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Motivation (1)

On-line detection of changepoints in time series of counts
originating from public health surveillance of infectious
diseases

Combine ideas from statistical process control (SPC) and
generalized linear models (GLM) to develop a detector which
takes the seasonal variation in surveillance data into account

Encourage use by providing efficient implementation within
the R-package surveillance (Höhle, 2007) available from
the Comprehensive R Archive Network (CRAN)
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Motivation (2) - Salmonella hadar cases in Germany

During 2006 the German health authorities noted an increased
number of cases due to salmonella hadar
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Plot shows weekly number of cases 2001-2006
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Motivation (3)

Classical surveillance algorithms deal with seasonality by
creating predictive intervals based on a subset of the historical
values

→ Using only a subset of the historical values is
sub-optimal

More orientation towards methods from SPC (CUSUM,
EWMA, etc.)

→ Process performance for on-line scheme more at focus

→ Developed for the Gaussian case, but levels of
aggregation and rare disease means low count
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CUSUM likelihood ratio detectors (1)

Assume that given change-point τ

yt |zt , τ ∼
{

fθ0(·|zt) for t = 1, . . . , τ − 1 (in-control)
fθ1(·|zt) for t = τ, τ + 1, . . . (out-of-control)

where zt denotes known covariates at time t and fθ is e.g. the
Poisson probability function parametrized by θ.

Likelihood ratio (LR) based stopping time

N = inf

{
n ≥ 1 : max

1≤k≤n

[
n∑

t=k

log

{
fθ1(yt |zt)

fθ0(yt |zt)

}]
≥ cγ

}
.
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CUSUM likelihood ratio detectors (2)

With no covariates and pre-specified θ0 and θ1 the stopping rule
can be written in recursive form:

Cumulative Sum (CUSUM)

l0 = 0, ln = max

(
0, ln−1 + log

{
fθ1(yn)

fθ0(yn)

})
, n ≥ 1

with stopping-rule N = inf{n : ln ≥ cγ}.

To determine if N ≤ m takes at most O(m) operations

The CUSUM detector is optimal (in some technical sense) for
the detection from θ0 to θ1.

CUSUM for Poisson distribution described by Lucas (1985)
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Seasonal Poisson GLM
What if in-control observations originate from seasonal Poisson
GLM, i.e. yt ∼ Po(µ0,t) with

log µ0,t = α + βt +
S∑

s=1

(
γs sin(ωst) + δs cos(ωst)

)
and ωs = 2π

T s with period T?
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Generalized likelihood ratio detector (1)

A problem of the LR scheme is that detection is only optimal
for pre-specified θ1. Generalization:

Generalized likelihood ratio (GLR) based stopping rule

NG = inf

{
n ≥ 1 : max

1≤k≤n
sup

θ1∈Θ1

[
n∑

t=k

log

{
fθ1(yt |zt)

fθ0(yt |zt)

}]
≥ cγ

}

No recursive updating as in CUSUM possible: worst case
number of operations to determine if NG ≤ m is O(m3)

Lai and Shan (1999) show for the Gaussian case how it is
possible to reduce this complexity by recursive least squares
and clever treatment of the sums and sups
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Generalized likelihood ratio detector (2)

The GLR detector rephrased:

ln,k = sup
θ1∈Θ1

[
n∑

t=k

log

{
fθ1(yt |zt)

fθ0(yt |zt)

}]

=

[
sup

θ1∈Θ1

n∑
t=k

log fθ1(yt |zt)

]
−

[
n∑

t=k

log fθ0(yt |zt)

]

=
n∑

t=k

log

{
fθ̂n,k

(yt |zt)

fθ0(yt |zt)

}
,

where θ̂n,k = arg sup
θ1∈Θ1

n∑
t=k

log fθ1(yt |zt). Now GLR(n) = max
1≤k≤n

ln,k
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GLR detector (3) – recursive computations

For Poisson case with log µ1,t = log µ0,t + κ, efficient
computations are possible as necessary MLE is analytically
available:

κ̂n,k = log

( ∑n
t=k yt∑n

t=k µ0,t

)
.

