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Preface

This report describes the project work performed during the fall of 1998 by project group C1-
202a, 9th semester (DAT5) at the Department of Computer Science at Aalborg University.
The topic of the project is to develop and apply methods — based on the general framework
of decision support systems — enabling an in-depth sensitivity analysis in Bayesian networks
and influence diagrams.

The report is mainly addressing the supervisor, the censor, and others with interest in the
subject of sensitivity analysis in Bayesian networks and influence diagrams. It should be
seen as a midway report reflecting the results obtained this semester and formulating areas
requiring further research, once the work is continued.

Citations are on the form [(author), (year), (page reference)|, which refers to the bibliog-
raphy on page 75. Note, the (page reference) field is optional and can instead contain a
reference to, e.g., a theorem. Figures, tables, equations, theorems and lemmas are num-
bered as (chapter).(number), where (chapter) corresponds to chapter in which it appear,
and (number) corresponds the number of appearance within the chapter, and each category
having its own counter.

Notation with respect to Bayesian networks and influence diagrams and general graph the-
oretic notation is shortly described in Appendix A.

We would like to thank Hugin Expert A/S for providing us with a full version of Hugin during
the project period.

Michael Hohle Brian Kristiansen
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Chapter 1

Introduction

The philosophy of this decade seems to be; if a human cannot perform a decision by pure
reasoning we better exploit the magic power of computers. This is done by constructing
computer systems to support or at the extreme to replace the human. Our trade as knowledge
engineers is the design of expert systems, but unfortunately our systems are often interpreted
as oracles by the users. The conclusion of an expert systems communicated by, e.g., a
printout is regarded more credible than an expert’s opinion. As engineers we believe in a
mechanistic world view convincing us that modeling reality is possible, thus, the user’s naive
application of our system demands an extra effort to make the system as consistent with
reality as possible. To optimize the consistency, constructing a belief model becomes an
iterative process of constructing, analyzing and adjusting the model. But currently, none
of of the integrated belief network construction products, such as e.g. Hugin, reflect this
iterative process. The products only aid the knowledge engineer in the construction and
adjusting phases. No support is given during the analyze phase! This report presents our
ideas on how to equip the knowledge engineer with an aid to formalize the analyzing phase
for Bayesian networks and influence diagrams.

Eliciting a probability model such as an influence diagram usually happens in co-operation
between a knowledge expert and an expert. Surveys show that creating the qualitative struc-
ture of the network usually is relatively straightforward, [Coupé and van der Gaag, 1998b).
Assessing the conditional probabilities and utility values used in the quantitative part, on
the other hand, is a difficult task. This is mostly due to the large number of values that
have to be specified, [Coupé and van der Gaag, 1998b]. Methods for extracting these values
vary from querying databases, recording previous observations to consulting experts either
from literature, or simply by asking a co-operating mechanic or doctor. Inevitable these
values become inaccurate, and especially the values achieved by asking a human expert are
known to be quite incorrect, [Coupé and van der Gaag, 1998b|. By comparing to previously
observed situations or using the experts judgment the validity of the decision of an influence
diagram can be evaluated. But, as already mentioned, the many inaccurate values seldomly
produce the desired results. To qualify the repair phase the knowledge engineer needs to
know how entered values effect the conclusions of the model. Once this knowledge has been
acquired the values can be adjusted to produce more valid results. This investigation comes
under the heading of sensitivity analysis.

Sensitivity analysis of mathematical models in general is defined as a systematic investiga-
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tion of the effect the uncertain parameters have on the output, [Coupé and van der Gaag,
1998b]. Seen from a mathematical point of view this is done by describing the output as
a function of all the uncertain parameters such that these can be varied simultaneously.
For Bayesian networks and influence diagrams the desired output corresponds to possible
hypothesis variables or decision variables in the network. Systematically varying all the
questionable values would be an computational intractable task. Instead, it is common to
only consider one probability or decision of interest and investigate how it depends on a small
set of parameters, typically one or two. With this reduced setup it is in Bayesian networks
possible to functionally describe the exact effects of the study parameters on the chosen
target probability, [Coupé and van der Gaag, 1998b|, [Coupé and van der Gaag, 1998al, and
[Laskey, 1993]. But so far, no theory has been developed on how to perform a sensitivity
analysis in influence diagrams.

Motivated by this shortcoming, we define the concept of the radius of change for a decision.
It indicates how much the parameters under study have to be varied from their original
values, before a different decision alternative would be chosen. The goal is to be able to
calculate this radius in arbitrary influence diagrams.

The present report is organized as follows. In Chapter 2 we extend the work of [Coupé
and van der Gaag, 1998b| for Bayesian networks. The following two chapters investigate
how sensitivity analysis can be performed in influence diagrams. The radius of change is
introduced in Chapter 3 and we show how to calculate it for influence diagram with one
decision and one or two parameters under study. Chapter 4 extends these calculations to
influence diagrams with two decisions. Implementational details of our sensitivity analysis
tool (sat) are presented in Chapter 5.

Finally, we demonstrate in Chapter 6 the applicability of the radius of change by perform-
ing a model-analyze phase. This argumentation is performed by assuming the role of a
knowledge engineer using sat to undertake a sensitivity analysis in a milk testing problem.
Appendix A contains general graph theoretic definitions used throughout the report and a
short introduction to Bayesian networks and influence diagrams, for readers unfamiliar with
the concepts of a graphical model.



Chapter 2

Sensitivity Analysis In Bayesian Networks

In this chapter we will discuss sensitivity analysis in Bayesian networks starting with the
basic case of having binary variables and only one conditional probability under study [Coupé
and van der Gaag, 1998b|. Hereafter, we extend this basic case to both non-binary variables
and multiple variables under study. Finally, we discuss how to calculate the coefficients by
using a number of propagations, as discussed in [Coupé and van der Gaag, 1998b].

2.1 Basic Sensitivity Analysis

In the basic sensitivity analysis we only consider Bayesian networks with binary variables,
i.e. variables with two states and only one conditional probability under study. Let V; be
the target node and v, € v(V}) be the target state, furthermore, denote by V; the node in
which the conditional probability x = P(V; = vg|pa(V;) = ') under study is located. Let
O be the set of observed nodes in the network, and o € {2 the observed configuration. We
are now interested in how P(v;|o) behaves as a function of the conditional probability under
study. If 1, and o are in conflict it is clear that P(vo)(x) = 0, which is not interesting.
Thus, we from now on assume that the two configurations are not conflicting.

For some set, W, of nodes in the graph, simply investigating d-separation properties in the
DAG, G, of the Bayesian network, can give us an idea of P(uv|o)(z) if V; € W. For this
purpose we define the sensitivity set

Sen(V,,0) = {Vi e V(G) | ~({X}O{ViH &}
where G* corresponds to GG except that the new node X; is added as a parent of V;. Now by
[Coupé and van der Gaag, 1998b, Proposition 3.13], if V' & Sen(V;, 0) then P(v]o)(x) = c.

Hence, it is only worth studying nodes in Sen(V;, O). For these nodes [Coupé and van der
Gaag, 1998b, Proposition 4.1] states the following theorem.

Theorem 2.1
Let B = (G, P) be a Bayesian network. Let O C V(G) be the set of observed
nodes in G and let o denote the corresponding observations. Let V; be the target
node and let Sen(V;, O) be the sensitivity set for V; given O. Then, for any value
vy of V;, we have that
ar +b

P(wilo) = cr +d

11
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for every conditional probability z = P(vs|n’) of every node V; € Sen(V;, O),
where a, b, ¢, and d are constants related to the values v, of V; and 7’ of pa(Vj).

From the theorem we can conclude that when the variables are binary, the target probability,
P(v)o), is a fraction of two linear functions in the conditional probability under study, z.
A special case of the above theorem occurs when (V; U de(V;)) N O = 0. Then, [Coupé and
van der Gaag, 1998b, Proposition 4.3] states that P(1;|o)(z) = ax + b.

2.2 Sensitivity Analysis For Non-Binary Variable

In this section we extend the Bayesian networks to have non-binary variables, i.e. more
than two states per variable. First, we define a concept of how to update the probabilities,
then we prove a lemma stating that this concept is a sound way to update the conditional
probabilities of complementary states when ranging a conditional probability under study.
Hereafter, we present the main result of this section, stating that if the probabilities in a
non-binary variable are updated using this concept, P(v;]o) is again given by a fraction of
two linear functions. Finally, we look at what kind of information the junction tree can
provide.

Given z = P(v*|7'), the normalization of complementary states in a node denotes that
the ratio between any two conditional probabilities, P(v*|r’) and P(v7|r’) with i,j # k, is
preserved as P(v*|r') is varied between zero and one. Special attention has to be given if
It #£ vk P(Vr’) = 0 or if z = 1. We now give an expression for how to normalize, and
then prove that it actually preserves the ratios.

Definition 2.2 (Normalization of the complements)
Assume z = P(v¥|7') # 1 and let 2* = z + Az be the value of  changed by
Az such that 0 < z* < 1. Then, for z; = P(VY|7'), i # k, the value after
normalization of the complements is given by

zi(1 — x*)
11—z

If z = 1 it is not possible to perform a normalization of the complements, thus, some other
notion of updating the probabilities is necessary. We abstain from covering this situation.
The following lemma proves that the above update concept is sound as it actually preserves
the desired ratios.

Lemma 2.3
Let B = (G, P) be a Bayesian network and let V' € V(G) be a node with |v (V)| =
m+ 1. Assume, x = P(v"|x') for pa(V) = 7', and 2; = P(V!|7),i=1,... ,m.
In other words, P(V|r') = (z1,...,%mn,x). Furthermore, let kj; = %, where
i,j € {1,...,m} be the ratios between the complements. If z; = 0, kj, is defined
to be 0.
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If the value z* of P(v™"!|7') is ranged within [0, 1], then normalization of the
complements will preserve the ratios, kj;.

Proof
The idea of the proof is to show that

Y =1 (2.1)

i=1,...,m

and Vi, j € {1,...,m} that

NN* |%N*

Il

=l

(=

S

—~
[\
[\

SN—

Since Y ., 2z =1—x, we have that

Thus the normalization respects (2.1).

Furthermore, we show that the normalization respects (2.2). By definition the
ratios of the complements are preserved,

5 yl-a)l-2) _ 3
zf zi(1—2%)(1—x) 2

This completes the proof.
O

Before we show the main result of this section, we need a general result about how sum-
marginalization of linear functions preserves the linearity.

Lemma 2.4
Let f(z,U) = g(z,V) ], 9i(U;) be a function over a universe of variables UU{z},
where U; C U and V' C U. Assume about g that g(x,V) = hy(V) + x - ho(V).
Then, for a set of variables W, such that W N {z} = (), we have that

> [z U) = a(U\W) + 2 b(U\W). (2.3)

Proof
By the definition of f(z,

U
> f@U) = Z(m ng )+ hy(V) - Hgiwi))

(;hl(v).ngi(m)) +x <Zh2 ng U))

) we rewrite
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Now, let a(U\W) = Yyp hy(V) TT, 0:(U7) and B(O\W) = Yyp ho(V) T, (0.
This concludes the proof.
O

In the case of non-binary variables, we can now prove the theorem stating that P(14]o) is a
fraction of two linear-functions in x. The proof of this theorem is an extension of the proof
of Theorem 2.1.

Theorem 2.5
Let B = (G, P) be a Bayesian network and O C V(G) the set of observed
nodes with the corresponding observations o. V; indicates the target node and
let Vi € Sen(V}, O) be the node under study with states v(V;) = {v},... v}
Assume the probabilities of V are updated by normalization of the complements.
Then, for any state v, of V;, any configuration 7" of pa(V;) and any v, € v(Vj),

such that P(vg|n") # 1, we have that

ar +b
cr +d’

P(v)o) = (2.4)

where x = P(v4|n’), and a, b, ¢, d are constants related to v, and 7.

Proof
Without loss of generality, assume that v, = 1]
get

m+l By the fundamental rule we

P(Vt|0) = P(O) (25)

Both the numerator and denominator of (2.5) are investigated, which yields the
numerator and denominator of (2.4), respectively.
For abbreviation, let A = {Vi,... ,V,}\({V,}UO) and I = {1,... ,n}.

Consider the numerator of (2.5), P(v4,0). From the chain rule and marginaliza-
tion, this joint probability can be written as a sum of products of the networks
conditional probabilities,

P(v,0) Z <Hp Vi pa(V; )

i€l

Then,

P(v,0) = P(Vilpa(Va)) ] PVilpa(Vi) || ' (2.6)

i€I\{s}

-
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Let g(x, Vs Upa(Vs)) = P(Vy|pa(V;))(z). The variable z of this theorem cor-
responds the variable z* of Definition 2.2. Thus, we have for s € €y, and

S Qpa(vs)
c(s,m) if m#£ 7
(s = § RO it = s
T if 7 =n"As=pmt!

where ¢(V; U pa(V;)) corresponds to the original P(Vi|pa(Vs)) of the Bayesian
network. In other words, g(z, ViUpa(Vy)) = hy(VsUpa(Vy)) + 2 - ho(ViUpa(Vs)).
Rewriting (2.6) gives

P(y,o)(x) = Y gz, Voupa(Vy) [ g:(Viupa(vi))| 'z
A i€I\{s}

By Lemma 2.4 we get P(v,0)(x) = ax+b. Similar considerations yield that also
P(0) only depends linearly on x. This concludes the proof.
O

2.2.1 Topological Considerations

To prepare the ground for topological considerations in the case of influence diagrams, we
investigate the flow of the probability potentials during absorptions in the junction tree.

Theorem 2.6
Let J be the junction tree of the investigated Bayesian network with all separators
equal to one. Then, for any C' € J and s € Qg

bs(s) = Z bp = ay(s)x + ag(s) (2.7)

C\S

where ¢, denotes the probability potential of C' after all its children in J have
been absorbed into C' as part of a collect towards the root. S is the separator
between C' and the parent of C' in J. If C is the root then S = ().

Proof
Denote by A;(C) the subtree in J, which has C' as root. We know ¢, = P(C,0),
where O" = ¢’ is the part of the evidence O = o entered into cliques in A(C).
Hence,

ZP(C,O Z Z H PV|pa ) | 0'=0,

C\S C\S V(G)\C VieA(C
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where A(C;) denotes all the variables, V;, which have P(V;|pa(V;)) associated
to a clique in A;(C). Similar to the proof of Theorem 2.5, Lemma 2.4 can be
applied to get the desired result. We abstain from repeating the details.

O

We only consider the situation after a collect, since we will need this result in our work for
influence diagrams. Note that the linearity of ¢g(s) after both a collect and a distribute also
is of the form a(s)x 4 b(s). In the distribute phase, ¢s(s) = P(S, 0), which can be calculated
by the chain rule as in the earlier proofs.

