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Abstract

A Bayesian approach to the prediction of occurred-but-not-yet-reported events is
developed for application in real-time public health surveillance. The motivation was
the prediction of the daily number of hospitalizations for the haemolytic-uremic syn-
drome during the large May-July 2011 outbreak of Shiga toxin-producing Escherichia coli
(STEC) O104:H4 in Germany. Our novel Bayesian approach addresses the count data
nature of the problem using negative binomial sampling and shows that right-truncation
of the reporting delay distribution under an assumption of time-homogeneity can be han-
dled in a conjugate prior-posterior framework using the generalized Dirichlet distribution.
Since, in retrospect, the true number of hospitalizations is available, proper scoring rules
for count data are used to evaluate and compare the predictive quality of the procedures
during the outbreak. The results show that it is important to take the count nature of
the time series into account and that changes in the delay distribution occurred due to in-
tervention measures. As a consequence, we extend the Bayesian analysis to a hierarchical
model, which combines a discrete time survival regression model for the delay distribution
with a penalized spline for the dynamics of the epidemic curve. Altogether, we conclude
that in emerging and time-critical outbreaks, nowcasting approaches are a valuable tool
to gain information about current trends.

Keywords: Infectious disease epidemiology; Reporting delay; Truncation; Real-time surveil-
lance.

1 Introduction

During May–July 2011, Germany was confronted with a large outbreak of gastrointestinal
disease caused by Shiga toxin-producing Escherichia coli (STEC) O104:H4 associated with
sprouts consumption. A total of 2,987 cases of diarrhea without the haemolytic uremic
syndrome (HUS) complication and 855 cases of HUS were attributable to the outbreak,
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making this one of the largest STEC outbreaks ever reported (Frank et al., 2011; Buchholz
et al., 2011). During the outbreak it was vital to have daily information on current epidemic
trends in order to judge, if the outbreak was ongoing, assess the impact of control measures
and perform capacity planning. However, such real-time tracking is complicated by the
inherent delay in public health reporting systems between the occurrence of the event, e.g.
time of symptom onset or hospitalization, and the time the report becomes available in the
public health surveillance database. Following Donker et al. (2011) such delay-adjusting
tracking procedures are called nowcasts in the public health setting.

We address the nowcasting task in the statistical framework of the occurred-but-not-
reported-events problem (Lawless, 1994). Here, estimation of the delay distribution takes
the inherent right-truncation of the data generating process into account. The problem
originates from actuarial science, where it is known as claims reserving modelling (England
and Verrall, 2002), but has also found application in a biostatistical context when analysing
the AIDS/HIV epidemic (Brookmeyer and Damiano, 1989; Kalbfleisch and Lawless, 1989;
Zeger et al., 1989). Applications can also be found in non-infectious disease modelling such
as cancer registry data (Midthune et al., 2005) or mortality monitoring (Lin et al., 2008).
Besides the already mentioned use during the 2009 H1N1 influenza pandemic in Donker
et al. (2011), nowcasting procedures have also been used to assess excess mortality during
heatwaves (Green et al., 2012) and – in a somewhat different form – to perform influenza-like
illness surveillance (Nunes et al., 2013).

Figure 1 shows the daily number of HUS hospitalizations during the outbreak; 658 of the
827 (i.e. 79.6%) now confirmed HUS cases have information on the date of hospitalization
available. Since hospitalization can be assumed for HUS cases, missingness merely reflects
that the event occurrence was not recorded, e.g., because it is not a mandatory reporting field
or, because it was not possible to ascertain with sufficient precision (for the 169 HUS cases
without hospitalization date, 101 were recorded as having been hospitalized, 29 had missing
information on this matter and only 39 were indicated as not having been hospitalized).
Also shown in the figure is the number of hospitalizations available in the central German
surveillance database SurvNet@RKI as of 2011-06-02 – the discrepancy between the two
curves is due to reporting delay: the notification from the hospital goes to the local health
department from which it is then forwarded to the Robert Koch Institute (RKI) via the state
health department. The goal of nowcasting is to predict the true number of counts from the
currently available counts. The corresponding animation of available reports as a function of
time (in days) in the period 2011-05-01 to 2011-07-06 can be found as Web Animation 1.

