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1. Introduction

The objective of biosurveillance in this chapter is the detection of emerging incidence clusters
in time of a health related event. Reviews on temporal surveillance can be found e.g.
in Sonesson and Bock (2003), Bravata et al. (2004), Buckeridge et al. (2005) and Tennant
et al. (2007). In recent years a pleasant development has been a synthesis of surveillance
methods with methods from statistical process control, see e.g. Woodall (2006) for a survey.

One important aspect to ensure a transfer of methodological developments into practice
is the availability of appropriate software implementations and their documentation. With
the present chapter we want to introduce one such open-source software implementation
into a public health context: the R package surveillance. In order to demonstrate func-
tionality, we use Danish mortality data from the ongoing European monitoring of excess
mortality for public health action (EuroMOMO) project (Anonymous, 2009).

The R system is a free software environment for statistical computing and graphics dis-
tributed under a GNU-style copyleft license and running under Unix, Windows and Mac (R
Development Core Team, 2009). Several documents and books provide an introduction (Dal-
gaard, 2008; Venables et al., 2009; Muenchen, 2009). The add-on package surveillance
offers functionality for the visualization, monitoring and simulation of count data time se-
ries in R for public health surveillance and biosurveillance. It provides an implementation
of different aberration detection algorithms for epidemiologists and an infrastructure for
developers of new algorithms. The package is freely available under the GNU GPL license
and obtainable from the Comprehensive R Archive Network (CRAN). To install the package
from CRAN, the following call in R has to be performed once:

R> install.packages("surveillance")
After installation the package is loaded using;:
R> library("surveillance")

Focus in the present chapter is on using the aberration detection algorithms in the package
for univariate count data time series, but the package also contains example outbreak data
from the German SurvStat@RKI database (Robert Koch Institute, 2009), functionality for
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the simulation of outbreak data and the comparison of algorithms. Hohle (2007) provides
basic information about the package, further information can be found at the package
homepage located at http://surveillance.r-forge.r-project.org/. The present text
introduces a number of new developments in the package, e.g. using the S4 sts class for
gathering data and methods and using likelihood ratio based cumulative sum (CUSUM)
algorithms.

At the time of writing, only few other R packages exist aimed at helping epidemiologists
in their outbreak detection and outbreak investigation. Retrospective cluster detection is
available for example in the DCluster package (Lopez-Quilez, 2005) and visualization of
outbreak data can be performed by epitools (Aragon, 2008). Retrospective and — to
some extent — prospective investigations of structural changes in time series can also be
performed by the package strucchange (Zeileis et al., 2002), which, however, aims more at
the econometrics community.

1.1. The EuroMOMO project

The project “European monitoring of excess mortality for public health action” (Euro-
MOMO) is a three year project representing a network of 23 partners from 21 countries in
the European region. The project is co-funded by the European Commission and coordi-
nated by Statens Serum Institut, Denmark (Mazick, 2007; Anonymous, 2009).

The aim of EuroMOMO is to develop and strengthen real-time monitoring of mortality
across Europe; this will enhance the management of serious public health risks such as pan-
demic influenza, heat waves and cold snaps. EuroMOMO'’s general objective is to develop
and operate a routine public health system that monitors all-cause mortality in order to
detect and measure — in a timely manner — excess number of deaths related to influenza
and other known or emerging public health threats across European countries. Main actions
include the creation of an inventory of existing mortality monitoring systems in Europe; the
definition of minimal requirements for a mortality monitoring system; retrospective analysis
of mortality data; identification of an optimal common analytical approach and piloting of
such a consensus system for mortality monitoring in several European countries.

Mortality monitoring is useful for early detection and monitoring of severe impacts of
health threats and is as such an indicator-based surveillance system that provides important
information within the framework of epidemic intelligence. The latter comprising the col-
lection, collation, analysis and assessment of information from different sources to rapidly
identify and respond to known and unknown public health threats (Kaiser et al., 2006).
Vital statistics are accessible for all European countries. However, often these data are not
readily available in a timely manner during health crises or for imminent health threats.
On the other hand, decision makers will request up-to-date mortality data in case of the
threat of epidemics or emergence of new diseases (e.g. pandemic influenza, AIDS or SARS).
As these threats are not restricted by borders, not only a national but also a common
European approach to detect and estimate the magnitude of deaths is required. This is
especially important as the methodology of monitoring mortality is complex and there is a
risk of European countries sharing incompatible information if different methodologies are
used. However, in Europe, real-time monitoring of mortality is presently neither carried out
uniformly nor in many European countries.

The main outcome of mortality monitoring is excess mortality, which can be defined as
observed mortality in a given time period, e.g. a week, minus the expected mortality for
that time period. Ongoing data analysis involving modeling the expected number of deaths
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for a given geographical unit and for different population groups is needed, and there are
several candidate models available that have been tested or are in use in a few European
countries (Conti et al., 2005; Gergonne et al., 2005; Josseran et al., 2006; Nogueira et al.,
2005; Simén et al., 2005). However, in order to compare estimates of excess deaths a com-
mon versatile statistical model is needed, and the key output of EuroMOMO is to provide
a European consensus model for mortality monitoring which is applicable all over Europe
and which is piloted and ready to implement.