2.3 Sensitivity Analysis With Multiple Nodes Under Study

In this section we will give the proof of linearity in the case with more than one conditional
probability under study. In this case we can have conflicts when two conditional probabilities
under study require two different states of the set of parents for the same variable. For
example, if zy = P(V;, = v, |r]) and 25 = P(V;, = v, |7}) then the coefficient of 2y, is
zero. But, if m; = 7' the setup is inconsistent because x; = x5 and then z; and x5 cannot
be ranged independently.

With this setup the target probability becomes a general polynomial where each variable
only occurs linearly, which we will show in the following theorem. In the following P(S)
denotes the power set of a set S.

Theorem 2.7
Let B = (G, P) be a Bayesian network and O C V(G) be the set of observed
nodes with the corresponding observations o. Let V; be the target node and
Sen(V;, O) the sensitivity set for V; given O. For any value v, of V; and any set
of nodes {V;,,..., Vs } C Sen(V;,O) under study, updated by normalization of
the complements, we have that

e ()

MeP({1,...,m}) €M
P (o) = (2.8)

s ()

MeP({1,....m}) ieM

where z; = P(vs,|ml) # 1,4 € {1,...,m}. Each ay and by is a constant related
to the values v;, of Vj, and 7} of pa(Vj,).

Proof
By using the fundamental law the target probability P(v;]o) equals

P(wy, o).

P(Vt|0) = P(O)
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Consider the nodes under study Vi,,...,V, € Sen(V;,O). Without loss of
generality, the sensitivity of the target probability will be investigated with regard
to the conditional probabilities, z1 = P(vg,|7]), ..., &m = P(vs,,|7,), where each

/!

m! is a specific configurations of the states of the nodes in pa(Vj,). Note, these

configurations can yield to contradictions, as discussed in the beginning of this
section.

As in the proof of Theorem 2.5 we only show our claim for P(v;,0), similar
considerations can then be performed for P(0). The proof now proceeds by
induction in m.

Let m = 1. In this case the numerator of (2.8) reduces to P(v,0)(z;) =
agyz1 + ag. Since we updated the probabilities according to normalization of
complements, this statement is true due to Theorem 2.5.

Now, assume that the theorem is true for m = k, i.e.
P(Vtao)(zla"' 7:Ek) = Z (aM H:EZ) . (29)
MeP({1,... ,k}) ieM

We would like to show that it also holds for m = k + 1. By Theorem 2.5 we get

P(Vtao)(xla"' axk-l-l) = a’(zla"' 7$k)zk+1+b(xla"' 7:Ek)' (210)

Furthermore, we can use (2.9) to obtain
P(v,0)(z1, ... ,Tppr) = > <aM(ka) I x) (2.11)
MeP({1,... .k}) ieEM

where aps(zx41) denotes that the coefficients are a function of z4,;. Combining
(2.10) with (2.11) and forming the partial derivative with respect to x4 yields

Mol = ()

ox ox
kol MeP({1,n.. k}) k+1 e

Since a(x,. .. ,xy) does not depend on xy 4 for all zq,. .., xy, it must hold, that

VMEP({L...,I@}):%:Z“)

= CM,

for some constant ¢y;. Thus, VM € P({1,... ,k}),

/ dan (Tx+1)

P dzpy = /CM Ao = cmTpg1 + dur-
Tk41
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In other words, ap(Tg+1) = carxy1 +dyy, therefore, it is linear in xy ;. Inserting
this expression in (2.11) and multiplying gives

Py, 0)(x1,. .. yxpqq) = Z ((CMilfk+1 + dur) H %)

MeP({1,....k}) i€eM

S (M sz-)

MeP({1.,... ,k+1}) ieM

This corresponds to the desired form of (2.8) and thus concludes our proof.
O

For abbreviation, we leave out the set notation for the indexes of the coefficients, in situations
where this causes no ambiguities. For example, ay; oy is written as a2 and ag as aq.

2.4 Calculating The Coefficients

We now only need to show how to calculate the coefficients in the expression for P(1]0)(z).

Earlier we showed
> (Ils)
P(v;,0)(7)

T)  MeP({l,..,m}) €M
z

P(v]0)(7) Z (bM Hiﬂz)

MeP({1,...,m}) ieM

P(ro)(z) = (2.12)

Let us start by determining the coefficients of P (14, 0)(Z). To determine these 2™ coefficients
it is necessary to have 2™ values for P(v, 0)(Z). The question is how to choose the 2™ values
v = Z to insert, such that we obtain the wanted solution in an easy way. Once the values

are chosen we insert each v; into the network and propagate using e.g. Hugin. We can then
read y; = P (v, 0)(7;).

For m = 2 we have

a12V11V12 + Q1011 + GoV12 + A = Y1 (2.13)
(192021022 + Q1V21 + AoV22 Qo = Y2
(12031032 + Q1V31 + AoV32 Qg = Y3
(12041049 + Q1V41 + G2Ug2 Qg = Yy

Choosing v4. = (0,0), v, = (0,1), ve, = (1,0), and v, = (1,1) the above reduces to the
following linear equation system

1 111 a192 I

0101 ap . Y2 .
0 011 as - Ys & Ca= y
0 0 01 ag Ya
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which is solved easily using e.g. the Gauss-Jordan method, [Fraleigh and Beauregard, 1990,
p.25]. Hence the equation system is consistent and has a unique solution, ay = vy, a; =
Yo — Qg, G = Y3 — ag, and a9 = y4 —a; — as — ag. Thus, letting v obtain all 2™ corner points
of the m-cube 9]0, 1]™ we obtained a simple linear equation system to solve.

The same method as shown above can be used for the general case with m conditional
probabilities under study. In this case C' is a 2™ x 2™ matrix, a is a 2™ x 1 matrix, and y
is a 2™ x 1 matrix. The values of 7; are again generated as the 2™ corner points of 90, 1]™.
More formally, these corner points are given by the following formula

V:{veRm

HMG'P({I,...,m}),lG{O,l};U:Z[.ei}’

ieM
where {éy,...,&,} is the standard basis of R™.

The above method determines all the 2™ coefficients in P(v4, 0)(z). Using a similar procedure,
the coefficients in P(vy,0)(Z) can be found. Thus, a total of 2 - 2™ propagations are needed
to determine all the coefficients in P (v]0)(Z)

A small optimization can be achieved if there exists a conflict between the parent config-
urations. Let W = pa(V};) Npa(V;,) # 0 and denote by W (z') the configurations in 7’
regarding W. Thus, if W(x}) is in conflict with W(x}), we know that they cannot co-
exist and therefore are the ay; coefficient of all terms containing z;2; equal to zero. Hence,
2.2™ 2 coefficients need not to be determined, which saves equally many propagations. Also
if (V;, Ude(V;,)) N O =0, we know that all the by, coefficients containing j are zero.

The above method of finding the coefficients is in our opinion more applicable than the
one mentioned in [Coupé and van der Gaag, 1998b| for m = 1. Here they try to find the
coefficients of P(v;]o)(x) by reading y; = (v4|0)(v) and thus solving for the a and b coefficients
simultaneously. To avoid homogeneous linear equation systems with only trivial solutions
they have to divide the expression ‘C’;"Ig by ¢ such that there are only three parameters
to determine. This is complicated to apply since it is necessary to ensure ¢ # 0 and the

probabilities in the network could always make ¢ zero.

2.5 Summary and Future Research

The results from [Coupé and van der Gaag, 1998b| were extended to both non-binary vari-
ables and several conditional probabilities under study. Thus, we are now able to find an
analytical expression for P(v;|0)(Z) for any Bayesian network. Unfortunately, the number
of propagations needed to determine the coefficients of the function were exponential in the
number of parameters under study.

One should look into whether exploiting the structure of the junction tree can reduce the
needed number of propagations. For example, in the case of one probability under study,
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an alternative way could be to insert V; = v; as evidence and collect towards the clique Cy,
containing P(V;| pa(Vj)), without multiplying P(V;|pa(Vs)). This propagation results in a
table T¢, (c) at Cy, which we store. A similar calculation is performed where V; = v, is
not entered as evidence, this results in the table Tévs (¢) which we also store. We can now
calculate P(v;|o)(v) by

P(vy,0)(v) _ P(Vi|pa(Vs))a=y * Ty, (€)
Po)(v)  P(Vi|pa(Vs))a=y * T¢,, (c)

P(vfo)(v) =

Notice how all the multiplications happen locally. All together, we only needed two global
propagations and eight local multiplications to perform the insertion scheme described in
Section 2.4. In large networks this is definitely an optimization. When the work on this
project is continued, one should investigate how this structure can be generalized to multiple
probabilities under study.



Chapter 3

Sensitivity Analysis in Influence Diagrams

This chapter describes how to perform sensitivity analysis in influence diagrams when the
unreliable parameters are found in the conditional probabilities of the chance nodes. We are
interested in analyzing how the next decision to be taken depends upon these parameters.

3.1 Motivation

Consider the following scenario. A decision-maker has to decide whether to dismiss or keep
an employee based on the result of a drug test. Evaluating the influence diagrams with the
current values of the parameters might suggest a dismissal, but sensitivity analysis tells that
within the bounds of imprecision the alternating decision could have been made as well.
Under these circumstances the decision-maker might prefer not to dismiss the employee.
Thus, sensitivity analysis reveals, whether a decision is affected by the imprecisions and if
yes it enables the decision-maker to let an ethical preference — not reflected in the utility
values — control the decision.

3.2 A Coarse Concept of Sensitivity Analysis in Influence
Diagrams

In the description of influence diagrams we use the notation found in [Jensen et al., 1994].
Thus, influence diagrams with U = Up U Ug where |Up| = n and |Ug| = m are considered.
Our attention now concerns the next decision, D, to be taken in the diagram. It is given
by the outermost decision, which has all its information variables instantiated.

Suppose that the & parameters under study are located in the nodes Vi = {V,,..., Vi, } C
Ug. Since the parameters are conditional probabilities they are consequently denoted z; =
P(vs,|ml), where i = 1,... k, v, € v(Vs,) and pa(Vy,) = 7 is a specific configuration of
parents. Note, if Vi, = V;, and vy, = v, then 7} # m.. Let & = (z1,... ,m3).

The uncertainty on the parameters is modeled by assuming, that the exact value of = is given
by a multivariate normal distribution with mean value i and covariance matrix . Since
each z; denotes a probability, we have x € [0,1]*. Thus, § = ji is entered into the network
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as the best guess on the values in . The aim of sensitivity analysis can now be described as
follows. Select a certainty ¢ and determine a confidence interval X, such that P(z € X) = c.
Since 7 follows a multivariate Gaussian distribution, the shape of X will be a k£ dimensional
ellipsoid intersected by [0, 1]*. Let d, be the decision taken in g.

d, = arg max ( EU (g))

dev(D,) \Dn=d

Would we have taken another decision if Z had been varied within the bounds of the confi-
dence interval? That is

3d' € v(D,)\{d,} : 3z € X : arg max ( EU (:E)) =d

dev(D,) \DPn=d

At this point we perform some rather coarse restrictions. In order to simplify the general
situation we expect the uncertainties of the parameters to be uncorrelated. This assumption
is acceptable, but rarely the case. Furthermore, we assert that all the uncertainties have the
same variance ry,. This situation is not very likely to occur in reality, but has to do for now.
Thus, the confidence interval X = B¥(g,rg) N[0, 1]*, where B¥(g,ry,) is a k-ball centered at
g with radius rg = ¢ - ry,, where ¢ is a constant determined by c¢. As a tool in our sensitivity
analysis we define the following concept.

Definition 3.1 (Radius of change)
The minimum Euclidean distance, denoted 7., from g € [0,1]* to p € [0,1]%,
where a different decision than d, is selected, is defined as

r. = min({r|3p € (0B*(g,r)N[0,1]*) =
3, € (D)\{d} = BU, () = FU (@)}, (3)

Dy=dg
where B* denotes the border of B*. If no r fulfills (3.1) we define 7. = oo.

Since the expected utility, as a function of Z, is continuous, it is sufficient in the above
definition to require that EUp,-a, (p) = EUp,—a, () instead of >.

If rg < r. the decision is unaffected by the modeled uncertainties in the parameters, see
Figure 3.1. A more practical application of r, occurs in situations where the decision-maker
does not know rp. By simply considering r. an understanding of the sensitivity of the
decision with respect to the insecure parameters can be obtained. The greater the value of
r. the less sensitive is the decision to variations in the parameters. Should the decision-maker
become aware of the true elliptic shape of the confidence interval X, then if X\ B*(g,r.) =0
the decision is insensitive to the uncertainties in the parameters.

In the following sections we will only consider binary influence diagrams, i.e. all random vari-
ables have two states and all decision variables have two decision alternatives. To calculate
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- X,

@ (b)
Figure 3.1: [Illustration of when the decision is affected by the modeled uncertainties in the
parameters. (a) does not yield a problem, because r. > rg, and is therefore
unaffected. But, (b) is problematic, because r. < 7p.

7. in binary influence diagrams, it is sufficient to consider the set of intersection points, I,,
between EUp,_4,(Z) and EUp,__4,(Z). That is

I, = {z| BU (z) — EU () =0} (3.2)

Di=d; Di=-dy

In this case r. equals the minimum distance from g to a point in I, N [0,1]*. Again, if
L,N[0,1* =0, r. = .

Now, assume that the target decision variable is non-binary, i.e. it has more than two states.
Let D; have the decision alternatives v(D;) = {d},...,d"}, and let d? be the decision
alternative taken with z = g. Now, we compare the expected utility of D; = d? with the
expected utilities of all the other decision alternatives, d}, ... ,df_l, df“, ..., d¥. For all of
these k — 1 comparisons of two decision alternatives we find the radius of change, then, the
smallest of these radii of changes is the radius of change for D,;. Thus, once a method has
been developed for comparing two decision alternatives, the non-binary case can also be
solved.

3.3 Radius of Change in Influence Diagrams with One
Decision

In the following we only consider influence diagrams with one decision, thus, n = 1. There-
fore, D, = D, which requires I to be instantiated. Let i, be the observed values of I; and
assume V; C I;. Thus, to find the maximum expected utility in Dy, we must look at p;,
which yields

MEU = = P(L|Iy, D )
D p1 Hjljalbxzh: (I1|Io, Dy)
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Hence, the expected utility for d € v(D;) is given by

EU (@) = > " P(L[Iy, Dy) + | 57
1:
I
1 =1
S ST
1

To=19
Di=d

- 5 (Z 11 P(m|pa<m)w)

I i=1,...,m

The utility function ¢) does not depend on z;, thus, multiplying it will not change the result
of Theorem 2.7. Hence,

EU(7) = > (aM(d)HxZ), (3.3)

MeP({1,....k}) ieM

where ay;(d) now also depends on the values of ¢ and the configuration ig. Inserting this
expression into (3.2) yields I, = {Z|F(Z) = 0}, where

F@) = Y ((w(d)—amﬂd))Hxi) (3.4)

MeP({1,... ,k}) €M

One evaluation of an influence diagram yields both EUp, 4, (z) and EUp,__4, (Z), therefore
the 2 - 2% constants in (3.4) can be found by 2* evaluations.