The aim of our work is – in hindsight – to evaluate the quality of the nowcasting procedures
on HUS hospitalizations during the outbreak. We chose the date of hospitalization for HUS
as the target, since it constituted a more reliable and outbreak specific indicator compared to,
e.g., onset of symptoms in all STEC cases. In the present work we propose a novel Bayesian
hierarchical model for the nowcasting problem, which better reflects uncertainty due to both
estimation of the delay distribution and the count data nature of the hospitalization data.
A unique feature of our work is that, on the basis of the full epidemic curve, we are able
to retrospectively perform a quantitative evaluation of different nowcast schemes based on
proper scoring rules (Czado et al., 2009). This allows us to address both aspects of sharpness
and calibration of the nowcasts and permits a ranking of the procedures.

Our work is structured as follows: Section 2 introduces nowcasting and its mathematical
notation. Section 3 considers frequentist and Bayesian nowcasting when the delay distribution
can be assumed as time-homogeneous, whereas Sect. 4 contains a joint Bayesian modelling of
both time-varying delay distribution and epidemic curve. Proper scoring rules, which we use
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Figure 1: Daily number of hospitalizations due to HUS during the outbreak as available in
retrospect. Also shown in darkgray are the number of available hospitalization reports at the
RKI as of 2011-06-02 (indicated by the chrosshairs symbol).

to evaluate the predictive quality of the casts, are explained in Sect. 5. In Sect. 6 all methods
are applied and evaluated on the STEC outbreak data. Finally, a discussion of the results
and an outlook in Sect. 7 completes the work.

2 Nowcasting

We adapt the notation of Lawless (1994) to describe the nowcasting problem. Let nt,d be the
number of cases which occur on day t and become available with a delay of d days, i.e. the case
reports arrive on day t+d. Here, the indices span t = 0, . . . , T , with T being the index of the
current day, i.e. now, and d = 0, . . . , D. It is typical to assume that delays can occur only up
to a maximum of D days; e.g., because larger delays can not be estimated reliably or because
cases with a longer delay provide information about times too far in the past to be relevant.
Hence, the last category corresponding to D days often covers the case ’D days or more’. We
shall return to this issue in Section 6. While nowcasting can be performed repeatedly for
different “nows” as described in Sections 5 and 6, the current description focuses on a single
“now” T . Figure 2 illustrates the reporting triangle of nt,d’s emerging from the progress of
time and delay. In particular, the numbers nt,d are unknown when d > T − t. Hence, we
shall denote the observed data as n = (nt,d : (t, d) ∈ AmT ), where

AmT = {(t, d) : max(T −m, 0) ≤ t ≤ T, 0 ≤ d ≤ min(D,T − t)}

is the right-angled trapezoidal observation region at time T when using a moving window of
size m.

Denote by N(t, T ) =
∑min(T−t,D)

d=0 nt,d the number of cases which occurred on t and which
are reported until time T . The aim of nowcasting is to predict the total number of cases
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Delay

Time

n0,0 n0,1 n0,D n0,T

nT − m,0 nT − m,1 nT − m,T − t nT − m,D

nT − D,D

nt,0 nt,T − t nt,D

nT,0

N(t, ∞) − N(t, T)

N(t, T)

n.,T−tN.,T−t

Figure 2: Reporting triangle at time T . The right-angled trapezoid spanned by
n0,0, nT,0, nT−D,D and n0,D defines the available observations. Delays larger than D are
not considered. The shaded box N(t,∞)−N(t, T ) indicates the observations, which at time
t are not yet available.
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occurred on day t, t = T − D, . . . , T , given the information available at time T . Formally,
this number is N(t,∞) =

∑∞
d=0 nt,d =

∑D
d=0 nt,d and consequently is the currently missing

part N(t,∞)−N(t, T ).