Inserting θ = κ yields,

ln,k = sup
θ∈Θ

n∑
t=k

log
fθ(yt |zt)

fθ0(yt |zt)

= κ̂n,k

n∑
t=k

yt + (1− exp(κ̂n,k))
n∑

t=k

µ0,t .

By recursively computing
∑n

t=k yt and
∑n

t=k µ0,t , an efficient
computation of κ̂n,k and ln,k is available.
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Applying the GLR detector to salmonella hadar (1)

A S = 1 seasonal Poisson GLM is fitted to the training period

time (weeks)

N
o.

 in
fe

ct
ed

2001

I

2001

IV

2002

III

2003

II

2004

I

2004

IV

2005

III

2006

II

0
5

10
15

20

The fitted model is used to predict µ0,t of the test period
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Applying the GLR detector to salmonella hadar (2)

Analysis of shadar using glrpois: intercept
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Evaluating performance of a surveillance algorithm

Choice of threshold in surveillance algorithms should be based on a
performance measure:

Location parameters of the run length distribution, e.g. the
average run lengths (ARLs) ARL0 = E(N|τ = ∞) or
ARL1 = E(N|τ = 0).

Conditional expected delay E (N − τ |τ,N ≥ τ)

Probability of false alarm within first m time points, i.e.
P(N ≤ m|τ = ∞).

Sensitivity, Specificity, ROC-Curves

Above criteria for a detector are rarely available as closed formulas
→ use Monte Carlo sampling instead
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Average run length and probability of false alarm
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Michael Höhle Surveillance using likelihood ratio detectors



Motivation Outbreak detection Performance Extensions Discussion References

Other approaches for seasonal count data (1)

Rossi et al. (1999) suggest a Poisson CUSUM for time varying
mean data by transformation to normality

xt =
yt − 3µ0,t + 2

√
µ0,t · yt

2
√

µ0,t

and applying a Gaussian CUSUM to the xt ’s

Chart performance is controlled by desired values for
in-control mean ARL0 and the out-of-control mean ARL1

Threshold cγ and θ1 selected by algorithms to determine ARL
for iid. standard normal CUSUM
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Other approaches for seasonal count data (2)

Rogerson and Yamada (2004) compute time-varying
parameters of the Poisson CUSUM to keep in-control ARLs
fixed:

St = max{0,St−1 + ct(yt − kt)}, with

kt =
µ1,t − µ0,t

log(µ1,t)− log(µ0,t)
,

with µ1,t = µ0,t + s
√

µ0,t and ct = h/ht scales the
contribution of (yt − kt).

The decision interval ht is determined at each time point as
the decision interval of a Poisson CUSUM with reference value
kt having ARL0.
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ARL Comparison on 4 simulated setups
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√

µt), δ = {0.0, 0.5, 1.0, 1.5, 2.0, 2.5}
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(a) Rossi: ARL0 = 500 detector for µ0,t + 2
√

µ0,t

δ = 0.0 δ = 0.5 δ = 1.0 δ = 1.5 δ = 2.0 δ = 2.5
µa

t 113 (3.1) 25.7 (0.54) 11.9 (0.26) 6.4 (0.14) 4.0 (0.07) 3.1 (0.05)
µb

t 321 (9.1) 39.3 (0.97) 12.7 (0.33) 6.1 (0.13) 4.0 (0.07) 2.9 (0.05)
µc

t 284 (8.3) 41.3 (1.02) 12.7 (0.31) 5.9 (0.12) 3.6 (0.06) 2.7 (0.04)
µd

t 416 (11.6) 49.7 (1.24) 12.8 (0.30) 5.6 (0.11) 3.6 (0.06) 2.6 (0.04)