The structure of this chapter is as follows. Section 2 provides an overview of the
surveillance package, Section 3 constitutes the statistical framework of aberration de-
tection, which is then considered in details for the Farrington method and the negative
binomial CUSUM in Sections 4 and 5. After a description of the theory and syntax of invo-
cation, Danish mortality data are used in each section to illustrate the methods. Section 6
concludes the chapter with a discussion.

2. Overview of the surveillance Package

The functionality in surveillance can be divided into two categories: Prospective change-
point (aka. aberration) detection algorithms for univariate time series of counts and retro-
spective modeling of possibly multivariate times series of counts.

Classical public health aberration detection algorithms for univariate time series found
in surveillance are e.g. the function cdc implementing the approach described in Stroup
et al. (1989) and the function farrington implementing the work of Farrington et al. (1996).
More statistical process control oriented approaches can be found as functions cusum (Rossi
et al., 1999), rogerson (Rogerson and Yamada, 2004) and glrnb (Hohle and Paul, 2008).

Retrospective time series modeling is available in: algo.hmm, implementing the hidden
Markov model approach in Le Strat and Carrat (1999) and algo.hhh, implementing the
branching process approach described in Held et al. (2005) and Paul et al. (2008). Further-
more, algo.twins contains an implementation of the two-component endemic and epidemic
approach described in Held et al. (2006).

In what follows, focus will be on aberration detection methods. A prerequisite to their
use is an understanding of the data structure and related access and visualization methods
for the data.

2.1. Data structure and data input
The S4 class sts (an abbreviation for surveillance time series) provides a data structure for
handling the multivariate time series of counts of the form {y;;;i=1,...,m,t=1,...,n}.
Here n denotes the length of the time series and m denotes the number of entities being
monitored, e.g. geographical regions, hospitals or age groups. A slot observed of sts
contains an n X m matrix representing the y;; counts. The slot start denotes the origin
of the time series given by a vector of length two containing the year and the epoch within
that year. Furthermore, freq denotes the number of observations per year, e.g. 365 for
daily data, 52 for weekly data and 12 for monthly data. An integer slot epoch denotes the
time index 1 <t < n of each row in observed.

To import data into R and surveillance, one can use R’s read.table or read.csv
functions to read ASCII text or comma separated value files. A different option is to use
the package foreign to import SAS, SPSS, Stata or dBase files or the RODBC database
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interface to import from Microsoft Access/Excel or SQL databases. An sts object is then
created from the resulting matrix of counts. We start the analysis of the Danish 1994-
2008 mortality data by reading a CSV file (782 rows and 8 columuns) containing the weekly
number of all-cause mortality and use this to create an sts object.

R> momo.ts <- read.csv("mortality-dk.csv", header = TRUE, check.names = FALSE)
R> dates <- as.Date("1994-01-03") + 7 * 0:(nrow(momo.ts) - 1)

R> momo <- new("sts", epoch = as.numeric(dates), start = c(1994, 1),

+ freq = 52, observed = momo.ts, epochAsDate = TRUE)

The eight columns correspond to the eight age groups <1, 1-4, 5-14, 15-44, 45-64, 65-74,
75-84 and >85 years as defined by the EuroMOMO project to be a relevant age stratification.
Deaths are registered by the day of death. A special feature of the EuroMOMO data is that
weeks are handled as defined by the ISO 8601 standard (Anonymous, 2004). This standard
defines week-numbering for a year to start at the first Monday of week 01 and to end at the
last Sunday before the new ISO year. Here, week 01 of a year is the week with the year’s
first Thursday in it. As a consequence, a year consists of either 52 or 53 full weeks. Usually,
one operates in surveillance with a fixed number of epochs per period, e.g. 52 weeks per
year as given by the freq argument. But by specifically setting the epoch slot to a numeric
representation of the corresponding Monday of each week and setting the epochAsDate
attribute, we can use the Date class in R to easily handle this ISO week complication.

The resulting sts object momo can now be accessed and manipulated using standard
matrix and data frame like access, e.g. momo[1:10," [0,1)"] gives an sts object containing
the first 10 weeks of the <1 age group and dim(momo) returns the dimension of the momo
time series (i.e. 782 x 8). Other operations are the aggregation of the time series over
several epochs or entities by the aggregate function or linking the multivariate times series
to geographical regions of an ESRI shapefile. Plot functions provide visualization of the
multivariate time series in time, space and space-time. In the subsequent analysis of the
Danish mortality data we focus on the country aggregated time series stratified by age.
Here, age stratification is used to differentiate between different mortality risk groups, and
country level is used to ensure sufficiently large strata in a population of 5.5 millions. For
larger EuroMOMO countries, a further stratification by geographical region might, however,
be relevant. The following code illustrates various uses of the plot function for the momo
object with corresponding output shown in Figs. 1 and 2.