The square of the distance from a random point Z € R¥ to g is defined as
dist(g,2) = (§ — 2) - (§ — 2). (3.5)

Now, picture a situation like the one sketched in Figure 3.2(a) simplified to two dimen-
sions, which corresponds to two parameters under study. Our goal is to find the minimum
distance from g to an Z in the part of I, which is located inside the universe [0,1]*, i.e.
r2 = mindist(g, [, N [0,1]¥). Using a divide and conquer strategy, this problem is split
into two subproblems. First, we solve the problem of finding all extrema of the function
dist(g, I,). This gives us a set of candidate points on F. Since we are only interested in the
extrema located in the universe [0, 1]*, we would like to discard those laying outside of [0, 1]*.
But, we need to do this with care, because the minimum distance could have been found at
the closest intersection point of F'(z) with 9]0, 1], see Figure 3.2(b). By finding I, N 9]0, 1]*
and adding it to the set of candidates we are certain to cover the above situation.

In order to solve the extrema problem we note that both F(Z) and dist(g, z) have continous
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X2 x2

F(%)=0
1 17
: g :
0 \ 1 0\;"”1'”' .
0 1 x1 0 P\pT 1 x1
N
(@) )

Figure 3.2: Finding dist(g, I, N[0, 1]¥) in the two-dimensinal case. In (a) the point with
minimum distance is an extrema of dist(k, I, N [0, 1]¥), whereas in (b) the
minimum is located on 9]0, 1]?.

first-order partial derivatives,

OF(z) _
833]- N Z aM.I. H i

ddist(g, )
833]-

where I = 1 if j € M and I = 0 otherwise. These derivatives ensure that finding
min dist(g, I,) can be done by using the method of Lagrange multipliers [Edwards Jr. and
Penny, 1994, p.807ff]. Define

Vo = {p|VF(p) =

(») =0}
E = {p|VF({p) # 0

(p) =0A3IXNeR: Vdist(g,p) = A\VF(p)} (3:7)

The method of Lagrange multipliers states that the minimum value of dist, subject to the
condition F(Z) = 0, occurs among Vo U E. Determining F corresponds to defining

L(z,\) = dist(g, %) — A\F(T)

OL(z,)\) __ 0 OL(z,)\) __ 0 dL(z,)\)
S R T NI B ¥

1985, p.745ff]. Solving such a system of equations can be done efficiently with numeric
methods or be done by symbolic computation tools, such as Maple.

and then solving the £ + 1 equations = 0, see [Fraleigh,

The second task corresponds to finding

B = {z|z € 9[0,1]* A F(Z) = 0} (3.8)

Consequently, if min(()) £ oo, then r2 = min({dist(g, p)|p € ((Vo U E) N [0,1]*) U B)}).
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In other words, a set of candidates which is considerably smaller than I,N[0, 1]* is generated.
This method does not deliver any solutions, but is applicable for an algorithmic implemen-
tation, e.g., in Maple. For £k = 1 and k£ = 2 the above sets can be evaluated, which is done
in Sections 3.3.1 and 3.3.2. But, already with £ = 2 an explicit expression for r. becomes
quite cumbersome to formulate.

3.3.1 Radius of Change with One Parameter Under Study

With this setup £ = 1. Thus,

F(l‘l) = a11171+a0,

dist(g1,71) = (g1 — 21)%,
OL(x1, \
<(9le1 ) - —2(g1 — 71) — Aay,
OL(x1, \
% = _(alxl + a(]).

To determine a; and ay we evaluate the influence diagram with

r=0 = EU (l‘l)— EU (l‘l) = Qo
Di=d;

Di1=-dy
x=1 = EU (x1)— EU (1) = a1+ ag
Di=dq Di1=-d,

An analytical expression for r. can be determined in the following way. Since Vz; : 3\ :
—2(g1 — x1) = Aay does not give further restrictions on xq, only on A given z; which we are
not interested in, therefore, the A-term in F is left out. Hence, the sets Vo, F and B are

V() = {x1|a1:(]/\ag:0}
E = {1E1|G17£0/\(111E1+G/0:0}
B = {zy|z €[0,1] A ayzy + ap =0}

Now,

R ifa;=0ANay;=0
Vo = .
(®  otherwise

b {{—g—g} if a1 # 0

1] otherwise
{—‘;—‘;} if a; #0
B = {$1|0§$1§1} ifa():O/\alz(]

1] otherwise
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Note that mindist(g;, R N [0,1]) = 0. By combining all this information an analytical
expression for r. is achieved.

lg—5¢ ifar #0A -5 €[0,1]
Te = 0 ifa1:OAa0:O
00 otherwise

3.3.2 Radius of Change with Two Parameters Under Study

With this setup £ = 2, and

(g1 — 21)% + (g2 — 22)°
190129 + 11 + G99 + Qg

dist(g,z) =
F(.’l?l,.’ITQ) =

Thus, F(z1,x9) = 0 corresponds to a general second degree equation, i.e. a cone intersection.
Since it contains no quadratic terms, F'(z) = 0 will form a (possibly degenerated) hyperbola.
The transverse axis of the hyperbola will be rotated 45 degrees as in Figure 3.3, see [Edwards
Jr. and Penny, 1994, p.562ff, p.5671f].

Figure 3.3: An example of a hyperbola, for which the transverse axis is rotated 45 degrees.

To determine the constants we evaluate the influence diagram with the following four setups.

{1 =0,20 =0} = ao,

{z1 =1,20 =0} = ap+ay,

{r1 =0,z =1} = ag+ as,

{r1 =120 =1} = ajn+ay+a;+ap.
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It is now necessary to determine the sets Vy, E and B.
V(] = {(371,372”(112252 +a; = 0N 1221 + Qg = 0A F(fl?l,{,EQ) = 0}
R® if (a1 0N =42 + a9 =0) V

— (a1:0/\a2:0/\a0:0/\al2:0)
() otherwise

In R?, Vdist(g,7) = A\VF(Z) is the same as solving det(VF(7), V dist(g,Z)) = 0, [Fraleigh
and Beauregard, 1990, p.197ff]. Hence,

E = {(xl,z2)|

apts +a; —2(g1 — 1)
a1t +ay —2(ga — x2)

:OAF(I'l,ZEQ) :OAVF(I‘l,l‘Q) %0}

Solving the above equation system yields two 4th degree polynomials, A and B. The z;
solutions are given as the roots of A whereas the x5 solutions are given by the roots of %.
The non complex roots correspond to the desired extrema points. We will abstain from
showing the exact expression of the polynomials since they are rather extensive. We just
note that once the values are entered, Maple will be able to find the roots.

Finally we consider the intersection of F' with the border,
B = {(z,2)[(x; =0V, =1Voy=0Vay=1)A F(zy,25) =0} N0, 1]?
= {(z1,22)|[(x1 = 0N aszs + a9 =0)V (x1 =1 A ajaxe + a1 + asxs + a9 = 0) V
(x2 =0Aa1x1 +ag=0)V (x5 = 1A apr; + az; +ay +ao = 0)}NJ[0,1]?

Depending on the coefficients, the solution to these four equations (in the above disjunction in
B) yield a number of points or lines of type x; = B;, where B; € {0,1}. Since the transverse
axis of the hyperbola is rotated 45 degrees, we know there will be only one intersection point
on each edge of the square [0, 1]%, unless the hyperbola consists of the line x; = B; and/or
79 = By. Finding the distance from such a line to g reduces to dist(g, x; = B;) = (93— — B;)*.
Again, even though B can contain infinitely many points due to the lines, it is easy to find
the minimum distance to the line.

The structure of Vi, E, B has now been shown, unfortunately the many cases spawned by
various combinations of a,; equal to zero make it cumbersome to give an explicit expression
for r.. Instead the many cases motivate an implementation of the general algorithm, where
G192, ... , a9 are entered after which the relevant solutions are computed.

3.4 Cooper’s Transformation and Utilities Under Study

In this section we present a method on how to transform sensitivity analysis in influence
diagrams into sensitivity analysis in Bayesian networks. It serves as perspectivation of the
theory developed in this chapter using the theory in Chapter 2. The method uses Cooper’s
Transformation to transform an influence diagram into a Bayesian network. Furthermore,
this transformation makes it possible to have utilities under study.
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3.4.1 Cooper’s Transformation: A Calculation Trick to Convert In-
fluence Diagrams into Bayesian Networks

The evaluation of influence diagrams is more complicated than the evaluation of Bayesian
networks, therefore, an algorithm for converting a influence diagram into a Bayesian network
is preferred, because this enables one to always use the newest propagation algorithm. Op-
timization of Bayesian network propagation algorithms is an active area of research, [Zhang,
1998].

Cooper initiated research in this direction in 1988, and therefore this calculation trick is
called Cooper’s transformation. Several improvements have been proposed by Shachter and
Peot in 1992, [Zhang, 1998].

Definition 3.2 (Cooper’s transformation)
Let I be an influence diagram with only one utility node, 1, and decision vari-
ables, Dy,...,D,,, where D; is the first decision and D,, is the last. Without
loss of generality, assume that the utility function f,, is positive, if not a constant
can be added such that it is. Now, ¢ can be converted into a binary random
variable with the following conditional probabilities

P =1l = DO (3.9)

P(y =0[pa(y)) = 1—P(y=1[pa(y)),
where My, = maxp,y) ¥ (pa(v)).

Next, each decision variable D; is also converted into a random variable having
the following conditional probability

P(D; = ai| pa(D;)) = (3.10)

for each possible value «; of D,;.

After this transformation, I is a Bayesian network denoted by I’.

The optimal decision rule 6 for D,, can now be obtained by

0 (pa(Dm)) = arg max P (D, pa(Dm)|¢> = 1),

which can be evaluated using a inference algorithm for Bayesian networks, and the maximum
expected utility for the optimal decision rule can be obtained by

MEU(D,,) = I%axPp(Dm,pa(Dm)W): 1) My.

Now, the conditional probability of D,, is changed to Ps. (Dy|pa(Dy,). Next, an optimal
decision rule for D,, ; is computed in the same way. Thus, optimal decision rules for
D,,, ..., Dy are computed recursively in this manner.
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Shacter and Peot’s method reduces the evaluation of I into the following Bayesian network
inference problems [Zhang, 1998|

PI’(Dmapa(Dm)“/) = 1):PI’(Dm71:pa(Dmfl)|w - 1)7 s :PI’(DI:pa(D1)|1/} = 1)

Furthermore, [Zhang, 1998] shows that this evaluation can be performed faster than propa-
gation in strong junction trees despite of the transformation overhead.

3.4.2 Cooper’s Transformation and Sensitivity Analysis

We will know show that when applying Cooper’s transformation on an influence diagram,
I, then, performing a sensitivity analysis on I’ is similar to performing sensitivity analysis
on I, directly.

Assume that I only contains one decision, named D;, and only one conditional probability
under study, called z. Let V; be the variable containing x. Thus, the expected utility in I’
is given by

EU (z) = Pp(Dy=d,pa(Dy)|t =1)- M,.

de Dy

Like in Section 3.3 we want to get rid of pa(D;) in the above conditional probability. This
can be done by dividing it by T'= Pp(pa(D;)|t) = 1), thus,

EU@) = Polpa(Di)lp = 1) Ao

= T-Pu(Dy=dj¢y=1)- My,

'M¢

where T" and M, are constants with respect to x, assumed that V; & pa(D;), in which case
Vi & Sen(Dy,¢ =1).

Now, sensitivity analysis can be viewed as if it was for Bayesian networks. Since D, is the
target node and the only observed nodes are pa(D;), then V; can be either an ancestor or a
descendant of D;.

First, assume that V; € de(D;). Thus, Vi ¢ an(pa(D;)), and therefore, none of the descen-
dants of V, will be observed, see Figure 3.4(a). Hereby, [Coupé and van der Gaag, 1998b,
Propostition 4.3] applies to the situation, thus,

P(Dy=dly=1) = a(d)z+b(d),
and hence,

EU(z) = d'(d)z+V(d),

de Dy

where a/(d) and ¥'(d) also includes the constants T and M.
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@@

@ (b)
Figure 3.4: (a) The situation where Vs € de(Dq). (b) The situation where Vs € an(D;).

Secondly, assume that Vi € an(D;). Then, Vi ¢ Sen(D;,1 = 1), therefore, the expected
utility is constant with respect to d, EUsep, (x) = ¢(d), see Figure 3.4(b). These results
correspond to the results of Section 3.3.

Unfortunately, the use of Cooper’s transformation when having more than one decision
involves a lot of changes of tables when decisions change because of the ranging of the
unknown parameters; therefore, the transformation approach is not suitable in the sense of
sensitivity analysis.

3.4.3 Utilities Under Study Using Cooper’s Transformation

We now shortly discuss how to implement sensitivity analysis when the node under study is
a utility function. Here, we approach the situation by using the Cooper’s transformation to
deal with it in Bayesian networks.

In Bayesian networks it is not difficult to have utilities under study, because the utility node
is converted into a random node, in which the sensitivity analysis can be performed using the
methods described in Chapter 2. If the radius of change is desired, Cooper’s transformation,
described in Section 3.4.1, can be used using the method in Section 3.3.

As in the previous case, we have to keep in mind how the utility under study should be
ranged. In this situation it is only ranged between the minimum and the maximum utility
values in 1. Generally, it may be desirable to range the utility beyond these bounds.
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3.5 Summary

In this chapter we have looked into performing sensitivity analysis on influence diagrams
with only one decision, the target decision. During this we made some rather coarse as-
sumptions of the understanding of the confidence interval and we are primarily looking at
uncertain parameters in the conditional probability tables. Although we can use Cooper’s
transformation to implement uncertain parameters in the utility nodes, too. Unfortunately,
Cooper’s transformation is not suitable when ranging one or more parameters because the
decisions change during this procedure. FEach time a decision changes tables need to be
replaced, which is intractable.

We managed to find an explicit expression for the radius of change for sensitivity analysis
with one conditional probability under study. But, already when having two under study,
the expression was to cumbersome to express; therefore, a computer tool is needed, see
Chapter 5. Before this theory is of any use, we need to be able to analyze diagrams with
more than one decision.

The next subject to look at in this area of sensitivity analysis, is to look more deeply into the
utilities under study, e.g. where the sensitivity analysis is implemented directly on influence
diagrams.



Chapter 4

Influence Diagrams with Two Decisions

In this chapter we consider influence diagrams with two decisions. According to [Jensen et
al., 1994] the framework is thus Iy < D; < I; < Dy < I, where D, is the target decision.
For the sake of simplicity, we assume I, = (), but our results are just as applicable if this is
not the case.

In order to exploit the methods developed in the previous chapter of finding the radius of
change between two decision alternatives using Vo, £ and B, we need to find an expression
for

F(z) = 0, where F(z) = EU (z)— EU (7).