(b) Rogerson: ARL0 = 500 detector for µ0,t + 2
√

µ0,t

δ = 0.0 δ = 0.5 δ = 1.0 δ = 1.5 δ = 2.0 δ = 2.5
µa

t 654 (17.4) 43.4 (1.12) 13.8 (0.37) 6.6 (0.15) 4.3 (0.07) 3.3 (0.05)
µb

t 576 (16.5) 45.1 (1.09) 12.6 (0.30) 6.2 (0.11) 4.3 (0.07) 3.2 (0.05)
µc

t 552 (15.6) 45.2 (1.14) 12.6 (0.31) 5.8 (0.11) 3.7 (0.06) 2.8 (0.04)
µd

t 526 (14.6) 48.3 (1.20) 12.0 (0.28) 5.5 (0.10) 3.6 (0.06) 2.6 (0.04)

(c) GLR: dARL0 = 500 detector with cγ = (4.7, 4.95, 4.98, 5.08)

δ = 0.0 δ = 0.5 δ = 1.0 δ = 1.5 δ = 2.0 δ = 2.5
µa

t 519 (14.3) 34.1 (0.76) 12.0 (0.29) 6.1 (0.13) 4.1 (0.06) 3.2 (0.05)
µb

t 532 (15.2) 31.9 (0.64) 10.9 (0.21) 6.0 (0.10) 4.2 (0.07) 3.1 (0.05)
µc

t 492 (13.8) 33.2 (0.68) 11.1 (0.23) 5.7 (0.09) 3.7 (0.06) 2.8 (0.04)
µd

t 480 (13.0) 30.7 (0.60) 10.4 (0.18) 5.5 (0.09) 3.7 (0.05) 2.7 (0.04)
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Beyond the seasonal Poisson detector (1)

More involved models for the shift are imaginable, e.g. the
auto-regressive epidemic model from Held et al. (2005)

µe
1,t = µ0,t + λyt−1, t > 1,

where λ > 0 and µe
1,1 = µ0,1

MLE only available by iterative procedure → no fast recursive
updating of GLR statistic ln,k possible

Use λ
(0)
n,k = λ̂n,k+1 as starting value for λ̂n,k computation

Speedup by window-limited GLR scheme as proposed
by Willsky and Jones (1976). Maximization only for a moving
window of k ∈ {n −M, . . . , n}, where 1 ≤ M

Michael Höhle Surveillance using likelihood ratio detectors



Motivation Outbreak detection Performance Extensions Discussion References

Beyond the seasonal Poisson detector (2)

With M = 26 and cγ = 6 ⇒ P(ÑG < 3 · 52|τ = ∞) = 0.042

Analysis of shadar using glrpois: epi
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Beyond the seasonal Poisson detector (3)

Extension to multivariate Poisson time series yit ∼ Po(µ0,it),
i = 1, . . . , p with

log µ0,it = αi + βi t +
S∑

s=1

(
γs sin(ωst) + δs cos(ωst)

)
and log µ1,it = log µ0,it + κi

The components of the GLR statistic with θ = (κ1, . . . , κp)
are thus

ln,k = sup
θ∈Θ

n∑
t=k

log

{
p∏

i=1

fθ(yit |zit)

fθ0
(yit |zit)

}
=

n∑
t=k

log

{
p∏

i=1

fκ̂n,k,i
(yit |zit)

fθ0
(yit |zit)

}
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Discussion

Nice combination of SPC and classical GLM to obtain
changepoint detector for count time series

Proposed Poisson GLR detector is rather specific

Dealing with overdispersion → negative binomial
For binomial distribution no fast recursive updating possible
Model for µ0,t is crucial → self-starting CUSUMs

Evaluation of run length, P(NG ≤ m|τ = ∞) and other
criteria is only possible by Monte Carlo evaluation

tuning by control variates or importance sampling

The paper accompanying this talk is (Höhle and Paul, 2007)
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