positive parametric interaction functions, e.g. fσ(s) = exp
(
−‖s‖2

2σ2

)

and gα(t) = e−αt

Set of active infectives depends on fixed maximum temporal and
spatial interaction ranges ε and δ

M. Höhle Monitoring of infectious diseases 113/ 146

Point Process Modelling

Marked extension with event type

Motivation: joint modelling of both finetypes of IMD

Additional dimension K = {1, . . . ,K} for event type κ ∈ K

Marked CIF

λ∗(t, s, κ) = exp
(
β0,κ + oξ(s) + β′zτ(t),ξ(s)

)

+
∑

j∈I∗(t,s;ε,δ)

qκj ,κ eηj gα(t − tj |κj) fσ(s− sj |κj)

Type-specific endemic intercept

Type-specific transmission, qk,l ∈ {0, 1}, k, l ∈ K
Type-specific effect modification ηj = γ ′mj , κj is part of mj

Type-specific interaction functions, e.g. variances σ2
κ
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Point Process Modelling

Basic reproduction number

An important quantity in epidemic modelling is the mean number of
offspring each case generates

Since offspring are generated in time according to an inhomogeneous
Poisson process we define

Basic reproduction number

µi = eηi ·
[∫ ε

0
gα(t) dt

]
·
[∫

b(0,δ)
fσ(s) ds

]
, i = 1, . . . ,N.

Type specific reproduction numbers are obtained by averaging the
µi ’s for each type.
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Point Process Modelling Inference

Log-likelihood of proposed model (1)

Observed spatio-temporal marked point pattern:

x =
{

(ti , si ,mi ) : i = 1, . . . ,N
}

No modelling of the unpredictable marks being part of mi , e.g. age
and gender

Endemic covariate information on a spatio-temporal grid

G =
{
zτ,ξ : τ ∈ {1, . . . ,D}, ξ ∈ {1, . . . ,M}

}

Unknown parameters:

θ =
(
β′0,β

′,γ ′,σ′,α′
)′
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Point Process Modelling Inference

Log-likelihood of proposed model (2)

l(θ) =

[
N∑

i=1

log λ∗θ(ti , si , κi )

]
−
∫ T

0

∫

W

∑

κ∈K
λ∗θ(t, s, κ)dt ds

Easy integration of piecewise constant endemic rate hθ(t, s, κ)

Integration of epidemic component e∗θ(t, s, κ) involves

∫ min{T−tj ;ε}

0
gα(t|κj) dt and

∫
[
W∩b(sj ;δ)

]
−sj

fσ(s|κj)ds

For the spatial integration we use the two-dimensional midpoint rule
with adaptive bandwidth choice depending on the value of σ as best
trade off between accuracy and speed
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Point Process Modelling Inference

Further details

The score function is determined analytically but requires numerical
integration for

∫
∂
∂σl

fσ(s|κ)ds

Wald confidence intervals can be computed using the asymptotic
variance matrix Î−1(θ̂ML) where we use an expected Fisher
information matrix estimate (Rathbun, 1996)

To inspect goodness-of-fit residuals based on the cumulative CIF
suggested by Rathbun (1996) can be used

Simulation from the model is possible using an adaption of Ogata’s
modified thinning algorithm (Meyer et al., 2010)
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Point Process Modelling Data Analysis

Data representation: epidataCS class

IMD data representation in surveillance:
R> imdepi <- as.epidataCS(events, stgrid, W = germany, qmatrix = diag(2))

R> print(imdepi,n=5)

History of an epidemic

Observation period: 0 -- 2562

Observation window (bounding box): [4034.126, 4670.351] x [2686.701, 3543.229]

Spatio-temporal grid (not shown): 366 time blocks, 413 tiles

Types of events: 'B' 'C'

Overall number of events: 636

coordinates ID time tile type eps.t eps.s age sex BLOCK

103 (4112.19, 3202.79) 1 0.99 05554 B 30 200 17 male 1

402 (4122.51, 3076.97) 2 1.00 05382 C 30 200 3 male 1

312 (4412.47, 2915.94) 3 6.00 09574 B 30 200 34 female 1

314 (4202.64, 2879.7) 4 8.00 08212 B 30 200 15 female 2

629 (4128.33, 3223.31) 5 23.00 05554 C 30 200 15 male 4

start popdensity influenza0 influenza1 influenza2 influenza3

103 0 260.8612 0 0 0 0

402 0 519.3570 0 0 0 0

312 0 209.4464 0 0 0 0

314 7 1665.6117 0 0 0 0

629 21 260.8612 0 0 0 0

[....]
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Point Process Modelling Data Analysis