The reporting delay (in days) of a case occurring at time t follows a distribution with prob-
ability mass function (PMF) ft(d) = pt,d, d = 0, . . . , D, where

∑D
d=0 pt,d = 1. Considering

time t and conditioning on the number of cases N(t, T ) observed by time T , the observed nt,d’s
in the reporting triangle due to the right-truncation have a multinomial distribution with size

N(t,∞) and cell probabilities p′t,d = pt,d/
∑min(D,T−t)

i=0 pt,i for d = 0, . . . ,min(D,T − t).
If one, as in Kalbfleisch and Lawless (1989) or Zeger et al. (1989), assumes an underlying

inhomogeneous Poisson process on the occurrence of new cases s.t. N(t,∞) ∼ Po(λt), t =
max(0, T −m), . . . , T , the above conditional formulation of the nt,d’s originating from multi-
nomial sampling can be re-formulated as an unconditional likelihood corresponding to an
incomplete contingency table

nt,d ∼ Po(µt,d), (t, d) ∈ AmT , where log(µt,d) = log(λt) + log(pt,d). (1)

Nowcasting can thus be divided into steps of determining the λt’s, the sequence of pt,d’s
and finally predicting the unobserved nt,d’s in order to compute the total N(t,∞).

We shall address the problem in Sect. 3 by first assuming a time-homogeneous delay
distribution s.t. pt,d = pd for all time points within the moving window. The starting point
will be the work of Lawless (1994), which uses the conditional formulation to estimate the
delay distribution without any assumptions about the distribution of the nt,d’s. In a second
step, we extend the delay distribution modelling in Sect. 4 to a discrete survival modelling
context, which allows us to handle changes in the delay distribution over time. Here, the
unconditional formulation becomes more natural to use, since the estimation of the epidemic
curve and the delay can be formulated as a joint problem in the context of hierarchical
log-linear modelling. This also allows us to impose smoothness constraints on the λt’s by
penalized splines.

3 Time homogeneous delay distribution

For the current “now” T , we will in this section assume time-homogeneity of the delay dis-
tribution within t = max(0, T −m), . . . , T , i.e we only take those cases into account, which
occurred during the last m+1 days. In other words, we use as lower nodes of the right-angled
trapezoid the observations nT−m,0 and nT−m,D in Fig. 2. For the further derivation of the
delay estimation we follow the notation in Lawless (1994) by introducing

n·,d =

T−d∑
t=max(0,T−m)

nt,d, and N·,d =

T−d∑
t=max(0,T−m)

N(t, t+ d),

i.e. N·,d denotes the rectangle spanned by the observations nmax(0,T−m),0, nT−d,0, nT−d,d
and nmax(0,T−m),d. That is all regarded cases with delay less or equal to d. Furthermore,
n·,d denotes the right edge of this rectangle. This corresponds to all regarded cases with
delay equal to d. Section B.1 in the Web Appendix contains an example calculation of these
quantities for a specific reporting triangle.

Since at time T we observe a right-truncated version of the delay distribution, we define
the reverse-time discrete hazard function (Lagakos et al., 1988; Kalbfleisch and Lawless, 1991;
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Lawless, 1994),

g(d) = P (delay = d|delay ≤ d) =
f(d)

F (d)
, d = 0, 1, . . . , D,

where F (d) denotes the cumulative distribution function (CDF) of the delay distribution. We
note that g(0) = 1. The CDF and PMF of the delay distribution are now given as

F (d) =
D∏

i=d+1

(1− g(i)) and f(d) = F (d)− F (d− 1) = g(d)
D∏

i=d+1

(1− g(i)). (2)

3.1 Frequentist nowcasting

For the reader’s convenience in this section we recapitulate and discuss existing results on
performing nowcasting for right-truncated delays. Lawless (1994) showed that the maximum
likelihood estimate (MLE) for g(d) when T ≥ D is ĝ(d) = n·,d/N·,d. The MLE for the delay
distribution can now be obtained by plug-in of these estimates into (2). Note that if the
window width m is very close to the maximum delay D, the MLE for the long delays may
be based on few observations. Based on the MLE, Lawless (1994) presented the following
nowcast procedure