R> plot (momo [year (momo) >= 2000, ], type = observed ~ time | unit)
R> plot(momo, ylab = "No. of deaths", type = observed ~ time)
R> plot(momo[, "[0,1)"], ylab = "No. of deaths")

In the above lines, the type argument controls the view on the multivariate time series
object. If no such argument is provided as in the third call, a default choice is used.

Figure 1 shows that monitoring of weekly mortality in Denmark requires handling both
weekly time series containing small count numbers and series having large counts. For the
four age groups in the top row of the figure it will be important to take the count data
nature into account, because a Gaussian approximation is expected to work poorly here.
As a consequence, we will in our work focus on statistical modeling and aberration detection
handling small counts. The methods should, however, be flexible enough to also handle time
series with large counts as e.g. in the bottom row of Fig. 1. An additional advantage of
being able to handle small counts is that this also allows for further stratification of the
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Figure 1. Weekly number of all-cause mortality in Denmark in the eight age groups during 2000-2008.
Each axis tick denotes a quarter (3-month period) and the larger tick marks denote the 1st quarter of
the year (starting with 1ISO week 01).

data into e.g. geographical regions or gender. Furthermore, the time series can contain
temporal trends, e.g. the downward trend for the 65-74 group or the mortality increase in
the > 85 group due to increasing longevity. Similar examples are the seasonal patterns for
the 75-84 and >85 age groups, where an increased mortality during winter and spring is
observed. In order to accommodate such non-stationarity we want to investigate modeling
and aberration detection approaches taking such trend and seasonality into account.

3. Statistical Framework for Aberration Detection

Denote by {y:, t = 1,2,...} the univariate time series to monitor. In this chapter, y; will
always be a discrete univariate random variable, but continuous and multivariate versions
are just as conceivable. The aim of aberration detection is to on-line detect an important
change in the process occurring at an unknown time 7. This could for example be a change
in the process parameters resulting in a change in level or variation of the process. Using
terminology from statistical process control, the process can thus be in one of two states
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Figure 2. (left) Weekly number of all-cause deaths in Denmark 1994-2008 aggregated over all age
groups and (right) the weekly data of the <1 age group. The increase of mortality in this agegroup
is due to a change in the gestational age defining a stillbirth, which was lowered from 28 weeks to 22
weeks in 2004.

at each time point ¢: in-control, i.e. s < 7, or out-of-control, i.e. s > 7. The binary 0/1
indicator z(t) will denote the true but unknown state of the process at time ¢, assuming
that x(t) = 1 means out-of-control.

At time s > 1, where a decision about the state of z(s) is to be made, the available
process information is ys = {y; ; t < s}. A detection method is now a rule, which predicts
the unknown state of x(s) based on ys. This is done by computing a summary r(y,) based
on ys, which is then compared to a threshold value g and consequently

2(s) = 1(r(ys) > 9);

where I(+) is an indicator function, i.e. the function returns 1 if r(y,) > g and zero otherwise.
The time of the first out-of-control alarm is then a random variable

T4 =min{s > 1:r(ys) > g}. (1)

After the change to the out-of-control state at time 7, the decision rule should as quickly
as possible sound an alarm. However, it might take a number of observations after 7 before
enough evidence has been collected to do so. Two important target variables for evaluating
the performance of a detection method are the in-control run-length Ta|T = oo, i.e. the
number of epochs before the first wrong alarm, and the out-of-control run-length Ta|T = 1,
i.e. the number of epochs to detect an already occurred change. Various summaries such
as expectation or median can be computed of these run-length variables. Specifically, the
expectation of the in-control run-length E(T4|7 = 00) — known as the average in-control
run-length or P(T4 < t,|T = 00) — the probability to get a false alarm within the first ¢,
epochs of the monitoring — are often used as a criterion when evaluating the performance
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of a detection method. A more thorough discussion on such criteria can be found e.g. in
Frisén (1992).