IMD model selection

Joint analysis of the two finetypes with model selection by AIC

Linear effect of weekly number of influenza cases registered in the
district of a point (lag 0 – lag 3)

Linear time trend and 0–2 harmonics for time-of-year effects

Epidemic predictor with Age (categorized as 0-2, 3-18 and ≥19
years), gender, finetype and age-finetype interaction

ε = 30 days, δ = 200 km

Spatial interaction function f : Gaussian or constant

Resulting best AIC model:

λ∗θ(t, s, κ) = ρξ(s) · exp
(
β0 + βtrend

btc
365

+ βsin sin
(
btc 2π

365

)
+ βcos cos

(
btc 2π

365

))

+
∑

j∈I∗(t,s,κ;ε,δ)

qκj ,κ eγ0+γ3-181[3,18](agej )+γ≥191[19,∞)(agej )+γC1{C}(κj ) fσ(s− sj ).
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Selected joint model (1)

R> fit <- twinstim(endemic = ~1 + offset(log(popdensity)) + I(start/365) +

sin(start * 2 * pi/365) + cos(start * 2 * pi/365),

epidemic = ~1 + agegrp + type

siaf = siaf_1, data = imdepi, subset = allEpiCovNonNA,

optim.args = optim.args, method = "nlminb",

control = list(fnscale = -10000)), nCub = 36,

typeSpecificEndemicIntercept = FALSE, partial=FALSE)

R> toLatex(summary(fit))

Estimate Std. Error z value P(|Z | > |z|)
h.(Intercept) −20.36516 0.08721 −233.527 < 2 · 10−16

h.I(start/365) −0.04927 0.02229 −2.210 0.0271
h.sin(start*2*1*pi/365) 0.26184 0.06493 4.032 5.52 · 10−05

h.cos(start*2*1*pi/365) 0.26682 0.06437 4.145 3.40 · 10−05

e.(Intercept) −12.57459 0.31275 −40.206 < 2 · 10−16

e.agegrp[3,19) 0.64632 0.31953 2.023 0.043102
e.agegrp[19,Inf) −0.18676 0.43210 −0.432 0.665584

e.typeC −0.84956 0.25742 −3.300 0.000966
e.siaf 2.82866 0.08191

AIC: 18968
Log-likelihood: −9475
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Selected joint model

Basic reproduction numbers: µ̂B ≈ 0.25 (95%-CI: 0.19-0.33) vs. µ̂C ≈ 0.11
(95%-CI: 0.07-0.18)

LQ-test for H0 : γC = 0 vs. H1 : γC 6= 0 has p-value 0.013
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Selected joint model (3) – residual analysis
To inspect goodness-of-fit Rathbun (1996) uses

Yi = Λ̂∗(ti )− Λ̂∗(ti−1), i = 2, . . . ,N,

where Λ̂∗(t) is the cumulative intensity function
If the estimated CIF describes the true CIF well, then

Ui = 1− exp(−Yi )
iid∼ U(0, 1)

ε = 0.01 tie breaking
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Outline

1 Introduction

2 The R package surveillance

3 Univariate time series detectors

4 Multivariate surveillance

5 Space-Time Point Process Modelling
Maximum Likelihood Inference
Data Analysis
Prospective space-time monitoring

6 Discussion and Summary
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Prospective space-time monitoring (1)

Idea: Use twinstim as model framework for aberration detection
within a statistical process control context

Let θ̂0 be the MLE for the twinstim model m0 based on all events in
a pre-monitoring period [0,T0]

Given the endemic–epidemic nature of the model previous outbreaks
are thus taken into account

After time T0 new events are actively monitored as they arrive
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Prospective space-time monitoring (2)

Denote the knots in the time grid of G following T0 by t1, t2, . . . and
for each k ≥ 1 compute

ΛC
k = lm0(θ̂C1 )− lm0(θ̂0),

where the loglikelihoods are computed over all events in [0, tk ]

In the above, θ̂C1 denotes θ̂0, but with endemic intercept

β̂0,κ + φ · 1C (t, s)

where φ > 0 is a predefined constant and C the cluster

C = {g ∈ G : centroid(g) ∈ [tc , tk ]× circle(sc , δc)}
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Prospective space-time monitoring (3)