Di=d; Di=-d;

It is therefore necessary to perform an analysis of EUp, (Z) within the given setup. In the
previous section this analysis was performed by looking at p;, but in this chapter we connect
the investigation to the structure of the strong junction tree instead. First we perform an
investigation of the structure obtained with one conditional probability under study — this
enables us to calculate r.. Subsequently, the method to calculate r. in the case of two
probabilities under study is sketched.

4.1 Topological Considerations for One Probability Un-
der Study

Let J be the strong junction tree of the influence diagram under investigation. In J we
identify the following cliques.

Cp, 1is the clique containing Dy, closest to the root. Since Iy = (), C'p, will be the root, R, of J.
Cp, 1is the clique, closest to the root, containing D,
C,  is the clique to which P(V;|pa(Vj)) is assigned.

Without loss of generality, we assume Cp, # Cp, # C,. Furthermore, W, gr) denotes all

the cliques in the path from C) to R.

Now, let C be a clique in J with separator S between C' and the parent of C, C,,, in J. If C
is the root then S = (). By A;(C) we express the subtree in J that has C as root. Then the

33
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set

denotes all the variables from W, r) that have to be eliminated, before C' can be absorbed
into C),, see Figure 4.1.

Figure 4.1: [Illustration of the set E, here Wi, gy = {C;, C1,R}. Since Aj(C2) N
Wic,,r) = 0, we have E(Cs) = 0. C; on the other hand is part of W(¢, r).

Therefore, £ = (UWG(Czucl) Vz‘) \S(c:.R)-

With these definitions in place, we prove a lemma stating that the table entries in both the
probability and the utility potentials during absorption always are first degree polynomials
in x.
Lemma 4.1

For any C € J, if E(C)NUp = 0 then for s € Qg

bs(s) = ZQS'C = a1(s)x + ap(s) (4.1)

C\S
Pe(s) = Z O * e = bi(s)x + bo(s), (4.2)
C\S

where ¢, and 1), denote the probability and the utility potentials of C' after all
its children in J have been absorbed into C'.

Proof
Since the absorption of probability potentials in influence diagrams is identical to
absorption in Bayesian networks, (4.1) follows immediately from Corollary 2.6.
Thus, we only need to proof the result for 15(s).

Let C ¢ Wi, gy and assume E(C)NUp = 0. Since J is a tree, we know that
A;(C)NC, = (. Thus, none of the utility potentials absorbed into C' contain z.
Hereby, 1s(s) = by(s), which is concordant with (4.2).

For C' € W, r) the lemma is shown by induction in the distance, n, between C,
and C. If n = 0, we have C' = C,, and for 1)s we need to investigate

Us(s) = Y b, # e, = Y (b, * T(c) * (e, +Ules)),

C:\S C\S
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where U(c,) and T'(c,) originate from the absorption of the children of C, into
C, and therefore do not contain x, neither does t¢¢,. Hence, by using ¢¢, (¢;) =
ai(cz)x + ag(c;) and Lemma 2.4,

vs(s) = D ((ale)r +ao(en)) * T(ea)) * (Y, +Ulea))

Cx\S
= by(s)z + by(s)

Now, assume the lemma is true for n = k, i.e.

VS unan (8) = bi(8)x + bo(s) (4.3)

where S x11) denotes the separator between Cj, (the clique with distance k from
C,) and Ciyq, and s € Qg(k’kﬂ). We need to show the lemma for n = k + 1.
Therefore, with s" € Qg ., ., we examine

/ ! /
7’bs(chrl,chﬂ) (s) = Z ¢Ck+1 * wck-+1

Cra1\S(k+1,k+2)

— Z <€15Ck+1 * DS ki) * T(c;,H_l)) * (d)ckﬂ 4

Crr1\S(k+1,k+2)

- Z T(erta) * <¢Ck+1 * ¢S(k,k+l) * Yoy,

Cr41\S(k+1,k+2)

VS pin
I O(kkHL) + U(Ck—l—l)

¢S(k,k+1)

ws(k,lﬂ»l)

+ ¢Ck+1 * ¢S(k,k+1) * + ¢Ck+1 * ¢S(k,k+1) * U(Ck+1)))

¢S(k,k+1)
where T'(cg41) and U(cyyq1) originate from absorbing probability and utility po-
tentials of A;(Cri1)\Wic,,r) into Cjy1, respectively. Again, neither T'(cgy1),
U(Ck41) nor v, ,, contain x. Note that the only clique left to be absorbed into
Ck+1 is Ck

Before ¢g(k,k+1)/¢5(k’k+1) can be canceled out, we need to ensure the supportive-
ness, i.e. if @5, ., (5) * Vs, 00 (8) = 0 then ¢g, . (s) = 0. This boils down
to checking whether ¢, .  (s) = 0 implies s, (s) = 0. The definitions of
VSgurny and @5 i1y ensure this. By using Corollary 2.6 and (4.3) the above
reduces to

V) = 3 T(Crn) * (G, * () + ao(9)) * .,

Cr41\S(k+1,k+2)

F0c;,0 % (01(5)2 4 bo(5)) + by, * (a1(s)x + ao(s)) * U(Chpa)) ) :

The three sums each give a table with elements of the form h;(c)+x-hy(c), where
¢ € Q¢,,,. These sums are then combined into one table when we marginalize
Cr41\S(k41,k+2)- Hence,

7/)5(1@+1,k+2)(8,) = 5'1(5')55+56(5')7
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This concludes the proof of the lemma.

Theorem 4.2
If Cp, € W, ,r), then EUgep, () = by (d)z + bo(d).

Proof
Transform the junction tree, .J, into the equivalent junction tree, .J', as illustrated
in Figure 4.2.

Figure 4.2: Transforming J into J’, such that D; is placed in its own clique R’ = {D;}.

Then C}, fulfills E(Cp,) NUp = 0, because Cp, ¢ Wi, r. In J' we have
EUp, (2) = s, - Thus, by Lemma 4.1 we get EUgep, () = bi(d)z + bo(d).
o
O

In the case with only one decision, we trivially have E(Cp,) N Up = (), thus, Theorem 4.2
could serve as an alternative proof of (3.3) on page 24.

We now consider the situation where Cp, € W(c, r). Assume Cp, has parent C), in J.
Again, we transform the junction tree as in Figure 4.3, such that Cp, receives a new clique
C" = {S(cp,,c,); Do} as parent. Hence S" = Sy, o) = Siop, c,) U {Da}-

Figure 4.3: Transforming J into J', such that Cp, receives a new parent C' with C' =
{S(Cp,.c;)s D2} and S" = Sy, .0,)U{D2}. Thus absorbing Cp, into C' does
not involve marginalization of Ds.
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Thus, marginalizing Dy happens on the table 1gs which by using Lemma 4.1 yields

max (g (s')) = max(ai(s',d)x + ag(s', d)). (4.4)

d€Do d€ D>

For each s it is investigated whether max-marginalizing D5 results in a so called bend point
for this configuration. A bend point is a point, x = ¢y, where we in a decision change from
one decision alternative to another. In the binary case, bend points are determined by

cy = {x | [ai(s',dg) — ai(s', —do)]x + [ag(s', do) — ao(s', —da)] = 0}N]0, 1[.

Figure 4.4 shows an example. Thus, the bend points of the potential ¢y (s) in (4.4) are given

by I' = U Cyr.

S’EQSI

4 EU , EU

1, 1

' = x = x
C 1 1

e dy —=——d,—» Y Pypum—

(a) (b)
Figure 4.4: Two situation for a configuration s’ € Qg/, where I1 = a1(s',d2)x + ag(s', d2)
and ls = a1 (s’, ~da)x + ag(s’, —dz). (a) is an example of a bend point, ¢;, for
D», whereas (b) is not.

If we in some sort of symbolic propagation scheme want to use the entries of (4.4) in the
calculations of future absorptions towards the root, we are forced to store up to 2|Qp,|
coefficients for each configuration s. All the marginalizations of future absorptions will be
sum-marginalizations. Therefore, observe that sum-marginalizing a table with bend points
[, results in a piecewise defined function, with joint points I', i.e. the bend points adhere by
the summation. Figure 4.5 shows the situation for a table over one binary variable, V.

h(x)

90

X

o ¢ 4 o e ,

Figure 4.5: Sum-marginalization of T(V) = (f(z),g9(z)), with I' = {c1, 2}, i.e. h(z) =
> v T(V). Notice how the locations of the bend points are preserved.
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Multiplying probability and utility potentials of the future cliques on (4.4) will also preserve
the bend points. Thus EUp, and with that F'(x) will have the same bend points as (4.4),
i.e. I'. This proves to be useful in our attempt to calculate ..

4.1.1 Calculating the Radius of Change

After analyzing EUp, in the previous section we are now able to develop an algorithm to
calculate r. in influence diagrams with two decisions and one conditional probability under
study.

If Theorem 4.2 applies, the calculation of the involved coefficients and . follows the procedure
described in Section 3.3.1.

Otherwise, our first task is to determine all the coefficients of (4.4). This is done by inserting
x = 0 into J" and collecting to the strong root. Now, denote the utility table located at Cp,
after the collection by 1/)%%. Similarly, the table obtained by inserting z = 1 and collecting

is denoted ¢¢,, . Thus,

Wols) = D vl = aol)

Cp,\S'

Bh(s) = 3 vk, = ails) +as)

Cp,\S'

This way all the 2|Qg||Q2p, | coefficients of the table are determined in a total of 2 evaluations.

In the binary case, our objective is to determine
F(z) = [ai(d) — ai(=~di)]z + [ao(dr) — ao(—dy)],

but from the previous section we know that F'(z) will have all the points in I as bend points,
i.e. F'(x) consists of |I'|+1 line segments, see Figure 4.6. The coefficients of each line segment
are determined as follows. Let I'" = {cy,c1,... ¢k, i1}, where ¢g = 0,¢,41 = 1, and the
remaining ¢; are the bend points in I'. Now, for all ¢; € [, evaluate the influence diagram
to get y; = F'(¢;). Each line segment [;,i € {1,... ,k + 1} is now determined by y;_; and y;,
see Figure 4.6.

Thus, a total of 2 4+ (|'| + 2) evaluations are needed in order to determine an analytical
expression for F'(z). In a worst case situation |I'| = |Qg].

We can now apply the methods developed in Section 3.3.1 to determine r, by considering
each line segment [; of F'(x). Then, for each [; of F update the set of valid candidates by

Vo = VU (Vo(li) N [Cifh CZ])

E = EU(E0)N][e,a)),
B = BU(B(l)N[c1,¢)),
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\ F(x)

Y1
yO /1:/ ’
kl Vo ’//y Y

-- k-1
Cy / [
1

Figure 4.6: Determining F'(x) by analysis on each [;, with k = |T|

where Vo(l;), E(l;), and B(l;) denote the results of performing the analysis described in
Section 3.3.2 with F(x) = [;. The resulting set of points is intersected with [¢; 1,¢;], as
F and [; only correspond within this interval. The correct value of r. is now given by
r. = mindist(g, Vo U E U B).

4.2 Two Conditional Probabilities Under Study

In this section we sketch how the method from the previous section generalizes to two
conditional probabilities under study. Only the binary case is considered.

By extending Lemma 4.1 to two conditional probabilities under study, that is the functions
are now of form aox129 + a1 + asxs + ag, we can also give a two dimensional version of
Theorem 4.2. Thus, if Cp, neither has anything to do with We,,,r) nor with W, r) then
r. can be calculated by the procedure described in Section 3.3.2.

Whereas the one dimensional case had the concept of a bend point, i.e. the change from one
decision alternative to another. In the two dimensional case changes between the alternatives
happen along the curve of a cone intersection, as described in Section 3.3.2. This so called
bend curve, ¢; will divide [0, 1]? into two areas, A;(s) and As(s).

Using the extension of Lemma 4.1 one would in accordance with (4.4) know, that g is of
the form
max g (s',d) = max(an(s',d)vizs + ai(s', d)xy + as(s', d)wgs + ag(s',d)) . (4.5)
deDo de D>

Following the same principle as in the one dimensional case, a total of 22 = 4 evaluations
are needed to determine all the coefficients in this potential.

As with bend points, the bend curves will be preserved and accumulate into the same function
as we continue to absorb cliques towards the root. Figure 4.7 shows the situation for a table
over one binary variable, V.

If the potential in (4.5) has a total of k¥ = |T'| bend curves, then ]0,1[? for F(zy,x,) will
be divided into at most 4¢ areas. Within each area, A;, a different set of coefficients for
{a12,a1,a9,a0} is used. Hence, the analytical expression for F(z) can be determined as
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b b
Az |
) | G |
Ag(vo) | A1 |
3 /
Aovy) | As |
: G /A3 !
}>X }>X
1 1

Figure 4.7: Summation of T(V) = (vi,v2) = (fu, (21, 22), fu, (z1,22)), with bend curves
c1 and ¢o. Notice for f'(z1,22) = > T(V) how ¢; and ¢, divide [0,1]? into
Ay, ... Ay

follows. For each A; find four (x1,z5)-points located in A;. These points are inserted and
evaluated in the influence diagram which yields four values y;,...,ys;. These can now be
used to determine the analytical expression for F'(z) within A;. All together at most 4 - 4%
propagations are needed. This number can be reduced by picking points located on the bend
curves, but we abstain from performing this optimization.

All together a total of 4+ 4 - 4% evaluations are needed to determine F'(z). Notice that in a
worst case situation, k = [Qg/|. This number becomes quickly intractable as S’ grows!

4.2.1 Calculating the Radius of Change

Once the coefficients and A;’s of F(x) have been found, finding r. is done by the following
procedure. For all A; calculate

re(A;) = mindist(g, (Vo(Fa,) U E(Fa,) UB(Fy,)) N A;),

where Vo(Fy4,), E(F4,), and B(Fy,) corresponds to calculating the Vi,E, and B sets of
Section 3.3.2 with F(z) equal to the one used within A;. The minimum r.(A4;) is the value
for r,.

In this sketch, we have been somewhat sloppy with respect to possible optimization given by
structure or algorithmic optimizations. This area would definitely be one of the first areas
to optimize, when this work is continued.

4.3 Summary

This chapter introduced an explicit method for how to calculate r. in influence diagrams
with two decision and one parameter under study. The structure of the junction tree was
investigated with Theorem 4.2 which tells when the two decision setup reduces to the one
decision setup. If no reduction is possible, the expected utility as a function of x will be a
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continuous piecewise line, from which r. can be found. In the case of two parameters under
study, the principles are the same, but the calculations become much more extensive, and a
lot of bookkeeping has to be done. A non computerized calculation of 7. is simply infeasible!