4. The Farrington Algorithm

The aim of the Farrington et al. (1996) algorithm was to develop a robust and fast method
applicable for the routine monitoring of weekly reports on infections for many different
pathogens at the former Communicable Disease Surveillance Centre (now Health Protection
Agency) in the UK. For the current time point to = (t5°°k, ), i.e. week t§°k in year
7", this is done by formulating a statistical algorithm for predicting the observed number
of counts y;,. This prediction is based on a subset of the historic data: Centered around
the current week tf{eek, e.g. week 23, one includes w values to the left and right of that
week together with the week itself, e.g. week 21-25 if w = 2. This is done for each of the
years t5° 1 ,t%’ear*b. Thus, a total of b- (2w + 1) reference values are extracted. Now an
overdispersed Poisson generalized linear model (GLM) with log-link is fitted to the reference
values. The GLM has the following mean structure:

E(y:) = pe,  where log(pu) = a + t, (2)

and Var(y;) = ¢us with a, 8 and ¢ > 0 being coefficients to estimate. See e.g. Fahrmeir
and Tutz (2001) for further information about GLMs. One can show that an approximate
(1 — a) - 100% prediction interval for y;, based on this GLM has upper limit

) _ ) bfit, + Var(ji
Uty = fitg + Z1—ay2 -V Var(ye, — fitg) = fito - | 1+ 21-a/2 - \/toﬂ—g(to)
to
where z1_,/9 is the 1 — «/2 quantile of the standard normal distribution while [Lto,gzg and

Var(fit,) can be obtained from the GLM output. If the observed value yy, is greater than
ut, then the time point ¢o is flagged as an outbreak, i.e. in the notation of Section 3:

#(to) = 1 (yi > 1> . (3)

uto

The Farrington algorithm contains a number of additional refinements for improving the
prediction of y,, for example by correcting for past outbreaks among the reference values, by
testing the need of the trend component in (2) and by a skewness correction of the predictive
distribution for low count series. In order to keep the current presentation compact, we refer
to Farrington et al. (1996) for further details on these refinements. In surveillance, the
function farrington is used to run the algorithm:

R> phase2 <- which(epoch(momo) >= "2007-10-01")
R> s.far <- farrington(momo[, "[0,1)"], control = list(range = phase2,
+ alpha = 0.01, b = 5, w = 4, powertrans = "none"))

We start the monitoring in week 40 of 2007 (i.e. 1st October 2007) and let phase2 denote
the index of all ISO weeks to monitor. The call to function farrington then performs
aberration detection for these weeks in the <1 age group. Note that all aberration detection
algorithms in surveillance follow the same structure: The first argument denotes an object
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of class sts containing the data, the second argument contains a list of algorithm specific
control options and a vector range with the time points to monitor. Specifically, the above
code uses a = 0.01 to form the upper limit of the predictive distribution and b = 5 and
w = 4 to generate the reference values. Figure 3 shows the results of the monitoring.
In order to obtain the above described procedure without any additional transformation,
the argument powertrans="none" is used. Other options are: "2/3", which provides a
skewness correction, which is preferable in low count scenario. Similarly, "1/2" provides
the variance stabilizing square-root transformation.

R> plot(s.far, ylab = "No. of deaths", xlab = "time (weeks)", main = "")

—— none 172  ---- 2/3

30

No. of deaths
20

10

2007 2008 2008 2008
[ I I I

\Y Il 1 v
time (weeks)

Figure 3. Aberration detection for the <1 age group using the Farrington et al. (1996) method. The
upper three lines show the upper prediction limit u:, as calculated using each of the three possible
power transformations. The lower solid line denotes the expected model predicted number of cases for
each time point to. Triangles indicate an alarm.

The figure is interpreted as follows: Starting in ISO week 40 of 2007, we use only values
from the past to construct a prediction interval for the observed number of counts for week
40. When comparing the actually observed number 15 with the upper limit u;, = 28.1, we
have no reason to believe in an excess number of deaths and hence no alarm is generated.
The upper limit would have been 30.3 or 29.4 cases for the two other transformations. The
same procedure is now repeated for ISO week 41, etc. In week 02 of 2008 the observed
number of counts exceeds the threshold of the "none” line for the first time and hence an
alarm is generated for that week. No further alarms are generated during the 65 weeks of
surveillance. Once an alarm is sounded, the alarm must be verified and the public health
significance investigated. In this instance, investigation of available epidemic intelligence did
not reveal any specific explanation for the mortality peak that would indicate a significant
public health event.

Note also the prospective behavior of the detection: At each time point we are only
allowed to look back in time, never ahead in time. Thus detection mimics the arrival of new
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data each week, which would be the case in practical applications. Choosing a specific value
for « is particularly depending on the application and mode of operation. A value of e.g.
a = 0.01 means that for a particular week the probability of observing a value y;, > u, by
pure chance under the estimated model is a/2 = 0.5%. If these probabilities are assumed
independent for the individual weeks, the probability of observing a false alarm during the
65 epochs of the monitoring is thus 1 — (1 —0.005)%° = 0.28. In section 5.1 we will study in
further detail the actual run-length distribution of the algorithm.

A call to an aberration detection algorithm fills the alarm slot of the sts object. This
is an n’ X m matrix of Booleans stating for each time point (aka. epoch) and series whether
the time point was classified as aberration. Here, n’ corresponds to the number of elements
in the range argument of the call. Furthermore, the upperbound slot contains an n’ x m
matrix of values corresponding to the minimum number of cases each week that would have
resulted in an alarm. Finally, the slot control contains the list of control arguments which
was used to invoke the aberration detection algorithm.