N̂(t,∞) =
N(t, T )

F̂ (T − t)
,

which can be linked to inverse probability weighting. This link also provides solutions for
the case when F̂ (T − t) is zero (Elliot and Little, 1999). If N(t, T ) = 0, i.e. no events
are reported to have occurred at t by time T , then N̂(t,∞) equals zero. Otherwise, the
predictive distribution can be computed based on an asymptotic normal approximation for
the prediction error. This is done by computing the variance of Zt = N(t,∞) − N̂(t,∞).

From this, a (1−α) ·100% prediction interval for N(t,∞) is N̂(t,∞)±z1−α/2V̂ar(Zt)
1
2 , where

z1−α/2 is the 1−α/2 quantile of the standard normal distribution. We shall obtain a discrete
predictive distribution for N(t,∞) via discretizing this Gaussian predictive distribution by
taking the difference of the CDF evaluated at the integers and attribute all mass below N(t, T )
to N(t, T ).

3.2 Bayesian nowcasting

As a competitor to the above method we propose a novel Bayesian hierarchical model to
directly address the combination of delay estimation and count data nature of the forecast. In
particular, we will show that the generalized Dirichlet (GD) distribution is a conjugate prior-
posterior distribution for the reversed delay under right-truncated multinomial sampling.

The density of the GD(α,β) distribution (Wong, 1998) with parametersα = (α0, . . . , αD−1)
′

and β = (β0, . . . , βD−1)
′ is proportional to

f(rev(p)) ∝
D−1∏
i=0

pαi−1D−i (1− pD − . . .− pD−i)γi ,

where the probabilities pD, . . . , p1 and p0 = 1 − pD − · · · − p1 are all non-negative and sum
to one. Here, γi = βi−αi+1−βi+1 for i = 0, . . . , D− 2 and γD−1 = βD−1− 1. In the above,
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rev(·) denotes the reverse delay order, i.e. where delay d is mapped to the new scale D − d
in analogy with the reverse time hazard function.

Property 3 in the Web appendix shows that the posterior of rev(p) under right-truncated
multinomial sampling of Sect. 2 is again a GD distribution with parameters α∗ and β∗,

α∗i = αi + n.,D−i, and β∗i = βi +N.,D−i − n.,D−i, for 0 ≤ i ≤ D − 1.

With the above generalized Dirichlet posterior the marginal posterior expectation for
pD−i, 0 ≤ i ≤ D − 1, when using the improper prior α = β = 0 can be shown to be equal to
the ML estimate defined in the previous section (see Web Appendix).

Note that the posterior in this case is only proper if n·,d > 0 and N·,d > 0 for all d =
0, . . . , D. In practice, we shall use the informative prior α = (κ, κ, . . . , κ)′, βD−1 = κ and
βi = αi+1 + βi+1, i = 0, . . . , D − 2, where κ > 0 is a known constant describing the prior
concentration. In this case the GD prior reduces to a symmetric Dirichlet distribution with
concentration parameter κ (see Wong (1998) or Web Appendix). A property of this prior
is that E(pD−i) = 1/(D + 1) for i = 0, . . . , D. Note that if one uses a Dirichlet prior and
pretends that the column sums in the reporting triangle originate from multinomial sampling,
then the posterior is again Dirichlet (and hence also GD) and represents a Bayesian estimate
ignoring right-truncation (see Web Appendix).