Other models for the change of the CIF within the cluster are possible,
but the suggested intercept change is computationally advantageous

Log likelihood ratio of endemic intercept change

ΛC
k =

N∑

i=1

1[0,tk ](ti )
{

log(λ∗θ1
(ti , si , κi ))− log(λ∗θ0

(ti , si , κi ))
}

−
D∑

τ=1

M∑

ξ=1

∑

κ∈K
1[0,tk ](τ)|Bτ ||Aξ|h(τ, ξ, κ)

[
exp(φ1C (τ, ξ))− 1

]
,

where | · | denotes area and length, respectively, and

h(τ, ξ, κ) = exp(oξ + β0,κ + β′zτ,ξ)
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Prospective space-time monitoring (4)

Typically, one would look through a set of clusters C with different
centroids and radii all having time-length [tj , tk ]

Λj ,k = max
C∈C

{
lm0(θ̂C1 )− lm0(θ̂0)

}

Aberration detection can now be based on, e.g. the Shiryaev-Roberts
(SR) method used in Assunçáo and Correa (2009)

Tγ = min
k
{SRk > γ} , SRk =

k∑

j=1

exp(Λj ,k)

An important result is that the SR method has in-control run-length
greater or equal to γ

M. Höhle Monitoring of infectious diseases 130/ 146

Point Process Modelling Prospective space-time monitoring

Simulation example (1)

Simulated epidemic from best AIC model with δC = 50 km cluster
around Ansbach region starting on 01 Jan 2007 having φ = log(5)

Cluster detection using δc ∈ {25km, 50km, 75km} and tj in two-week
intervals after 01 Jan 2007
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Simulation example (2)

Resulting Shiryaev-Roberts statistic
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2007 2008 2009W21−2007

Using γ = 52 · 3 results in an alarm at t20 (W21-2007) with cluster
location defined as the cluster producing max20

j=1 exp(Λj ,20), i.e. here
C=(Ansbach, 50km, W09-2007)
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Simulation example (3)
Illustration of the cluster location and available cases at alarm time
(W21-2007) together with the corresponding univariate time series
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M. Höhle Monitoring of infectious diseases 133/ 146

Point Process Modelling Prospective space-time monitoring

Cluster detection for IMD data
Using same parametrization for original IMD data sounds alarm at
W10-2007 with cluster C=(Esslingen, 75km, W05-2007)
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Discussion and Outlook (1)

twinstim is a comprehensive framework for the modelling, inference
and simulation of general self-exciting spatio-temporal point patterns

An implementation is to be made available in the R package
surveillance on CRAN

Edge effects probably result in underestimated epidemic weight

Full observability of the relevant epidemic events was assumed

Meyer et al. (2010) contains further details on the twinstim

modelling
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Discussion and Outlook (2)

This talk showed preliminary results on how to use twinstim for
prospective space-time cluster-detection while adjusting for covariates

Clustering as change in endemic intercept ensures speedy
computations, but clusters are limited to a union of cells from the
space-time grid G

Actual run-length behaviour of method needs to be investigated by a
simulation study

Comparison with existing methods, e.g. Kulldorff (2001) or Diggle
et al. (2005), of interest
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Outline

1 Introduction

2 The R package surveillance

3 Univariate time series detectors

4 Multivariate surveillance

5 Space-Time Point Process Modelling

6 Discussion and Summary
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Discussion and Summary (1)

The focus of prospective surveillance is on outbreak detection

Choice of the detection algorithm depends heavily on the
epidemiological aims

Combination of SPC and classical GLMs yielded nice changepoint
detector for count time series

Retrospective surveillance tries to explain temporal and
spatio-temporal pattern in the data through statistical modelling

Emphasis was on the time series aspect of surveillance as an
alternative to spatial and spatio-temporal cluster detection methods,
e.g. scan statistics
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Discussion and Summary (2)

The surveillance package offers a free and open-source
implementation of the described algorithms

Application of methods not restricted to infectious diseases

Current work:
I Robustify code, improve documentation and prepare for R CMD check

running without warnings → get new version 1.3 on CRAN
I Provide more methods for spatio-temporal cluster detection (also

discrete time – discrete space)
I Increase knowledge about package and integrate relevant existing code

into the surveillance framework
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