For the EuroMOMO project, an important aspect besides the detection of aberrations
is the quantification of excess mortality. A first measure of this excess could be based on
the predictive distribution. For example, Fig. 3 shows the predicted expected number [i; of
cases in-control, allowing for a definition of excess as e.g. y; — fi;. By computing confidence
intervals for fi;, one would also be able to assess the uncertainty of such an excess. As a
further tool in this direction, Fig. 4 shows the quantiles of the predictive distribution. The
Farrington procedure sounds an alarm once the 1 — a/2 quantile is exceeded.

[ee]
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Figure 4. Quantiles of the predictive distribution. The dashed line indicates the 1 — «/2 = 0.995
quantile used for the surveillance in Fig. 3. Triangles indicate the alarms.

One way to simultaneously monitor all eight age groups is to monitor each time series
separately using e.g. the Farrington procedure. This is done by the following code:

R> s.far.all <- farrington(momo, control = list(range = phase2, alpha = 0.01,
+ b=5 w=4))

A plot of the alarms for each time series provides a graphical overview as shown in
Fig. 5. Monitoring each series independently as done above ignores possible correlations of
the time series. Furthermore, if one wanted to keep the number of false alarms at the same
level as for the surveillance of a single series, one could, however, have used an « being 1/8
of what was used for the single time series case previously.
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R> plot(s.far.all, type = alarm ~ time, xlab = "time (weeks)")
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Figure 5. Overview of aberration detection for all eight age group time series using the Farrington
algorithm with o = 0.01.

In Fig. 5 we observe no specific patterns of the alarms across age strata, except for
single week alarms around the turn of the year 2007/2008 in age groups <1, 1-4 and 75-84.
Note that the 2007/2008 season in Denmark did not exhibit any heavy influenza activity.
Furthermore, the current surveillance does correct for any population demographics using
the linear trend in (2). It might, however, be worth investigating an additional adjustment
for population size in the eight age strata as these are expected to change over the years.

As a further remark, in the notation of Section 3 the Farrington algorithm does not utilize
all available information at decision time s = tg, i.e. TFarr(Ys) = TFarr(y%) With ¢y, C ys. The
effects of seasonality are handled robustly by using only ’similar’ weeks as reference values
and hence no explicit seasonal model is needed. Such an approach is, however, suboptimal,
if it is possible to adequately model the seasonal behavior as e.g. done in Section 5.

Even though more than a single y, is used to compute r(ys) in the Farrington algorithm,
the decision in (3) occurs by only comparing the current observation with the upper limit
of the predictive distribution. Hence, no accumulation of evidence against the in-control
situation occurs. In the next section, we reconsider this task from a statistical process
control viewpoint and describe an approach taking accumulation into account.

5. Negative Binomial CUSUM

Reconsidering (1) more from the viewpoint of statistical process control, the simplest class
of detectors is the Shewhart detector, which for r(ys) only utilizes information about the last
time point, e.g. by comparing the single y, value to a fixed threshold value. In a parametric
detection setup one assumes a known probability mass function (PMF) f(-; 0) for ys, which
is parametrized by a parameter vector 8. If the parameter vector 0 is assumed to be known
in the in-control and out-of-control state, an optimal change-point detection can be achieved
based on the partial likelihood ratio (Frisén, 2003). Let L(s,t) with s > ¢ be the partial
likelihood ratio between the out-of-control and in-control models at time s given that 7 = ¢.
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Assuming independence between the elements of ys when conditioning on the parameter 6,
one obtains

L(s,t) _ f(yS|T =1) _ Hz 1 f(yzaQO) Hl tf Yi; 01) H f 91701
f(y5|T > S) Hi:l f(yu 00) yz, 00

For the Shewhart detector, optimal detection can be achieved by r(s) = L(s, s). This detec-

tor is good at detecting large process shifts quickly, but if the shift is small but sustained,

accumulating deviations over time is necessary in order to detect the change. The likelihood

ratio based cumulative sum originally proposed by Page (1954) is one method to deal with

accumulation and is advantageous for detecting sustained shifts. It uses

r(s) = max{l <t < s:L(s,t)}.

When the y; are independent and identically distributed discrete random variables, such
count data CUSUM detectors are well investigated, see e.g. Hawkins and Olwell (1998).
However, biosurveillance data often exhibit seasonal variations and time trends which violate
the assumption of an identical distribution. As in Hghle et al. (2009), let

r(s) = max [.Z ox { 4 31323}] W

where we have used the loglikelihood ratio (LLR) instead of the likelihood ratio. Let
denote the in-control and 6, the out-of-control parameters. If 8y and 6, are known, (4) can
be written in recursive form as follows:

f(ys;el)})
ro=0 and ry;=max|(0,rs_1 +logq —"——= , for s>1. 5
’ ( ' g{f(ys;Oo) ©)

One sees that for time points with LLR>0, i.e. evidence against in-control, the LLR con-
tributions are added up. On the other hand, no credit in the direction of the in-control is
given because r; cannot get below zero.