Assume now that, by conjugate prior-posterior updating, we have obtained an estimate of
the delay distribution, i.e. rev(p) ∼ GD(α,β). In order to predict the unknown N(t,∞), t =
T − D, . . . , T , from the incomplete N(t, T ) we assume the following model hierarchy for
t = T −D, . . . , T

λt ∼ Ga(αλ, βλ),

N(t,∞)|λt ∼ Po(λt),

N(t, T )|N(t,∞), qT−t ∼ Bin(N(t,∞), qT−t),

where qT−t =
∑T−t

d=0 pd is the proportion reported within a delay of T − t days and αλ, βλ > 0
are known constants. In this hierarchy, the marginal (prior) distribution ofN(t,∞) is negative
binomial with mean µλ = αλβλ and variance µλ + µ2λ/αλ. Furthermore, given qT−t the
distribution of N(t, T ) is compound binomial-negative binomial. The marginal posterior for
Nt = N(t,∞), t = T −D, . . . , T , is

f(Nt|N(t, T )) =

∫ 1

0
f(Nt|qT−t, N(t, T ))f(qT−t|N(t, T ))dqT−t, (3)

where by application of Bayes’ theorem and using p = 1/(1 + βλ)

f(Nt|qT−t, N(t, T )) =

(
Nt

N(t, T )

)
q
N(t,T )
T−t (1− qT−t)Nt−N(t,T )

(
Nt + αλ − 1

Nt

)
pαλ(1− p)Nt ,

∝ Γ(Nt + αλ)

Γ(Nt −N(t, T ) + 1)

(
(1− qT−t)βλ

1 + βλ

)Nt
, (4)

for Nt ≥ N(t, T ) and zero otherwise. Note that f(qT−t|N(t, T )) in (3) is not available in an-
alytic form, but from the previous developments we know that rev(p)|N(t, T ) ∼ GD(α∗,β∗).
We hence solve the integration in (3) by Monte Carlo sampling jointly qT−t for all t =
T −D, . . . , T using the following algorithm.

(a) For k = 1, . . . ,K:
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(1) Draw rev(p(k)) ∼ GD(α∗,β∗) by the algorithm of Wong (1998) and calculate q
(k)
T−t =∑T−t

d=0 p
(k)
d for T −D ≤ t ≤ T .

(2) Calculate the non-normalized density f̃
(k)
n,t = f(N(t, T )|Nt = n, q

(k)
T−t)f(Nt = n|λt)f(λt)

for T −D ≤ t ≤ T and n = 0, 1, . . . , Nmax, where Nmax is sufficiently large.

(3) Set f
(k)
n,t = f̃

(k)
n,t /c

(k)
t , where c

(k)
t =

∑Nmax
n=0 f̃

(k)
n,t is the normalization constant.

(b) Approximate f(Nt|N(t, T )) ≈ K−1
∑K

k=1 f
(k)
n,t for n = 0, 1, . . . , Nmax and t−D ≤ t ≤ T .

Since the Monte Carlo sampling in (b) is based on entire probability vectors and not just
samples, only a small number of K, say 100 or 1000, is needed to obtain accurate results for
the multivariate integration. Altogether, our Monte Carlo based procedure is fast, accurate
and easy to use in practice.

4 Joint Bayesian modelling of epidemic curve and delay dis-
tribution

In outbreak situations there is often prior knowledge about the shape of the epidemic curve
(here measured as daily number of hospitalizations): typically, one expects the curve to
initially increase, level off and then decrease. An advantage of such shape assumptions is
that they can help to improve the estimation of the delay distribution and hence the now-
casts (Kalbfleisch and Lawless, 1989). However, for foodborne outbreaks such shape assump-
tions are only partially applicable: the epidemic curve is very much dominated by how the
contaminated food item is distributed, its shell life and consumer awareness. Person-to-person
transmission often only plays a minor role. Hence, one of the concerns during the STEC out-
break was, if several waves could occur. As a consequence, our modelling of the epidemic
curve is restricted to a semi-parametric approach imposing some degree of smoothness.

