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Abstract

We perform on-line change point detection in time se-
ries of counts arising from infectious disease surveillance
using newly developed regression charts for the Poisson
and negative binomial distribution. The in-control mean
is assumed to be time-varying and linear on the log-
scale with intercept and seasonal components. Using
the generalized likelihood ratio (GLR) statistic a mon-
itoring scheme is formulated to detect on-line whether a
shift in the intercept occurred. In case of Poisson the
necessary quantities of the GLR detector can be effi-
ciently computed by recursive formulas. Extensions to
more general alternatives e.g. containing an autoregres-
sive epidemic component are discussed. A comparison of
the Poisson scheme with existing methods is done using
Monte Carlo simulations. The practicability of the meth-
ods is demonstrated by applying them to the observed
number of salmonella hadar cases in Germany.

1 Introduction

Assume that the observations x1, x2, . . . originate from some paramet-
ric distribution with density fθ such that given the change-point τ the
observations are independent realizations

xt|zt, τ ∼

{

fθ0
(·|zt) for t = 1, . . . , τ − 1 (in-control)

fθ1
(·|zt) for t = τ, τ + 1, . . . (out-of-control).

• Our interest is to determine τ on-line – i.e. new observations are
collected until one is convinced that a change has occurred.

• We will assume that f is the negative binomial probability mass
function with mean µt and a known dispersion parameter.

• A stopping rule is used to determine when enough evidence against
H0 : µt = µ0,t, t = 1, . . . has been collected to stop the sampling.

The out-of-control situation is characterized by a multiplicative shift

µ1,t = µ0,t · exp(κ) (1)

with log(µ0,t) specified by cyclic regression.

More involved models for the shift are imaginable, one suggestion is

µe
1,t = µ0,t + λxt−1, t > 1, (2)

where λ > 0 and µe
1,1 = µ0,1. This auto-regressive model is discussed

in Paul et al. (2008) as a model for time series of counts from infectious
diseases.

2 The Generalized Likelihood Ratio
(GLR) detector

The generalized likelihood ratio (GLR) statistic is defined as

GLR(n) = max
1≤k≤n

sup
θ∈Θ





n
∑

t=k

log

{

fθ(xt|zt)

fθ0
(xt|zt)

}





with stopping rule NG = inf
{

n ≥ 1 : GLR(n) ≥ cγ
}

.

• Maximization of the log-likelihood has to be carried out over θ ∈ Θ
for each possible change time k between 1 and n.

• Höhle and Paul (2008) show that this computational complexity
can be reduced for the multiplicative shift (1) Poisson chart by
clever recursive computations of the sums and sups.

• In the more general negative binomial setup or in setups with more
flexible out-of-control models such as (2) this reduction is not pos-
sible.

• In case of large n an alternative is the so-called window-limited

GLR scheme where maximization is only performed for a moving
window of k values.

• Assuming a fixed out-of-control mean instead of computing the sup
over all θ ∈ Θ results in the LR detector.

• To investigate run-length properties of the GLR or LR scheme hav-
ing time-changing means, Monte-Carlo sampling is necessary.

3 Comparison of time-varying mean
Poisson detectors

The Poisson GLR-detector with multiplicative shift (1) is compared to

• the LR-detector,
• the modified Poisson CUSUM of Rogerson and Yamada (2004),
• the approximate Gaussian CUSUM of Rossi et al. (1999).

All three methods need an advance specification of which change to
detect optimally.

• We considered four scenarios with increasing mean and increasing
seasonal amplitude of the monitored disease.

• The respective thresholds for all methods were selected to achieve
an in-control average run length (ARL0) of 500.

• The obtained ARL0 using the method of Rossi et al. (1999) are
much lower than the anticipated values whereas the other methods
are doing a good job in obtaining the desired ARL0.

• We estimated out-of-control ARLs for selected shift sizes δ. The
ARL1 for the methods with fixed alternative hypothesis are sensi-
tive to the choice of the shift size ∆. The GLR detector performs
best when the actual shift size δ is substantially lower.
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Monte Carlo estimated out-of-control ARLs for selected values
of δ when Xt ∼ Po(δµ0,t) and with the charts designed to detect
a multiplicative shift of size ∆ = 2 .

4 Application to German salmonella data

• During the year 2006 the German health authorities noted an in-
creased number of cases due to salmonella hadar compared to the
previous years.

• We fitted a log-linear negative binomial GLM to the data of
2001 − 2004 and used this model to predict the expected num-
ber of cases µ̂0,t for the remaining 2 years.

• A window-limited negative binomial intercept chart with µ̂0,t as
in-control mean is applied to the data of 2005 − 2006.

• Direct Monte Carlo simulation was used to obtain a threshold cγ
which results in a target ARL of γ = 500.
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Weekly number of salmonella hadar cases in Germany taken
from the SurvStat@RKI database. The dotted line shows the
predicted number of cases µ̂0,t based on the 2001-2004 data.
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Monte-Carlo estimated ARLs (left) and corresponding false
alarm probability (right) as a function of cγ for the negative bi-
nomial intercept chart with µ̂0,t estimated from the hadar data.
Also shown are point-wise 95% confidence regions.

Analysis of shadar using glrnb: intercept
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GLR(n) statistic superimposed on the observed data of 2005-
2006. The triangles show all n, where GLR(n) ≥ cγ.

5 Software

The presented charts are implemented in the R package surveillance
available from CRAN. Development versions are available from

http://surveillance.r-forge.r-project.org/

Furthermore, the package provides visualization of routinely collected
surveillance data and a test-bench for new surveillance algorithms.
Among others surveillance contains an implementation of

• the procedure of Farrington et al. (1996),

• the GLR detectors proposed by Höhle and Paul (2008),

• estimation routines for the model described in Paul et al. (2008).

Further information about the package can be obtained from Höhle
(2007) or in the accompanying vignette.
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