In practical applications, the in-control and out-of-control parameters are, however,
hardly ever known beforehand. A typical procedure in this case is to use historical phase
1 data for the estimation of 8y with the assumption that these data originate from the in-
control state. This estimate is then used as plug-in value in the above LLR. Simultaneously,
the out-of-control parameter 6; is specified as a known function of 6y, e.g. as a known
multiplicative increase in the mean. Developing appropriate count data time series models
together with statistical inference for the estimation of 8y and 6, in a statistical process
control framework is thus an important aspect of performing biosurveillance.

As we suspect the number of persons in the eight age groups to shift towards older age
during the years, we want to take the population size of the eight age-strata into account
in our monitoring. We do so by using data from Statistics Denmark (2009) on the number
of individuals on 1st Jan 1994-2008 in each of the eight age groups.

R> population(momo) <- as.matrix(read.csv("population-dk.csv", check.names = FALSE))

We will in the following use a generalized log-link negative binomial model for the in-
control situation of a specific age group, i.e. y; ~ NegBin(uo,¢, @) with

log(po,t) = Bo + B1 -t + ¢(t) + B2 - popy, (6)
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where ¢(t) is a cyclic function with period 52 or 53 depending on the number of ISO
weeks in the year of ¢, e.g. ¢(0) = ¢(52) for years with 52 ISO weeks. Such behavior can
e.g. be obtained by sinusoidals as in Serfling (1963) or using cyclic splines (Wood, 2006).
Furthermore, pop, denotes the population size in the respective age group at time ¢. In
the above negative binomial model E(y;) = po,¢ and Var(y,) = pos + o - pg 4, ie. ais a
dispersion parameter, which we will assume to be constant over time. Thus with a > 0
we are able to handle possible overdispersion of the count data time series. For o — 0 the
negative binomial distribution tends to the Poisson distribution.

The out-of-control model for the mean is now assumed to be p1; = & - po, which on
the log-link scale corresponds to a level shift in the intercept from 5y to Sy + log(k). The
following R code estimates such a negative binomial GLM from the phase 1 data of the
75-84 age group using the glm.nb function (Venables and Ripley, 2002).

R> phasel <- which(year(momo) == 2002 & epochInYear (momo) == 40):(phase2[1] -
+ 1)

R> momo.df <- as.data.frame (momo)

R> m <- glm.nb("observed.[75,85) ~ 1 + epoch + sin(2 * pi * epochInPeriod) +

+ cos(2 * pi * epochInPeriod) + “population.[75,85) , data = momo.df [phasel,
+ iy
R> mu0 <- predict(m, newdata = momo.df[phase2, ], type = "response")

Here, phasel contains the index of all time epochs in the phase 1 sample used to estimate
the in-control parameters. A five-year period has been used above. Then the function
as.data.frame is applied to convert the sts object to the necessary data.frame used
by glm.nb. For simplicity, a single harmonic is used for ¢(t) consisting of one sine and one
cosine term. The parameter estimates for the other terms are BO = 10.49, Bl =—-9.54-1075,
By = —1.24-107% and & = 1.97 - 1073. In practical application one should perform a
model selection process to decide on covariates and an appropriate number of harmonics
to include. For example, such a selection for the above model would reveal pop, as being
non-significant, whereas a total of three superimposed harmonics could be justified. For
illustration we, however, proceed with the above model and use predict to obtain the
expected value po during phase 2. Figure 6 illustrates the po; predictions based on this
GLM model.

If, for example, one wanted to optimally detect a 20% increase in the mean, one would
have k = 1.2. Again, the choice of k¥ depends very much on the specific application and
mode of operation. Together with the threshold g the value of k determines the distribution
of the run-length as further investigated in Section 5.1. The resulting p; ; is shown in Fig. 6.
Also shown is the number needed before alarm (NNBA) at each time s. This number is
obtained by reversing (5) with known threshold g, i.e. given 751 find the minimum y, such
that r4 > g.

R> kappa <- 1.2

R> s.nb <- glrnb(momo[, "[75,85)"], control = list(range = phase2,

+ alpha = 1/m$theta, mu0 = muO, c.ARL = 4.75, theta = log(kappa),
+ ret = '"cases"))

The above code extracts the dispersion parameter a from the glm.nb fit — note the slightly
different parametrization of the dispersion parameter here. For the threshold ¢ (in glrnb
denoted c.ARL) we use the value of 4.75. This threshold value determines the distribution
of the run-length T4 as investigated in detail in Section 5.1 — specifically we show that
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g =~ 4.75 results in P(T4 < 65|7 = c0) &~ 0.1. The results from this call are illustrated
in Fig. 6. For week 02 in 2008 an alarm is generated. Notice that the number of cases in
the previous week is not enough to sound an alarm itself, but helps to lower the NNBA in
the following week, where it is just about exceeded. No further alarms are generated. The
alarm is an example of excess mortality peaks in the elderly that occur regularly during
winter around the change of the year and at the time of influenza epidemics.
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Figure 6. Aberration detection for the 75-84 age group series using a time varying negative binomial
CUSUM. Shown are the time varying in-control and out-of-control means and the number needed before
an alarm (NNBA). Triangles indicate alarms.