4.1 Epidemic curve

In Sect. 3.2, we used λt
iid∼ Ga(αλ, βλ) as prior for the expected number of cases. Instead

we now model log(λt) as a quadratic spline based on the TP basis with knots placed at
{κ1, . . . , κL} to describe the evolution in λt. We place min(bT/6c, 20) knots evenly between
time zero and T . In order to avoid over-extrapolations at the end, where uncertainty is large,
we remove any knots which are between time T −D/2 and T . Then,

log(λt) = β0 + β1t+ β2t
2 +

L∑
i=1

bi max(t− κi, 0)2. (5)

The first part of (5) is a global 2nd order polynomial reflecting that the epidemic curve initially
rises, levels off and then decreases again. The second part contains terms representing the
deviation from this global polynomial by having the 2nd order terms change at each knot.
Automatic smoothing can be obtained by treating the bi’s as independent random effects,
i.e. (b1, . . . , bL)′ ∼ N(0, σ2bI) with the amount of smoothing being proportional to 1/σ2b . By
setting up design matrices X = [1, t, t2] and Z = [max(t − κ1, 0)2, . . . ,max(t − κL, 0)2] it
becomes obvious that this corresponds to a Poisson mixed model, which can be handled in
a Bayesian framework by appropriate specification of priors (Fahrmeir et al., 2013, Chapter
8.1.9).
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4.2 Delay distribution modelling

In Sect. 3 we assumed the same delay distribution for all times t. To generalize this, we instead
use a discrete time survival regression model to describe the truncated delay distribution. We
shall use a model which combines the non-parametric-like feature of the Dirichlet distribution
(i.e. a parameter for each delay time) with parametric features for modelling changes in the
distribution. Specifically, we model the discrete time hazard ht,d = P (delay = d|delay ≥
d,Wt,d), d = 0, . . . , D, for a case occurring at time t as

logit(ht,d) = γd +W ′
t,dη, d = 0, . . . , D − 1 and ht,D = 1.

Here, Wt,d denotes a p × 1 vector of covariates depending on time and delay and η are the
corresponding covariate effects. The corresponding delay distribution is then computed as

pt,d =

(
1−

d−1∑
i=0

pt,i

)
ht,d, d = 0, . . . , D. (6)

As an example: On 23 May 2011 there was an intervention towards faster reporting, where
local and state health authorities were asked to communicate suspected HUS cases directly
and without the otherwise necessary quality checking. This situation could now be repre-
sented by a single change-point s.t. Wt,d = 1(t + d ≥ 2011-05-23). Extension of the above
modelling to include day-of-the-week effects or case specific covariates, e.g. age or county of
residence, is immediate.

4.3 Implementation of the hierarchical Bayesian nowcasting model

Multivariate normal priors on γ and η for the model (6) were combined with the spline
model in (5) resulting in a Bayesian hierarchical Poisson model for nowcasting based on (1).
Inference per T was done using MCMC as implemented in JAGS (Plummer, 2003) using the
runjags package (Denwood, 2013). Three separate chains were run using parallel computing
on three CPU kernels simultaneously. To obtain better convergence the time covariate was
centered as t′ = t − T/2 in the TP spline. Furthermore, the number of γ’s in the discrete
survival model was halved by using an alternative parameter vector γ ′ of length b(D−1)/2+1c
and then assuming γd = γ′bd/2+1c in order to stabilize and speed up the computations.

5 Evaluating the Nowcasts

We assess the quality of the nowcasts by using proper scoring rules for count data (Czado
et al., 2009) while comparing with the complete data at the end of the outbreak. Such scoring
rules have become the standard the way for evaluating probabilistic forecasts in count data
time series applications, because they address both the aspect of calibration and sharpness
– see, e.g., Paul and Held (2011) for an application in infectious disease modelling. Here,
calibration refers to the consistency between the distributional forecast and the observation
that materializes. Sharpness refers to the concentration of the forecast distribution.