The major hurdle for such a calculation tool is the large number of propagations needed to
determine the coefficients of F'(Z), once the bend points and curves have been established.
The problem is that we only extract very little information from each propagation, thus, we
have a lot of overhead. Instead of inserting z-values one could instead perform a new kind
of propagation from S’, which for each element of the potential keeps track of the involved
coefficients. Unfortunately, the necessary number of coefficients is different from setup to
setup, as F'(Z) is explicitly determined by 2(|T'| + 1) coefficients. Further research in this
direction needs to be performed.






Chapter 5

Implementation

This chapter describes the implementational dimension of the theory developed in the pre-
vious sections. A tool is developed which is intended to be used by the knowledge engineer
in the process of building and maintaining the knowledge base of the model. Because the
tool is for sensitivity analysis purposes, it is called sat (abbreviation for Sensitivity Analysis
Tool).

Since sat is merely a calculation tool without substantial user interaction or GUI, we refrain
from producing an extensive and detailed analysis and design document. Instead, only
the core parts of the tool are described. Thus, we present the structure of the tool and
describe the different phases of the flow: The parser, the two calculation components, and
the output. Special attention is given to the design considerations, expressed in Maple code,
of the symbolic calculation component, whereas the other phases are described in more
general terms.

5.1 The Flow and Structure of the Sensitivity Analysis
Tool

The intention of sat is to function as an integrated part of a Bayesian network and influence
diagram developing environment, e.g. Hugin Explorer. This allows a smooth transition be-
tween the construction and sensitivity analysis phases. Currently although, the sat-program
functions only as a stand-alone unix program to be called from the shell prompt or from
within another program.

The tool is programmed in C++ using the Hugin API library [Hugin Expert A/S, 1997 as
well as scripts in Maple, [Kofler, 1996]. To integrate the tool within Hugin the C4++ code
has to be converted to the Windows platform, which is the only platform on which Hugin
Explorer runs.

We will now look at the flow of the tool seen from the user’s point of view and from inside
the program, followed by the structure diagram of the design.

43
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5.1.1 The Flow of sat

From the users point of view sat can be called in two different ways. One way is to embed the
information about the sensitivity setup, i.e. target and study nodes, conditional probabilities
etc., into the description of the model represented as a .hkb-file and then call sat with the
.hkb-file as an argument. The other way is to call sat with the .hkb-file and an external
script file containing the sensitivity information. This can be assembled in:

sat [-s <script-file>] <.hkb-file>

Regardless of whether the script file is given, the program has to parse either the script
file or the description field of the .hkb-file. The contents of both media are identical; the
grammar will be described in Section 5.2. The parser also checks for inconsistencies in the
sensitivity setup and for exceedings of the limitations of the tool, e.g., with respect to the
theoretic limitation on the number of decisions. Hence, before the parser runs, it must be
determined whether the .hkb-file contains a Bayesian network or an influence diagram.

The parser returns a target node together with the target state and a list of the nodes under
study. Each node in this list denotes the conditional probability under study by including
the state under study, together with a fixed parent configuration, represented as a list of the
parents of the node. Each parent node includes the state corresponding to the configuration.

The next step in the flow is the calculation component which is divided into two subcompo-
nents, one for symbolic calculations using the theory developed in the previous sections and
one for numerical analysis which serves as an indicator of the correctness of our theory and
manages to cover situations not covered by our theory. Both subcomponents are divided
into a component for influence diagrams and a component for Bayesian networks. Both
subcomponents take the result of the parser as input an deliver their results to the output
component, which manages the drawing of graphs, shows the result for the coefficients, r,
etc. The symbolic and numeric subcomponents are described more detailed in Section 5.3
and Section 5.4 respectively.

The above description of the flow can be illustrated as in Figure 5.1. The data structures
used between the components are described in the next subsection.

Symbolic | Influence Diagram

Calculation T
) o Component | Bayesian Network —
Hugin Description

or Parser Component Output Component
Script File N ] nfl bi /
umeric nfluence Diagram \

Calculation
Component | Bayesian Network

Figure 5.1: The input-output flow of sat.



5.1. The Flow and Structure of the Sensitivity Analysis Tool 45

5.1.2 Structural Design of sat

The structure of sat is build up around a Domain class (see Figure 5.2), which is instantiated
with a .hkb file name as parameter. The class uses this parameter to open the Hugin
domain (API Domain) and attach it to itself. This is followed by an examination of whether
the network is a Bayesian network or an influence diagram. Finally, the Domain constructor
calls the parser to retrieve the target probability or target decision (TargetNode), and the list
of conditional probabilities under study, (StudyNodeList). Upon this it calls the appropriate
calculation component followed by the selected method in the output component.

Hugin API

,,,,,,,,,,,,,,,,,,

o SensitivityNodeL ist

| | |
‘ TargetNode ‘ ‘ StudyNode StudyNodeList ‘

!

Figure 5.2: The structure diagram of sat. The boxes are classes, the half-circled lines indi-
cate inheritance and the diamonded lines indicate inheritance from a template
class, the arrows indicate a one aggregation, and a diamonded arrow indicates
a “many-aggregation”. Dashed lines denote external libraries

The lists in the structure diagram (SensitivityNodeList, and StudyNodelList) are all built upon
the template class DLList, which is a double-linked list. The double-linked list class is further
described in [George et al., 1997, Appendix A.4], only minor details have been changed.

The Node class is simply an encapsulation of a node in the Hugin API. SensitivityNode is
a node type used in sensitivity analysis. It contains information about which state of the
variable is of interest in the sensitivity analysis. SensitivityNodeList is a list of SensitivityNode
objects.

The TargetNode and StudyNode classes are inheritances of the SensitivityNode class. Though,
TargetNode is just a SensitivityNode, but the StudyNode also contains a list of parents, namely
a list of SensitivityNode objects. Hence, a StudyNode knows the configuration of all its
parents. This is needed to specify a conditional probability of the form P(vi|r').

The information sent between the components in Figure 5.1 is as follows. The data structures
sent to the parser is a text stream, either from the script file or from the description field
in the .hkb-file. The parser returns a TargetNode object and a StudyNodeList object, both
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described in the previous subsection.

Each calculation component creates an appropriate specialization of a SatOutput object,
which is initialized with the output of the analysis, e.g. a and b coefficients in the sym-
bolic analysis of a Bayesian network or a large array of values in the numerical case. The
specialization-structure of the output component is depicted in Figure 5.3.

SatOutput

| : |

SatBNOutput Sat| DOutput

| : | | :

SatSymbolicBNOutput SatNumericBNOutput SatSymbolicl DOutput SatNumericl DOutput

Figure 5.3: The structure diagram of the output component.

The classe SatOutput contains virtual methods to display the coefficients on the screen, to
generate a Maple-file with all the relevant coefficients for further analysis, or to simply gen-
erate a visualizing graph. The leaf specialization (e.g. SatSymbolicBNOutput) then provides
the appropriate implementation of these methods.

5.2 The Parser Component

The purpose of the parser component is to take some text stream, either as the description
field in the .hkb-file or as a script file, and return the target conditional probability or
target decision and also the conditional probabilities under study. The input must contain
information about the target node (and its state, for Bayesian networks), a list of nodes
under study given their parents, a list of evidence, and finally options to indicate the kind of
output desired. The grammar to describe the sensitivity setup is independent of input-media.
The grammar is as follows and an example is depicted in Figure 5.4.
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option _type TYPE = option type id
OUTPUT = option_output_id

symbolic | numeric | numeric precision

option output

option_type id

body — target study evidence options end
target — [target] simple prob
study — [study] parent prob list
evidence — [evidence] evidence list | ¢
options — [options] option type option output
end — [end]
simple_prob — prob_item | simple prob_item
parent_prob_list — parent_prob_list , parent prob item | parent prob item
evidence list — evidence list , prob_item | prob item
prob_item — P(inner_prob)
simple _prob_item — P(simple inner prob)
parent _prob item — P(inner_prob | inner prob list)
inner_prob_list — inner_prob_list , inner_prob | inner_prob
inner_prob — var = state
simple inner _prob — var
—
—
—
—

option_output_id coefficients | maplefile | mapleplot

where var and state are the Hugin APl names of the variables and states in our sensitivity
setup. The literal precision is a numerical value indicating the precision of the numeric
method, i.e. the number of propagations pr. conditional probability under study. Note, the
only whitespace currently allowed is a line break after each [...], after each P(...), and
after each option (option type and option output). Though, when indicating the precision
of the numeric option, a single space is needed. Furthermore, parsing of evidence is not
currently implemented.

Since the above grammar is pretty simple, we chose to handwrite a parser using a structure
of switch’es embedded in a large switch statement, even though effective tools like Flex
and Yacc exist.

As the stream is parsed, variable and state names are checked if they really exist in the
underlying network. For each step, the node or state is found and the state is set and lists
are updated during the parsing. After the parsing the consistency constraints with respect
to the sensitivity setup are checked, e.g. a node under study cannot have the table entry for
the conditional probability to be 1. Finally, the found nodes, TargetNode, and the list of
nodes, StudyNodelList, are returned.
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[TARGET]
P(D2)
[STUDY]
P(IMM=y|D2=y,I=n)
[EVIDENCE]
P(D1=y)
P(IM=y)
[OPTIONS]
TYPE=numeric 100
0UTPUT=mapleplot
[END]

Figure 5.4: An example script specifying the desired sensitivity setup for an influence
diagram.

5.3 Symbolic Calculation Components

The symbolic calculation component, consists of two functions handling calculations in
Bayesian networks and influence diagrams, respectively.

SatSymbolicBNOutput* Domain :: bnCalcCoeffs(TargetNode* targetNode, StudyNodeList* studyNodes)
SatSymbolicIDOutput* Domain :: idCalcRC(TargetNode* targetNode, StudyNodeList* studyNodes)

These functions are abstractions over the calculation methods described in Section 2.4 and
Section 3.3, respectively. These calculations involve a lot of mathematical operations which
have to be performed on the fly, since the implementation should be independent of the
number of probabilities under study. Therefore we decided to use Maple to perform these
calculations; a design decision which makes it hard to integrate sat within Hugin, since it
is not a good marketing philosophy having a program to depend on external and expensive
programming packages.

Choosing Maple allows us to concentrate on the sensitivity analysis part, otherwise a lot of
resources would have had to be spent on writing and implementing algorithms, which can
solve the linear equation system for the coefficients and the equation system in Laplace’s
multiplier method. The principle behind the cooperation of sat and Maple is to let sat
generate an intermediate Maple script file, based on the number of parameters under study
etc. Hereafter Maple is ran in batch-mode with this script as input. This results in the
relevant output (coefficients, r., etc.) to be written into a temporary output file. Then, sat
concludes the cooperation by reading the relevant values from the output file.

Section 5.3.1 presents the important details of how the Maple input script is generated for
the Bayesian network part, whereas Section 5.3.2 merely focuses on the Maple script used to
find r. in the case of two nodes under study (also called unknowns).

5.3.1 The Bayesian Network Part

The size, m, of the studyNodes list determines the number of conditional probabilities un-
der study. The 2™ values to insert into the Bayesian network for each x; are generated by
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equation (2.4) on page 19. Using the Hugin API, each set of values is now inserted into the
network. Denote by O = o the evidence extracted by the parser. Two propagations are now
performed; one with evidence {V; = 14, O = 0} and one with only {O = o}. For each propa-
gation the probability for the evidence is read with h_domain_get_normalization_constant.

This results in 2™ values for P(1,0) and P(o0), respectively. Similar to (2.13) on page 18
these values can be written as a linear equation system for the a and the b coefficients,
respectively. The code below shows the generation of the a coefficient equation system.

ofstream maple("/tmp/sat-maple.in",ios::out);

maple << "egnA := {" << endl;

for (i=0; i<powerSize; i++) {
mapleWritePoly(maple,powerSize,no0fStudy,’a’,x,i,numeric);
maple << " = " << propresults[i];
if (i !=powerSize-1) maple << "," << endl;

}

maple << "};" << endl;

where mapleWritePoly is a function that writes the correct polynomial based on the number
of unknowns — e.g the numerator or seperator of (2.12) on page 18 — into the maple stream,
and x is an array containing all the values to be inserted for all values of x. The parameter
numeric indicates that the function should insert the values of z; for each set of values,
meaning that the value for e.g. x[0] is inserted (and not the symbol x[0] it self, as when
symbolic is used instead of numeric). The two equation systems are solved by

maple << "sol := solve(eqnA,{" << aunknowns << "}) union "
<< "solve(eqnB,{" << bunknowns << "});" << endl;

where e.g. aunknowns is a string containing all the 2™ unknowns for the a equation system,
i.e. ag,...,asm. The solution for all the coefficients is written into an external file by the
function mapleFprint

void mapleFprint(ofstream &maple, int powerSize,char which) {

for (int i=0; i<powerSize; bitvec++) {

maple << "fprintf(fd, \"%e\\n\""
<< ", subs(sol," << which << "[" << i << "]));" << endl;

}
}
where which is either ’a’ or ’b’ depending on which coefficients we are currently writing
to the ouput file. The Maple command fprintf is a function to print strings into a file, here

indicated by the file fd.

5.3.2 The Influence Diagram Part

For the sake of simplicity we only consider how the generated Maple script looks in the case
of two probabilities under study. Currently, it is only possible to use the generation method,
if the number of decision nodes is one or if the influence diagram satisfies Theorem 4.2. The
structure generalizes to m probabilities under study.

The function idCalcRC first extracts g from the network and determines which decision

alternative, dg, is selected with Z = g. As described in Section 3.2 we now proceed our
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analysis for each decision alternative different from d,. The Maple script consists of two
steps; first, we need to determine the coefficients of F(z), secondly, r. is calculated as
described in Section 2.4.

The generation and insertion of the 2™ values follows the form described in Section 2.4. The
solution of the equation system is similar to the method described in the previous section.
Therefore no details of this implementation are given here.

The second part of the Maple script calculates r., beginning with

u := vector( [x[0], x[1]1] );

F := a[0] + a[1]*x[0] + a[2]*x[1] + a[3]1*x[0]*x[1];
nF := grad(F, u);

dist := ( g[0] - x[0] )~2 + ( gl[1] - x[1] )~2;

nDist := grad(dist, u);
The appropriate expressions for the T vector, F/(z) and dist(g, T), are generated as a function
of the number of probabilities under study. Hereafter expressions for VF(z) and V dist(g, )
are found.

extrema := solve( { op( map( proc(x) nF[x] = k * nDist[x] end, [1,2] ) ), F=0 },
{ k, x[0], x[1] } );
border := solve( { x[0]=0, F=0 }, { x[0], x[1] } ),
solve( { x[0]=1, F=0 }, { x[0], x[1] } ),
solve( { x[1]=0, F=0 }, { x[0], x[1] } ),
solve( { x[0]=0, F=0 }, { x[0], x[1] } )
nabla0 := solve( { op( map( proc(x) nF[x] = 0 end, [1,2] ) ) },

{ x[01, x[11 } );
nabla0 := op( map( FegNull, nabla0 ) );

candidates := [ nabla0, extrema, border ];

The equations which determine V, F, and B are solved. The Maple command map(p,e)
applies the procedure p on each operand (element) of the expression (list) e, and op(e)
extracts the operands of the expression e. In the extrema case the map command returns
a list of all coordinate functions, of which the op command extracts the elements, which is
afterwards concatenated with F=0. Notice that it is important to perfom a symbolic solution
(solve), since extrema, nabla0, and border all contain several solutions. The numerical
solution (fsolve) only finds a single solution, given a start point.