5.1.  Run-length properties

As mentioned previously, the behavior of the CUSUM depends very much on the choice of
the threshold g. In order to guide the choice of g, we will look at the run-length distribution
of T4 |7 = oo under the fitted negative binomial model. Prediction of g ; requires knowledge
of all involved covariates during the monitoring period, e.g. in model (6) this would be the
population size. For the monitored period of 65 weeks (2007-W40 — 2008-W52), these values
are available, but if monitoring exceeded this period, we would have needed to predict
covariate values as well before being able to compute p ;. Hence, it is practically more
feasible to look at P(T4 < ta|r = oo) for a small t4 than to estimate e.g. E(T4|T = 00) as
here many more time points might be needed if the expectation is large. Furthermore, the
distribution of T4 is also often skew, which makes the expectation a bad summary of the
central tendency.

Specifically, we want to choose g such that P(T4 < 65|7 = 00) is below some acceptable
value, e.g. 10%. In other words, the probability of a false alarm within the 65 weeks of
our po,; vs. 1, monitoring should be below 10%. To compute the probability under the
selected model, two approaches exist: direct Monte Carlo estimation or a Markov chain
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approximation.

In the first approach, we use Monte Carlo estimation of P(T4 < 65|7 = 00). For each
realization j, a time series of length 65 is simulated from the estimated negative binomial
model with mean po,t = 1,...,65, and dispersion parameter . Then the negative bi-
nomial CUSUM is applied to this time series and one checks if Ti < 65. The probability
of interest using k such realizations can then be estimated as Zle I(T% < 65)/k, where
I(-) is the indicator function. Code-wise this can be done for k£ = 1000 for a grid of ¢’s as
follows.

R> simone.TAleq65 <- function(sts, g) {

+ observed(sts) [phase2, ] <- rnbinom(length(mu0), mu = muO, size = m$theta)
+ one <- glrnb(sts, control = modifyList(control(s.nb), list(c.ARL = g)))
+ return(any(alarms (one)))

+

R> g.grid <- seq(1, 8, by = 0.5)

R> pMC <- sapply(g.grid, function(g) {

+ mean (replicate (1000, simone.TAleq65(momo[, "[75,85)"1, g)))
+ 1)

Figure 7 shows the result. We note that g ~ 4.75 ensures that the false-alarm probability
within the monitoring period drops below the desired level of 10%. If one is interested in
P(T4 < 65|71 = 1) instead, u1, has to be used as argument mu in rnbinom.

A different option to compute the above false-alarm probability for a likelihood ratio
based CUSUM is to use a Markov chain approximation to determine the PMF of the run-
length variable. This approach implemented in surveillance is a generalization of the
work in Bissell (1984) to time varying count data CUSUMs.

R> dY <- function(y, mu, log = FALSE, alpha, ...) {

+ dnbinom(y, mu = mu, size = 1/alpha, log = log)

+ 3

R> pMarkovChain <- sapply(g.grid, function(g) {

+ TA <- LRCUSUM.runlength(mu = t(mu0), mu0 = t(mu0), mul = kappa *

+ t(mu0), h = g, dfun = dY, n = rep(600, length(mu0)), alpha = 1/m$theta)
+ return(tail (TA$cdf, n = 1))

+ 1)

Here, dY is a function specifying the one-parameter PMF used in the likelihood ratio detec-
tor, in our case this is the negative binomial PMF f(y;; 11, «). The above invocation of the
function LRCUSUM.runlength derives the distribution of T4 when the value of u; is equal
to o, (i-e. in-control) for given specifications of in-control mean, out-of-control mean and
dispersion parameter. The function computes the loglikelihood ratio between all possible
realizations of y;. However, to make computations feasible, an upper limit n is used at
each time point, after which for y, > n the probability of y; to occur under p; is negligible.
Figure 7 shows the result and the close agreement with the Monte Carlo estimation. The
Markov chain approximation is considerably faster though.

Returning to the monitoring of the <1 age group from Section 4, we would like to
compare the Farrington algorithm with the negative binomial CUSUM. To do so, we use
the in-control model NegBin(g ¢, o) for the CUSUM, with po ¢ as in Fig. 3 and o estimated
by a similar GLM as in Section 5. The out-of-control mean is again given as 1+ = 1.2+ yo 1.
The threshold g should be chosen such that the two algorithms are as comparable as possible
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Figure 7. P(Ta < 65| = o00) as a function of the threshold g computed using both Monte Carlo
simulation and a Markov chain approximation. A dotted line shows the desired value 0.10.

with respect to e.g. P(T4 < 65|7 = 00). A Monte Carlo estimation as just described is
performed to determine this probability for the Farrington algorithm. The model used for
this simulation is the above in-control negative binomial model.