We denote by T the set of days at which to do the nowcasting. For each T ∈ T we
consider the k time points TT = {T − k − l + 1, . . . , T − l}, where l is the first lag for which
the forecasts are considered reliable and k − l ≤ D is the last lag at which nowcasts are
considered relevant. In our case, we will use k = 10 and l = 3 since nowcasts for delays
between 0-2 days were too dominated by chance to be communicable.
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Considering a specific time T and a single t ∈ TT , let P Tt be the predictive distribution
for time t = T − d based on the information available at T and with N(t,∞) being the true.
In the evaluations we will use the logarithmic score (logS)

logS(P Tt , N(t,∞)) = − log(fPTt (N(t,∞))),

where fPTt (·) is the PMF of the predictive distribution P Tt . This rule is very intuitive – the
higher the probability of the forecast distribution for the actual observed value the better.
However, the rule is local, because no credit is given for high forecast probabilities near the
true value. The ranked probability score (RPS)

RPS(P Tt , N(t,∞)) =

Nmax∑
k=0

(
F Tt (N(t,∞))− 1(N(t,∞) ≤ k)

)2
is a less local proper scoring rule, since comparison between the CDF of the predictive dis-
tribution, F Tt , and the empirical one-value CDF happens over the entire support. If the
predictive distribution is calculated by tabulating samples, e.g., MCMC output, another dis-
advantage of logS is that it becomes infinity, if no samples are equal to the true value. This
can quickly happen, if the true predictive probability is low.

The output of individual scoring rules can be combined by averaging. For example, the
mean score of a specific nowcast method at lag d is

SR(d) =
1

|T |
∑
T∈T

SR(P Tt , N(t,∞)),

where SR is the scoring rule. An alternative is to perform the summation over the lags
instead of the elements in T ; one then obtains a mean-score per T , i.e. SR(T ). In some
cases one wants to average over all scores, i.e. calculate SR =

∑k+l−1
d=l SR(d)/k. Note that in

such overall mean calculations, the same true value N(t,∞) enters once for each TT , where
t is included, i.e. up to k times. Furthermore, one should be aware that averaging over all
lags means that one considers nowcasts far away from “now” to be just as important to casts
about days close to “now”. In practice, one may might be more interested in getting good
predictions about the near past.

6 Nowcasting during the STEC O104:H4 outbreak

We evaluate the quality of different nowcast procedures during the outbreak based on the
date of hospitalization for HUS, because this proved to be a reliable and specific indicator
for outbreak cases. Evaluation starts 2011-06-02, which was the day of the first nowcast
produced during the outbreak (Robert Koch Institute, 2011), and continues to 2011-07-04,
where the outbreak was officially declared to be over. For each day, all currently available
cases are included for the estimation of the delay distribution. Delays up to D = 15 days
are considered – if any of the available cases have a longer delay, we set their delay to the
upper limit of 15 days. This occurred for 11.9% of the 658 HUS cases with an available
hospitalization date. Note: The specific choice of D = 15 is motivated by a combination of
a median delay of 5-6 days, estimation robustness and a lack of relevance in adjusting total
hospitalization counts too far back. However, information about cases with very long delays
is not lost in the delay distribution estimation, since the last category corresponds to ’Delay
≥ D’. If the interest had been in adjusting counts further back, one could have used a larger
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Figure 3: Median delay (as well as 10% and 90% quantiles) of the smoothed empirical delay
distribution as a function of time of occurence. Also shown is the resulting median when the
posterior mean of the single change-point model (fitted on 2011-07-04) is inserted into (6).

D, but would then have had to categorize delays in courser time units (e.g. as in Sect. 4.3)
to ensure stability of the estimation.

Retrospectively, based on all cases, it was possible to assess the delay distribution (pt,d)
D
d=0

for each day t by tabulating the delays for all cases occuring at time t in the final reporting
triangle. Figure 3 contains the daily median of the smoothed empirical delay distribution
obtained from tabulating all cases occuring within a moving window of t− 2, . . . , t+ 2.

We observe a distinct delay reduction due to the intervention on 23 May 2011. This
reduction is well captured by the changepoint model. The plot also reveals some unexpected
variation in the delay distribution between 10-20 June 2011. However, since these estimates
are based on just a few cases and no apriori explanations exist for these changes, we decided to
not add extra changepoints in the delay distribution model. Daily estimates of the delay dis-
tribution from the bayes.trunc.ddcp procedure are found as Web Animation 2. Furthermore,
daily ML estimates of the delay distribution with and without right-truncation adjustment
are illustrated in Fig. 2 of the Web Appendix.