The set nabla0 is afterwards filtered with the function FeqNull, which throws away all
solutions where F(z) # 0, z € Vj. The set extrema contains the roots of the division of two
polynomials, i.e. extrema could possibly contain complex solutions which need to be filtered
out. Note that both extrema and nabla0 only contain numeric solutions, i.e. do not depend
on any ;. On the other hand, a solution in border is symbolic, i.e. depending on a function
in each non-fixed z;.

The predicate function isNotComplex below filters out all the non-complex roots — by
using the predicate function validCandidates to throw away all solutions not in [0, 1]>.
This yields a set of valid candidates, vC.
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ncCand := select( isNotComplex, candidates );
vC := select( validCandidates, ncCand );

Next, we define a special distance function, af, which takes a solution element, i.e. a point,
a curve, etc., where a change from one decision to another happens, and then calculating
the minimum distance from g to this solution element, and returning [z, dist(g, )|, where Z
is the point in the solution element with minimum distance to g.

af := proc(y)
[ subs( x[0] = gl[0], =x[1]
subs( x[0] = g[0], x[1]
subs( x[0] = g[0], x[1]
end:

gl1l, subs(y, x[0]1) ),
gl1l, subs(y, x[11) ),
gl1], subs(y, sqrt(dist)) )]:

mCp := { op( map( af, vC) ), [ -1, -1, 1e30 ] };

If y is a point, the dist function can be used immediately, but if the solution y is given as
a function in one or more z;, some extra work has to be performed. We know that such
solutions originates from border, i.e. it is some sort of an (m — 1)-cube (line, plane, etc.,
see Figure 5.5). The point on this (m — 1)-cube with minimum distance to g is given by the
orthogonal projection of g onto the (m — 1)-cube. As the (m — 1)-cube is always parallel to
the (m — 1)-cube spanned by the (m — 1) basis vectors of the variables with freedom, the
point on the (m — 1)-cube with minimum distance to g can be found by substituting each
possible freedom in x[i] with g[i], see Figure 5.5.

X1
EU
1 A ‘
g
G- 4o
© 1

Figure 5.5: Illustration of the border in the two dimensional case. It consists of the four
lines zg = 0, zg = 1, 1 = 0, and z; = 1. The dashed lines show the
minimum distance to each line, i.e. the variables of freedom for each line can
be substituted by the corresponding values of g, go or ¢i.

Furthermore, we add a dummy element [—1,—1,1 - 10%'] covering the case where mCp is
empty, i.e. 7. = co. Next, the function minIndex finds the index of the element in mCp with
minimum distance.

rcElem := mCp[minIndex(mCp)];

The two first elements in rcElem denote the position of the change, whereas the third element
contains the value of r.. These values can now be written into the output file.
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5.4 The Numerical Calculation Components

The idea of the numerical calculation components is twofold. First it serves as a verification
mechanism for our symbolic calculation component and with that for the Theory developed
for Bayesian networks and influence diagrams. The numeric component is simpler in struc-
ture and thus less apt to contain programming bugs and logical design flaws. Second, a
numerical analysis can be performed in situations which are not covered by our theory or
not implemented in the symbolic component yet. For example it is impossible for the sym-
bolic component to calculate the radius of change for influence diagrams with two or more
decision if Theorem 4.2 does not apply.

The drawback of the numerical analysis is its lack of precision and the enormous number of
propagations which has to be performed, thus making a symbolic analysis both more precise
and faster.

5.4.1 The Numerical Bayesian Network Calculation Component

The only available output of the numeric approach in the Bayesian network calculation
component is the graph of P(v|0)(Z). Therefore the approach is limited to at most two con-
ditional probabilities under study, since each conditional probability introduces a dimension
in the graph and one dimension is used to show the value of the P(v;|o)(Z).

The idea of the approach is simply to calculate the value of P(v;]0)(Z) for a large number of
different values for z. The number of values is determined by some precision on the number
of propagations. For example, if the number of propagations for one conditional probability
is set to 100, then the precision is 14; because the value interval is [0, 1], for abbreviation we
say that the precision is 100. This is the idea in any of the dimensions. Thus, if the precision
is 100, the total number of propagations is 100™, where m is the number of dimensions (equal
to the number of conditional probabilities under study).

5.4.2 The Numerical Influence Diagram Calculation Component

Without loss of generality, assume that the target decision node, D; is binary. The possible
outputs for the numeric approach of the influence diagram calculation component is an
approximate estimation of the radius of change or a graph for EUp,—4, and EUp,——4,. The
graph output again limits the amount of conditional probabilities under study to two. But,
the calculation of the radius of change alone is neither limited by the number of conditional
probabilities under study nor the number of decisions.

In principle the idea is similar to the one for Bayesian networks, but the realization of the
method is a little harder. Here, it is also necessary to run over a number of propagations in
each direction, and hereby get the expected utilities for all the decision alternatives in the
target decision node. The target decision is then compared with all the other decision alter-
natives (one at a time), to determine whether there is an intersection. When an intersection
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is found, we have a candidate for the radius of change, but not necessarily the minimum.

The crucial part of this method is the comparison between the target decision and its decision
alternatives. In general we are interested in finding an i such that F(z;) = EUp—4(Z;) —
EUp—-q4(7;) = 0. Since this is a numerical approach, it is almost impossible to find such an
i when using (fixed) discrete intervals; therefore, a sign analysis is used, i.e. the current sign
of F(Z;) is compared with F'(Z;) in the neighborhood, if the sign of F(Z;) is different than
F(z;), then both points are added to the list of candidates for ..

In the one dimensional case it is straight forward, only comparison with the last difference
is necessary. If sign(F(z;)) # sign(F(Z;_1)), both z; and 7;_; are added to the candidate
list. The precision of the method can be improved by performing some sort of interpolation
between F'(Z;) and F(Z; 1), or possibly generate more data points between Z; and Z; ;.

In the two dimensional case the comparison becomes more complicated. It is necessary to
compare the sign of F(z;) with the sign of F(z;) for all eight neighbors z; of ;. One way
to do this is to compute a complete grid of sign(F(z;)) for all Z;, see Figure 5.6, and then
run a mask over the grid to detect candidates for r.. This method corresponds somewhat to
edge detection in image analysis.

X

1

Xo

@ (b)

Figure 5.6: An example of a sign grid (a) and mask (b). The idea is to detect points,
where at least one of the neighbors has a different sign. The 1-mask works
like a mask using the underlying sign and is ran over the entire grid. If the
sum is not 9 or —9, we add the center point to the list of candidates.

Among the set of all candidates the method now calculates, which point yields the minimum
distance to g, and r,. is this distance. The method provides a coarse approximation of r,
vk

the accuracy bound is 35, if the precision is 100.

The accuracy of the method is determined by the size of the grid and whether we interpolate
or generate new values once a candidate point has been found. When the work on this
project is continued, optimizations with respect to accuracy and the number of propagations
should be investigated. For example, could it be beneficial to use the continuity of F(z) to
restrict the investigation of points to the border between the plus signs and the minus signs
in the sign grid. Some sort of numerical bound on the precision of the developed method
should also be established.
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Also a speed-compassion between the symbolic and a numeric approach should be performed.
Section 4.2 indicates that a lot of overhead for bookkeeping is needed in the case of several
decisions in order to determine which coefficients determine F(Z) where

5.5 Summary

In this chapter we have described the implementation of sat. For Bayesian networks the
symbolic method is giving the desired results without limitations on the number of decisions
or the number of conditional probabilities under study, dim(Z). Hence, the numerical method
for Bayesian networks is not very interesting because the symbolic is faster and more precise.

The speed of the symbolic Bayesian network computation could be improved by investigating
whether V5, € Sen(V;, O). If this is note case, all ¢;; containing 7 are zero. Hence, the number
of coefficients to be calculated are reduced.

In the influence diagram part of the symbolic calculation component we are restricted to
consider only influence diagrams with at most one decision or diagrams where Theorem 4.2
applies. In theory it works for any number of conditional probabilities under study, but, in
practice Maple cannot solve the equation system with more than three unknown parameters.
The numerical method for influence diagrams is giving good approximations, and when
considering computation time, the method sounds promising while the number of conditional
probabilities under study is low, i.e. one or two.

When the project is continued three areas should be taken into consideration. First, a
lot of work has to be done around the implementation, i.e. the parser must take evidence
into account and handle white spaces better. Second, the numerical approach for influence
diagrams should be optimized, such that the computation time is more reasonable. Third,
the sketched theory for the symbolic component two decisions should be implemented.



Chapter 6

The Milk Example

In the previous chapters we have presented a theory and developed a tool for performing
sensitivity analysis in influence diagrams. Therefore, we introduce an example on which we
can perform sensitivity analyses using both. This example is based on an exercise found in
[Jensen, 1998, Chapter 4]. The example is separated into two parts, the first part deals with
the two test separately, and the second part deals with a combination of the two tests. In
both parts there will be performed a sensitivity analysis on the setup.

6.1 Milk Example Episode One

In this section we first describe the problem followed by a solution using influence diagrams.
Next, we perform a sensitivity analysis on the solution-network in order to see how secure
the solution is given a given confidence interval on one of the parameters.

6.1.1 The Problem of the Milk Example

The general situation of the Milk Example is as follows.

A farmer has 50 cows, each giving milk worth 5 dollars a day. Every day he
delivers the milk of all the cows to the dairy in one container. The milk from a
cow may be infected, and when the infected milk is mixed with the milk from
all the other cows, the production from that day is infected. The dairy checks
every delivery of milk, and if it is infected it is rejected, and thus worthless. This
happens to the farmer twice yearly.

The test problem is described as follows.

Before milk from each cow is poured into the container the farmer can test

whether it is infected. The test costs 1 cent and has no false negatives, i.e. if the

milk is infected the test will always be positive; however, for non-infected milk
. .o, . .y 5 . .

’-che test gives a positive result-vmth probability 555- The question now is, does

it pay for the farmer to use this test?

55
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6.1.2 A Solution of the Milk Example

An answer to the test question could be the influence diagram given in Figure 6.1(a); for
abbreviation, all lower case characters of variable names in the milk example are left out
from now on, e.g. Infected is turned into 1.

The variable I indicates the prior probabilities of whether the milk is infected as described
above. The variable I'1 represents the outcome of the test where the false positives are taken
into account. The variable I’ is a dummy variable making it possible to represent the test
decision, T'17, as well as the result of the test — if performed. This trick is described in
[Jensen, 1998, Sections 4.1.3 and 4.1.4]. After T'1?, the farmer has to decide wether to reject
the milk. This is represented by R?.

Both utility functions of the influence diagram indicate the cost in dollars. Utility U1
indicates the cost of performing the test and U3 indicates the cost of giving the dairy infected
milk and also the cost of rejecting milk. Due to no-forgetting, [Jensen, 1998, Section 4.1.2],
R? does not forget the decision made in T17.

Test1? @ Reject? Test1? @

(a) (b)

Figure 6.1: (a) The influence diagram for 717, where we want to determine whether or
not to do the test. (b) The simplified influence diagram with the same test.

The probability tables of the influence diagram in Figure 6.1 are given in Table 6.1(a). From
the description of the problem, we assume that only one cow gives infected milk at a time.
This seems like a valid assumption given the above description, because the probability that
the infected milk is caused by two or more infected cows is very low. Then, the probability
that one cow gives infected milk is P(I = yes) = % - % = ﬁ because we are dealing with
a union of disjoint events [DeGroot, 1985, Section 1.10].

The utility tables are given in Table 6.2. We are assuming that the farmer always gets 250
dollars, so the utilities reflect only loss. When the farmer performs a test, it has a price
given by U1, and when the milk is infected the farmer again pays according to U3. The
total income of the day is then, 250 dollars minus the cost of testing, the cost of rejecting,
and the cost of accepting infected milk.
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T
. yes 9125
PO = o | 1
I =yes | I =no
P(I1|I) = | I1 =yes 1 =
IT =mno 0 %
T1? =yes | T1? = no
I' = yes (1,0) (0,0)
! ? — I I
P(I'|11,T17) 7' — o (0.1) (0.0)
I' = unknown (0,0) (1,1)

Table 6.1: The probability tables of the Milk Example. In P(I'|I1,717) the (p1,p2) is
given such that p; represents state yes and po state no of I1.

T1? = yes | —0.01
7y =
UL(T1?) T1?7 = no 0
R? =yes | R? =no
U3(I,R?) = |I=yes -5 —250
I =no -5 0

Table 6.2: The utility tables of the Milk Example.

Simplifications

To make the influence diagram in Figure 6.1(a) more suitable for our theory of sensitiv-
ity analysis calculations, some simplifications are done. The simplified solution influence
diagram is pictured in Figure 6.1(b) and explained in the following.

First, the intermediate variable I1 can be summed out,

P(I'I,T1?) = Y P'(I'[ILT1?)P(II') = Y P(I' 11|T1?,1),

I1 I1

where P* is the probability table from Table 6.1. Thus, the functionality of I1 is pushed
into I’ such that the probability table for P(I'|I,T17?) is as in Table 6.3.

Next, the decision whether to reject the milk, R?, can also be integrated directly in the
network. We assume that if the test says the milk is infected, we reject it (and vice versa).
This can be implemented into the utility U3. If we did not test, we will not reject. The
utility table for U3 is given in Table 6.4.
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T1? =yes | T? =no
I' = yes (1, 2) (0,0)
' 2 — » 7000 ;
PUILTE) =1 p — o 0.4 | (0.0
I' = unknown (0,0) (1,1)

Table 6.3: The changed probability table for the simplified influence diagram.

I'=yes | I' =no | I' = unknown
U(LI') = [T=yes| —5 | —250 ~250
I =no -5 0 0

Table 6.4: The changed utility table for the simplified influence diagram, (p;, p2) represent
state I = yes and I = no, respectively.

Calculating the expected utility

Now, the influence diagram of the simplified Milk Example, Figure 6.1(b), and its tables are
entered into Hugin. The network is compiled, and the expected utilities for the two actions
can be read as

T17 = yes | —0.0355472

?7) =
EU(T1?) T1? =no —0.0275

(6.1)

Hereby we conclude that it does not pay for the farmer to do the test. The total expected
utility for one day with a stock of 50 cows, is then

EU = 250+ 50 - MEU(T'1?) = 248.625

total

The expected utilities in (6.1) are very close, and one would now probably be curious what
had happened if the test had had just a fewer false positives?