Based on 1000 realizations of I(T'4 < 65|7 = 00), the probability is estimated to be 0.57,
which is surprisingly high compared to the rough estimate of 0.28 in Section 4. However,
the two numbers are not completely comparable as the simulation uses a negative binomial
model and observations are not independent. If the above Monte Carlo estimated false
alarm probability of the Farrington algorithm should be near 10%, we would have to choose
a much smaller . Instead we use the Markov chain approximation to determine that a
threshold of g ~ 2.2 gives a similar probability for the negative binomial CUSUM. Figure 8
contains the result of the CUSUM monitoring with this threshold.

The CUSUM behaves slightly different than the Farrington algorithm in Fig. 3. In the
last weeks of 2007, an increased number of cases above the baseline is accumulated leading
to a steady decrease of NNBA. In week 01, the threshold is nearly reached, but as for
the Farrington procedure, an alarm is first generated for week 02 in 2008. However, the
sustained excess above baseline leads to a further alarm in week 08, which was not detected
by the Farrington algorithm, as here, the excess alone in that week is not enough to get
beyond the threshold.

6. Discussion

In this chapter we have given an introduction to the capabilities of the open-source R pack-
age surveillance for epidemiological biosurveillance. Further advantages of choosing R to
conduct such analyses exist: R produces high-quality graphics in a variety of formats, in-
cluding TIFF, PNG, EPS and PDF which combined with Sweave or odfWeave (Leisch, 2002;
Kuhn and Weaston, 2009) allows for automatic report generation using LaTeX/OpenOffice
in literate programming fashion. Also HTML pages containing text, graphics and tables of
the results can automatically be generated from R using e.g. the package R2HTML (Lecoutre,
2003) or huriter (Pau, 2009). Altogether, using the command
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Figure 8. Negative binomial CUSUM for the <1 group. The interpretation of the lines shown is as in
Fig. 6.

R> demo (biosurvbook)

the analyses of this chapter can be reproduced after the package has been loaded.

We introduced the time varying negative binomial CUSUM as an alternative to the
Farrington aberration detection method, as it is better embedded within the framework of
statistical process control. A shortcoming of the suggested GLM modeling to determine
in-control and out-of-control values is that any uncertainty of the estimation was ignored
when plugging in the estimators for pg; and 1+ into the CUSUM. Furthermore, no auto-
correlation between observations was taken into account — neither in the GLM model nor
in the likelihood ratio based CUSUM. However, if trend and seasonality are adequately
modeled, little auto-correlation is expected to remain as e.g. shown in the simulation study
by Farrington et al. (1996). If auto-correlation is a concern, different modeling strategies
can be applied; e.g. generalized estimating equations (used for mortality modeling in e.g.
Fouillet et al. (2008)), integer auto-regressive models (Freeland and McCabe, 2004; Held
et al., 2005; Weif}, 2007) or pairwise likelihood models (Varin and Vidoni, 2006). An auto-
regressive approach is e.g. implemented in the function glrnb by using the control argument
change="epi", see Hohle and Paul (2008) for details on the methodology. The same ref-
erence also discusses how to estimate the out-of-control state at each time point using
generalized likelihood ratio CUSUMs instead of a fixed prior specification. An alternative
to the independence assuming likelihood ratio based CUSUM is the Shiryaev-Roberts detec-
tor, which also works for auto-correlated observations, see e.g. Frisén (2003) for details. As
an example, the spatio-temporal cluster detection of Assungdo and Correa (2009) — imple-
mented as function sr in surveillance — uses this detector. Further package developments
are the extension to categorical time series, e.g. the monitoring of binomial and multinomial
data.
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With respect to the Danish mortality monitoring, the presented analyses illustrated
the potential of using surveillance and R for this task since they provide methods for
the visualization, modeling and aberration detection. A big advantage of the regression
based models in the CUSUM detection is their flexibility for extending them with addi-
tional covariates as illustrated by population size. Such covariates could e.g. be the number
of influenza like illness cases or temperature. A limitation of the current methods is that
mortality reporting is governed by a delay between the day of death and the reporting to
health authorities. Quantification and handling of such reporting delay is thus a precondi-
tion for valuable prospective monitoring. Approaches exist for dealing with such reporting
delay, see e.g. Heisterkamp et al. (2006), but these are currently not available for routine
use in surveillance and have also not methodologically been adapted to the CUSUM con-
text. Finally, the open-source and copyleft approach of the R system and surveillance
is well suited for the EuroMOMO project aim of obtaining a mortality monitoring system
operating in many different countries.
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