6.1.3 Sensitivity Analysis on the Milk Example

We now analyze the sensitivity with respect to one of the conditional probabilities in the
Milk Example described above, corresponding to the question of how robust the conclusion
is to changes in the number of false positives.

Let the decision, T'17, be the target decision and the conditional probability, x = P(I' =
yes|T1? = yes, I = no), be the conditional probability under study. Assume that we are
uncertain about the value of this conditional probability, but, we know the mean value is
= ﬁ, and assume that the confidence interval is +—>- with some certainty, say, 0.95, i.e.

9 8 1000
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Using the theory described in Chapter 3 and the tool described in Chapter 5 we can calculate
the radius of change to be

re = 0.00160963 (6.2)

Hence, if P(I' = yes|T1? = yes, I = no) < 0.00339037, it would pay for the farmer to take
the test, otherwise not.

Equation (6.2) also gives us that the radius of change lies within the confidence interval,
which is critical in the sense that the result of solving the influence diagram varies when our
parameter is varied within the bounds of its confidence interval.

6.1.4 A More Reliable Test

Now, consider the following more reliable, but also more expensive, test which the farmer
can perform.

The farmer may choose another test, which cost 3 cents, it has no false negatives,
and it gives false positives with a probability of ﬁ. Again, the question is, does
it pay for the farmer to use this test?

The influence diagram and tables are similar to the earlier ones, except for the tables
P(I"|I,727) and U1(Test2?) which are shown in Tables 6.5 and 6.6, respectively. Fur-
thermore, the nodes I1, I’, and T'17 are renamed to 12, I”, and 127, respectively.

When the values are inserted into Hugin, the expected utilities for the two actions can be
extracted.

127 = yes | —0.0330497
7y =
EU(T2?) 1727 = no —0.0275 (6.3)

This concludes that it does not pay for the farmer to do this test, either. The total expected
utility of the day with a stock of 50 cows, is then
EU = 250+ 50 - MEU(T27) = 248.625

total

As before, let P(I" = yes|T27 = yes, I = no) be the conditional probability under study.
Then, the radius of change is

from which it can be seen that no matter what probability chosen for the false positives,
it would never pay for the farmer to take the test. This can also be concluded in another
way, it would cost the farmer 0.03 - 50 - 365 = 547.5 dollars a year to perform the test, but
he only saves 2 -50-5 = 500 dollars, which is considerable smaller than the expenses. A
sensitivity analysis gave a quick answer showing that using 7'27 is in vain. Once the result
of a sensitivity analysis is known, the knowledge engineer might want to seek explanations
as done her.
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T2? =yes | T2? =no
I" = yes (1, o) (0,0)
" 2 — 7 10000 ’
PUILT20) I" = no (0. 5005) (0,0)
I" = unknown (0,0) (1,1)

Table 6.5: The different probability table for the simplified influence diagram for the more
reliable test (compared to the first one).

T2? = yes | —0.03

unr2?) = T2?7 = no 0

Table 6.6: The different utility table for the simplified influence diagram for the more
reliable test (compared to the first one).

6.2 Milk Example Episode Two

In the previous section the farmer had the choice between two tests, with different prices
and probabilities of false positives. In this section the problem is extended as follows.

Does it pay for the farmer to combine the two tests?

6.2.1 A Solution of the Extended Milk Example

First we look at the general solution, and afterwards we do the calculations on the simplified
version. Therefore, we start with extending the influence diagram from Figure 6.1 such
that the two tests are incorporated by copying the structure, meaning that we introduce
the decision 727 and two new random variables, 72 and I”. The intermediate variable 12
indicates the probabilities concerning the false positives, and I"” is the result of 72?7 depending
on the state of 12.

The extended influence diagram is pictured in Figure 6.2. Since 717 is the cheapest test we
choose to do this decision first in the influence diagram. Next, we want to examine whether
to carry out 727. As before, to each test decision we assign a utility, U; and U,, which
indicates the cost of the tests 717 and T'27, respectively. Again, the decision R? determines
whether to reject the milk. Finally, we have a utility, Us, which describes the loss as a
function of I and R?.

Since the probabilities and utilities are identical to the ones in the previous example, the
tables are not changed compared to the ones for Figure 6.1(a).
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Infected > us

Testl? Test2? Reject?

Figure 6.2: The influence diagram for T'17 and 72?7, where we want to determine whether
or not to do the test.

Simplifications

Once again, the influence diagram in Figure 6.2 can be simplified to make it more feasible
for our theory of the sensitivity analysis. Like in the previous example, the intermediate
variables, I1 and 2, are summed out, and the decision, R?, is included directly in the
network under the assumption that if both tests are positive, we reject, otherwise if at least
one of them is negative, we accept the milk. Furthermore, if we did not test, we will accept
it. This functionality is integrated in U3. The simplified solution is pictured in Figure 6.3.

Test1? @ Test2? @

S

Figure 6.3: The influence diagram for T'17 and 72?7, where we want to determine whether
or not to combine the tests.

6.2.2 Calculating the Expected Utility

The above network and tables are entered into Hugin, from which the expected utilities of
the first decision can be extracted as

T1?7 = yes | —0.0107158

? —
EU(T17) T17 = no —0.0275
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This indicates that it pays to do T'17. To determine whether to perform 727 depends on the
result of T17 and I’, therefore, we calculate the expected utilities of 727 given I’, this can
be calculated using three propagations in Hugin, one for each state in I’.

I'=yes | I'=no | I' = unknown
EU(T2?|I") = T2?7 = yes | —0.15009 | —0.04 —0.0330497
T27 =no —5.01 —0.01 —0.0275

This shows that if we after 717 'know’ that the milk is infected, it indeed pays to perform
T27. If T'17 says that the milk is not infected, it does not pay to perform 727, because due
to no false negatives we already know the milk is not infected. Finally, if we did not perform
T1,i.e. I' = unknown, it does not pay to perform 727, which we have already shown in the
previous example in Section 6.1. Note, in this last case the expeced utilities are like the ones
in (6.3) on page 59.

6.2.3 Sensitivity Analysis on the Extended Milk Example
We will now analyze the sensitivity of two different conditional probabilities (one at a time)
in the extended Milk Example described above. Let again the decision 7’17 be the target

decision and the conditional probability under study be either x = P(I' = yes|T1? =
yes, [ = yes) or y = P(I" = yes|T27 = yes, I = yes).

Sensitivity Analysis of x

Like before we assume that we are uncertain about the value of the conditional probability,

x, which has mean values p, = ﬁ. The confidence interval is assumed to be iﬁ with
probability 0.95, i.e. P(102W <z< 1(%) = 0.95.

In this situation we have two decisions, therefore we need to look at the junction tree to
determine whether we can calculate the radius of change symbolically or we need to use the
numeric method, described in Sections 4.1.1 and 5.4.2, respectively. The junction tree for
Figure 6.3 is pictured in Figure 6.4.

Figure 6.4: (a) The junction tree of the influence diagram in Figure 6.3. (b) The junction
tree is split up such that Cp,, Cp, and C, are separate cliques, corresponding
to the terms in Theorem 4.2, where Cp, € Wic,,.cp,)-

From the junction tree we can conclude that the 727 decision is eliminated before I’, but
not before T17. Unfortunately, I has to be eliminated before T27. Thus, the probability
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potential for P(I'|I,T17) can only be attached to a clique also containing 727, therefore,
the junction tree in Figure 6.4 cannot be transformed such that Theorem 4.2 applies. Hence,
by Theorem 4.2 the symbolic calculation method of our tool cannot yet calculate the radius
of change. Therefore, we need to use the numeric method, which yields for g, = 0.005

re o~ 0.52

C

The tool, described in Chapter 5, can also give a graph illustrating the intersection, where
the change of decision happens, see Figure 6.5(a).
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Figure 6.5: (a) The plot of EU(T'1?) for © = P(I' = yes|T1? = yes,I = no). (b) The
plot of EU(T'1?) for y = P(I" = yes|T2? = yes,I = no). The intersection
in both plots indicates the changing point, in which the decision maker will
take another decision.

Hence, if P(I' = yes|T17 = yes, I = no) > 0.52, approximately, it would no longer pay for
the farmer to take the test, 7'17. The radius of change is way larger than the confidence
interval, therefore there is no critical situation here.

Sensitivity Analysis of y

Likewise, we are uncertain about the value of y, which has mean value p, = ﬁ. The
confidence intervals are assumed to be iﬁ with probability 0.95, i.e. P(103#00 <z <
Toos) = 0.95.

Since the variable under study, I”, is eliminated before the 727 decision, which can be seen
in the junction tree in Figure 6.4, then Theorem 4.2 yields that we cannot calculate the
radius of change using the symbolic calculation method, because when eliminating 727 a
max-marginalization is introduced. Therefore, we are forced to use the numerical calculation
method, for which the tool is described in Chapter 5. This yields a radius of change of

rY =~ 0.67

c
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where g, = 0.0005, and the figure from the numerical approach can be seen in Figure 6.5(b).

Hence, if P(I' = yes|T2? = yes, I = no) > 0.67, approximately, it would no longer pay for
the farmer to take the test, 717, even when combined with 727. The radius of change is
much larger than the confidence interval, therefore there is no critical situation here.

6.3 Summary

We have now performed sensitivity analysis on the two parts of the milk example. In the case
where the farmer only has the choice of using one of tests, none of them would be profitable
for the farmer. When the farmer has the opportunity of both tests a beneficial strategy is
as follows. When the first test is positive he also performs the second, and only if both tests
are positive he discards the milk, otherwise he keeps it and pours it into the container.

From the sensitivity analysis on the first part of the milk example, it can be concluded that
if T'17 had had just a fewer false positives, then, this test would pay for the farmer. But, for
T27 the test will never be beneficial for the farmer to perform. Sensitivity analyses yielded
r. = oo and when rationally calculating the payoff of doing the test against the profit of not
rejecting non-infected milk, the payoff was much larger than the income.

When performing sensitivity analysis on the second part, it can be concluded that the model
is very insensitive to the probabilities of the false positives, meaning that the probability of
the false positives does not change the expected utility essentially; even if the probabilities
of false positives was fifty-fifty, the farmer will do better with the tests than without them.

The sensitivity analysis performed in this chapter illustrates richly how sensitivity analysis
can help checking the model, especially the conditional probabilities of the uncertain param-
eters. To get a better idea of how to apply sensitivity analysis in practice, one should try to
investigate some larger and less fictitious diagrams.



Chapter 7

Conclusion

In this report we presented our ideas on how to provide the knowledge engineer with formal
methods in the analyze phase of the construction loop of belief networks. The obtained
results can be partitioned into two, theoretic results for sensitivity analysis in Bayesian
networks and influence diagrams, and the sat-program as an implementational result.

On the theoretic level, we extended the work of [Coupé and van der Gaag, 1998b| such
that we now are able to derive an analytic expression for the target probability, P(v;|0)(Z),
for any number of conditional probabilities under study. With our method, the number of
propagations needed to determine the coefficients of this expression is exponential in the
number of parameters under study. But, as one usually works with one or two parameters
under study, this is not critical.

Hereafter, we turned our attention to influence diagrams. We claimed that a knowledge
engineer is interested in knowing how much the parameters under study need to be varied
before evaluating the influence diagram results in making a different decision. This informa-
tion was encapsulated in the concept of the radius of change, r.. Thus, our objective was
to calculate r. for the outermost decision in arbitrary influence diagram with an arbitrary
number of parameters under study.

The presented theory only provides calculation methods for diagrams with one or two de-
cisions. For the one decision case of calculating 7., an arbitrary number of parameters is
allowed, whereas the two decision case only covers the cases with one or two parameters un-
der study. The F'(Z) function which needs to be investigated was shown to become piecewise
defined once the diagram contained more than one decision. The number of pieces depend
on dim(z) and the quantitative part of the network. Quickly, these calculations motivate the
development of an automated tool, due to the large amount of calculations and bookkeeping
necessary. Again, the bottleneck seems to be the large number of propagations needed.

On the implementational level we developed a sensitivity analysis tool sat which — if better
integrated — could function as an actual aid for a knowledge engineer. The tool contains a
symbolic component which implements part of the above mentioned theory and a numeric
component. Currently the symbolic Bayesian network part is fully implemented except for
insertion of evidence. If sat should be of any use, it is certainly necessary to be able to
parse evidence. The symbolic influence diagram part currently only works for diagrams with
one decision, or situations that reduce to this case. Due to this and the large bookkeeping
overhead a numerical solution is superior in speed for cases where dim(z) = 1 and the
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network contains a lot of decisions. Thus, the work on the numerical influence diagram
component should be pursued further. A lot of work remains before the implementational
is on the same level as the theory.

Finally, we performed an actual sensitivity analysis on a small case study concerning whether
a farmer could benefit from applying a combination of two tests. The sensitivity analysis
provided interesting results in a quick way, which then caused us to seek explanation in the
network. When the work on this project is continued, one should definitely try to use sat in
the development on some larger real world application.

7.1 Future Research

On the theoretic level the work on this project should continue on two areas. Investigation
of methods to reduce the vast number of propagations needed to determine the number of
pieces of F'(Z) and generalization of the theory to any number of decisions.

In addition to this a more existentialistic problem exist. We, the authors of this report, do
not have any experience in constructing belief networks modeling real world problems. This
certainly weakens our statements about what methods a knowledge engineer really needs
in the analyze phase of the construction loop. Our tool performs analytically well on toy
examples, but the question is, are the large number of propagations needed problematic once
larger networks are considered? Furthermore, once the value of r. is known, how can it be
used in the communication with the expert and to adjust the values?

We hope to be able to perform a extensive case study, where we experience the use of sat
in a real world context. This requires theoretic improvements of the tool and the chance
to step into the role of the knowledge engineer. First then, we can with conviction make
statements about what a knowledge engineers really needs and how the users mechanistic
world view can be challenged.



Appendix A

Basic Definitions, Notations, and Concepts

This appendix establishes the basic terminology used in the report. The second objective of
this appendix is to serve as an introduction to graph theory and graphical models for readers
not familiar with these concepts. The choice of notation for basic graph theory is presented,
and an important theorem enabling efficient investigation of d-separation properties is pre-
sented. Hereafter, a shallow treatment of the comprehensive theory behind graphical models
is given.

A.1 Graph Theoretic Notations and Definitions

In this section we will define some graph theoretical notations and definitions. The notations
and definitions are based on [Chartrand and Oellermann, 1993|, [Pearl, 1988], [Acid and de
Campos, 1996|, [Lauritzen et al., 1990|, [Lauritzen, 1996] and [Coupé and van der Gaag,
1998b).

A graph consists of a pair, G = (V, E), where V is a finite set of vertices, also written
V(G), and E is a set of edges, also denoted F(G). A simple graph is a graph without
loops and multiple edges; the graphs in this report are all be simple.

An edge is a pair of vertices, (a,b) € E(G), where a,b € V(G). It can either be directed,
meaning that if (a,b) € E(G) then (b,a) ¢ E(G), or undirected, meaning that if (a,b) €
E(Q@) then also (a,b) € E(G). Graphically, vertices are represented by circles, undirected
edges are represented by lines between circles, and directed edges by arrows between circles.
Therefore, an undirected edge between a and b is written as a ~ b and a directed edge from
atobasa—b.

A graph is called a directed graph if all its edges are directed and an undirected graph if
all its edges are undirected. In undirected graphs the edges will be represented as unordered
pairs of vertices, (a,b). In this report each graph will either be directed or undirected.
The underlying graph, G, of a directed graph, G, is the undirected graph obtained
from G such that V(G~) = V(G) and if either (a,b) € E(G) or (b,a) € E(G) then both
(a,b) € E(G™) and (b,a) € E(G™), i.e. substituting all the arrows by lines.

Let A C V(G), then A vertex induces a subgraph G4 = (A4, F(G4)), where E(G4) =
E(G)N(AxA), i.e. E(G4) is obtained from G by keeping only the edges with both endpoints
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in A. A graph is complete if each vertex joins all the other vertices by either arrows or
lines. The subset A C V(@) is complete if it vertex induces a complete subgraph of G. A
complete subgraph is called a clique, if it is a maximal complete subgraph, meaning that
no other subset A’ C V(G), where A C A’, exists such that G 4 is a complete vertex induced
subgraph of G.

Two vertices, a,b € V(G) are called neighbours, if a ~ b in G. The set of neighbours to
a vertex a is denoted ne(a). If a — b exists, then b is called a child of @ and a a parent
of b. The set of parents of b and the set of children of a is denoted by pa(b) and ch(a),
respectively. These definitions are extended for sets as follows.

pa(4) = |Jpa(a)\4

ch(4) = | Jch(a)\4
ne(4) = Une(a)\A

The boundary, bd(A), of a subset A C V(G) is defined as all the vertices in V(G)\ A that
are neighbours to at least one vertex in A, that is bd(A) = {v € V(G)\A|3v' € A: v ~v'}.
The inner boundary of A is defined as bdipner(A) = {v € A|Fv" € bd(A) : v ~ v'}. The
closure of A is defined as cl(A) = AUbd(A).

A path of length n from a vertex, a € V(G), to a vertex b € V(G) is a sequence, a =
Qg, ... ,a, = b, of distinct vertices, such that (a; 1,0;) € E(G) for all i = 1,... ,n. Paths
are defined for both directed and undirected graphs. If a path from a to b exists, then it is
said that a leads to b, denoted by a +— b. If both a — b and b — a then a and b connect,
written a = b.

An n-cycle is a path of length n where a = b; it starts and ends at the same vertex. If
the cycle contains arrows, it is called a directed cycle. A directed graph without cycles is
called a directed, acyclic graph (DAG).

In a directed graph, G, a chain of length n between a € V(G) and b € V(G) is said to be
a sequence of distinct vertices, a = «y, ..., a, = b, such that either o;_1 — a; or a; = ;1
exists.

In a directed graph, the descendants of a vertex a € V(G) are defined as de(a) = {v €
V(G)|a — v} and the nondescendants of a are defined as nd(a) = V(G)\(de(a) U {a}).
The ancestors of a are defined as an(a) = {v € V(G)|v — a}.

A subset A C V(G) is said to be an ancestral set, if it contains it all its own ancestors, i.e.
Va € A:an(a)U{a} C A. If A and B are ancestral sets, then AN B is also an ancestral set,
therefore the smallest ancestral set can be defined as An(A) = AU (Uzea an(a)).



A.2. Separation 69

A.2 Separation

In this section we consider separations in undirected acyclic graphs and d-separation in
directed graphs. Thereafter, we give a theorem and a proof that d-separation can be reduced
to separation. Finally, we give an algorithm to determine if a graph is separated.

A.2.1 Separation in Undirected Graphs

Separation of two disjoint subsets of vertices of a graph by a third subset of vertices (disjoint
from the two previous sets) is defined in the following way.

Definition A.1 (Separation)
Let G be DAG, then two disjoint subsets of vertices, A, B C V(G), are said to
be separated, denoted by (A|S|B)Z, if no path between any vertex in A and
any vertex in B circumvents S, i.e. Va € A,b € B : a #¢q\s b.

A.2.2 Separation in Directed Graphs

Separation in directed, acyclic graphs is called d-spearation. Before defining d-separation,
we first define a blocked chain.

Definition A.2 (Blocked chain)
Let m be a chain from a to b in a DAG, G, then 7 is said to be blocked by
S C V(@Q), if there exists a vertex v € m such that either

e v € S and no arrows of m meet head-to-head at v, or

e v ¢S, de(y) NS =0, and some arrows of m meat head-to-head at .

A chain is called an active chain, if it is not blocked by S. Then, d-separation is defined as
follows.

Definition A.3 (d-separation)
Let G be a DAG and A, B, S C V(G). If all chains between A and B are blocked
by S, then A and B is said to be d-separated in G, written (A|S|B)Z.

A.2.3 Reducing d-separation to Separation

We now present a theorem stating that d-separation, (A|S|B)%, reduces to separation in the
moral graph of An(A U BUC). The theorem and proof is based on [Lauritzen et al., 1990].

Theorem A.4
Let G be a DAG and A, B, and S disjoint subsets of G. Then, S d-separates A
from B, if and only if S separates A and B in (G anausus))™:

(AlSIB); < (AlS|B);

G An(AuBUS))™
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Proof
This is an equivalence proof, therefore it is enough to show that if the left side
does not hold, then the right does not either, and vice versa.

We first proof the forward direction by showing —(A|S|B)¢ = —~(A[S|B);

G An(auBUS))™"
Suppose S does not d-separate A from B in G. Hence, there must be an active
chain, 7, between A and B. Without loss of generality, we can assume that the
chain goes from a vertex on the inner boundary of A to a vertex of the inner
boundary of B. Since A and B are not d-separated, all the vertices in 7 must be
members of An(AU BUS), because if two arrows meet head-to-head in a vertex

7, then v € S or de(y) NS # (), otherwise there exists a subpath away from -
that either

e meets another arrow (head-to-head), but then de(y) NS # 0, or
e the subpath leads all the way to either A or B.

Since each of the head-to-head meetings causes a marriage in the moral graph,
we have a path between A and B, circumventing S.
Next, we proof the backward direction, by showing —(A[S|B);

G An(auBUS))™ =
—~(A|S|B)¢-

Suppose A and B are not separated in (Gan(aupus))™. Then, there is a path in
this moral graph circumventing S. Each edge in this path either corresponds to

e edges in the original graph, G, or
e marriages in the moral graph. Each marriage exists because of a head-to-
head meeting at some v € GG. Either
— v €S, then de(y) NS # 0, or

— v ¢ S, then de(y) N (AU B) # (), because of the definition of the
ancestral set, An. This means that the route of the chain has been
changed, such that one less head-to-head meeting exists. By continuing

this substitution of subpaths eventually leads to an active chain between
A and B, in which —~(A|S|B)%.

This concludes the proof.

A.3 Graphical Models

In this section we define the basic concepts of graphical models in the sense of Bayesian
networks and influence diagrams.
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A.3.1 Bayesian Networks

A Bayesian network is defined in the following way.

Definition A.5 (Bayesian network)
Let G = (V(G), E(G)) be a DAG with vertices V(G) = {V4,...,V,}. Let P be
a set of conditional probabilities, P = {P(V;| pa(V;))|V; € V(G)}. A Bayesian
network is then defined as the 2-tuple B = (G, P), where G and P is defined as
above.

Graphically, a Bayesian network consists of random variables as vertices in a DAG, and of
arrows indicating the causal relationships (also called probabilistic dependencies) between
the random variables in the network.

Each random variable has a discrete set of mutually exclusive states. The conditional prob-
abilities indicate the probability that a variable is in a specific state given the states of its
parents. Consider Figure A.1, the conditional probabilities for e.g. P(A) and P(B|A) are
given by

P(A) = (da',a?)

al a2
P(B|A) == b; 11 Q91
b* | g

Generally, we write the set of states of a variable V; by v(V;) = {v},... ,vf}, where V; has k
states. If a variable V; only has two states, the variable is called a binary variable and the
states are v(V;) = {v;, —w;}. The state space Qy for W C V(G) is defined as the Cartesian

product H v(V;).

Figure A.1: An example of a Bayesian network with random variables, A, B, and C, each
having two states.

The joint probability of a Bayesian network is given by the chain rule,

W)= T PVilpa(vi)).
V;eV(G)

The desired probabilities can now be extracted by sum-marginalizations in P(U). To make
the calculations of probabilities in the Bayesian network more efficient, B is transformed
into a junction tree. Details about the the transformation procedure and junction tree
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properties can be found in [Andersen et al., 1997] and [Jensen, 1998|. For our investigations
it is only important to know that the nodes of a junction tree — often also called cliques
due to the construction process — are sets of the nodes in B, see Figure A.2. Between each
pair of neighbours C; and C; in J the separator contains C; N C;. The transformation
procedure also associates each conditional probabilities P(V;| pa(V;) to one of the nodes in
J, the probability potential for a node is given by the multiplication of all associated tables.
All separators have an initial probability table of 1.

C, ({ABY) P(C)=P®)PBA)

S |{B} e =1

C, ( {CB} ) P(C,)=P(C|B)

Figure A.2: The junction tree corresponding to Figure A.1. Notice how the probability
potential for each node in J are given by the multiplication of all associated
tables.

There now exist collect and distribute algorithms which pass the probability and evi-
dence information in the tree by performing operations on domains smaller than U. The
important operation in these algorithms is the absorption operation.

Definition A.6
Let C; and C; be neighbours in J with separator S, with potentials ¢¢;, ¢¢;, and
¢s. To absorb C; into C; means to assign the following new potentials

g5 = dc, e, :¢CJ—*%

Ci\S

Using a sequence of these absorption operations the desired probabilities can be calculated.
A call to collect followed by a call to distribute is called a propagation. For further
details consult [Andersen et al., 1997| and [Jensen, 1998].

A.3.2 Influence Diagrams

An influence diagram is a Bayesian network extended with decision variables and utility
functions. Formally, an influence diagram can be defined in the following way. The definitions
here are built upon [Jensen, 1998] and [Jensen et al., 1994].

Definition A.7 (Influence diagram)
Let G = (V(G), E(G)) be a DAG. The vertices of G are represented by three
disjoint sets V(G) = Vir(G) U Vp(G) U Vi (G), where VR(G) = {V4,...,V,} is
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the set of random variables in G, Vp(G) = {Ds, ..., D,,} is the set of decision
variables, and Vi (G) = {41, ... , 1} is the set of utility functions.

The edges between random variables represent probabilistic dependencies. Let P
be a set of conditional probabilities on the random variables, P = { P(V;| pa(V;))|V; €
Vr(G)}. The arrows into a utility indicate the domain of the utility function,
i.e. pa(t);) = dom(1);). Let ¢ be the sum of the utility functions, ¢ = Zle ;.
Finally, pa(D;) denotes an informational dependency, that is at the time D; is
to be taken, all nodes in pa(D;) are instantiated.

Now, let U = Ur U Up, where Ugr = Vr(G) and Up = Vp(G), be the universe
of all the variables. Then, an influence diagram is defined as the 3-tuple
I=(U,P,7).

Note, that our assumptions about the instantiation of pa(D;) are necessary, since we want
to represent actions that are under the full control of the decision-maker. The decisions
must be taken in the order of their index, and there must be a directed path through all the
decisions in G. An example of an influence diagram can be found in Figure A.3

Ao
<

Figure A.3: An example of an influence diagram with one random variable (A), one
decision node (D), and one utility function (U).

The requirements about the order of instantiation imposes a partition of Vi(G) into a col-
lection of disjoint sets, Iy, ..., I,,. For 0 < i < m, I; is the set of variables that is observed
between D; and D;,,. Thus, I, are the initial evidence variables, and I, are the variables
that are never observed or observed after the last decision. This induces a partial order <
on U:

Iy<Dy<---<D,, <1,. (A1)

Each V; € Vgr(G) has a probability potential ¢y, = P(V;|pa(V;)) associated. The joint
probability potential is then ¢y = []y.cy, v for each possible instance of Vp(G). Note,
how this corresponds to the chain rule for Bayesian networks.

In influence diagrams it is an restriction that a decision cannot affect an already observed
variables, i.e. the joint distribution of I; is calculated without knowledge of D;,q,... , D,,,
formally, P([Z|I(), c 71—2'71: D17 Ce ;Dm) == P(I,L|I(), Ce ,Ift‘,l, D17 e ,D,L)
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Taking decisions is done by following the maximum expected utility principle. This
means that the decision alternative which maximizes the expected utility is chosen. For
decision D,,, the maximum expected utility is given by

Pm = I%E}nXIX:P(Im|IO, ,Im_l,Dl,... ,Dm)*’gZ)

For a decision D; with i < m, the maximum expected utility is p; = maxp, Y ; P(Li|lo, ... , I,
Dy, ..., D;)* pir1. Hence,
o= H}JE}XEI:H}D%X 4 ...n}):}nxg:P(Il,... yIm|lo, Dy, ..., Dpy,) % 1.
1 2 m

This also indicates the order, in which the variables are eliminated, corresponding to the
partial order in (A.1). For more details concerning the calculations of the maximum expected
utility from p; consult [Jensen et al., 1994].

As for Bayesian networks, we use a junction tree to achieve a more efficient way to perform the
evaluation of an influence diagram. The partial order although imposes additional bounds
on the construction process, see |[Jensen et al., 1994] for further details. The transformation
of an influence diagram yields a so called strong junction tree. A strong junction tree is
a junction tree containing at least one distinguished clique, R, called the strong root, such
that for each pair (Cy, Cs) of adjacent cliques, where C1 is closest to R, then an ordering of the
variables in Cy exists such that it respects <. Furthermore, the variables of the separator
C1 N Cy precede the variables of Cy\C; in the ordering. In addition to the probability
potentials, each utility potential v; is by the transformation procedure associated to a clique
in the strong junction tree. The utility potential of a node in J is given by the sum of all
associated utility potentials.

Contrary to the passing of information in junction trees, the passing in a strong junction
tree only happens through collect calls towards the strong root. Although distribute
algorithms exist, it is not relevant for our application of influence diagrams. The absorption
operation in strong junction trees is defined as follows.

First, we define a general marginalization operator which max- or sum-marginalizes depend-
ing on the type of the variable, i.e. marginalization of a random variable A and a decision

variable D is defined as
Mo = Yo 1Mo = mpeo
A A D

Now, let C; and C5 be adjacent cliques with separator S in .J such that C' is closest to the
root. Then, C; absorbs from C5 by assigning the following new potentials to C}.

Y
QSICI = QsCl *d)Sa ,QZ)ICI = 'QZ)CI + _Sa
bs
where

ds = Mo, s = M e, * v,

C5\S CH\S
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