As an example of how the delay estimates are translated into nowcasts for the number of
hospitalizations, Fig. 4 shows the predictive distribution of NT (t,∞) when T=2011-06-02 and
t=2011-05-28 for the Lawless approach and the three Bayesian procedures: GD-Negbin Bayes
ignoring truncation (abbreviated: bayes.notrunc), truncation adjusted GD-NegBin Bayes
(bayes.trunc) and the hierarchical Bayes procedure (bayes.trunc.ddcp) with delay distribution
changepoint and smoothed epidemic curve. Furthermore, we chose Nmax = 300 in the PMF
computation of the non-MCMC Bayes procedures.

An animation showing the median and 95% credibility interval of the nowcasts obtained
with the bayes.trunc.ddcp procedure is shown in Web Animation 3. In the animation, the
delay distribution is re-estimated for each day based on all currently available observations.
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Figure 4: Predictive distribution of the number of hospitalizations N(t,∞) when T=2011-
06-02 and t=2011-05-28, i.e. the considered delay is T − t = 5 days. The true number of
hospitalizations is N(t,∞) = 24.

bayes.notrunc lawless bayes.trunc bayes.trunc.ddcp unif

logS 2.28 Inf 2.02 Inf 5.69
RPS 1.79 15.23 1.77 1.39 95.10

dist.median 2.37 2.50 2.51 1.87 143.94
outside.ci 0.07 0.16 0.05 0.09 0.84

Table 1: Mean score for the period from 2011-06-02 and 2011-07-04.

The animation also contains a plot of the posterior median of λt and an equal tailed 95%
credibility interval, which gives a good indication of the current epidemic trend (up, stable
or down) and its associated uncertainty.

6.1 Nowcast comparisons using scoring rules

The following procedures are compared: the truncation adjusted Lawless (1994) proce-
dure and the three previously described Bayes procedures (bayes.notrunc, bayes.trunc and
bayes.notrunc.ddcp). In order to form a baseline for our comparisons we also assess the be-
haviour of the discrete uniform (unif) on N(t, T ), . . . , Nmax as predictive distribution. We
evaluate the procedures between 2011-06-02 and 2011-07-04 using l = 3 and k = 10. Alto-
gether, k · |T | = 10 · 33 = 330 nowcasts are computed.

To quantify the comparisons we use four scores: the logarithmic-score and RPS as proper
scoring rules together with the more heuristic measures: median of the absolute deviations
and proportion of times the observed value lay outside an equal-tailed 95% prediction interval.
The mean overall score of all 330 nowcasts is given in Tab 1.
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Figure 5: Mean RPS Score by lag. Left panel shows the results for the actual data. For com-
parison, the right panel shows results for simulated data with stationary delay distribution.

Based on RPS, bayes.trunc.ddcp has the overall best performance. It also becomes clear
that the Lawless procedure is not performing too well for the HUS outbreak data. Partly,
this is caused by the fact that an observation of zero counts leads to a point mass forecast
distribution at zero. As a consequence, the lawless procedure has infinite mean log-score.
Altogether, the approximate Gaussian distribution of the predictive appears unwarranted in
the small count data setting. The bayes.trunc.ddcp procedure also has an infinite mean log-
score, because the predictive PMF is computed by tabulating 30,000 MCMC samples at each
instance. Hence, in some situations where the probability is low the resulting PMF is zero,
which leads to an infinite log-score when evaluated at this value.

An investigation of the effect of the lag T − t on the RPS score is shown in the left panel
of Fig. 5. To further interpret this figure, we show corresponding results in simulated data,
where the delay distribution is time-constant. We obtain this simulated data by using the
actual event time for each case, but simulate report time according to a PMF equal to the
delay distribution of all 658 cases (delays >15 days were set to 15 days). The right panel in
Fig. 5 shows the corresponding results. We note that for the real outbreak data, the procedure
ignoring truncation perform better for time points closer to “now” (typically these being the
more interesting ones to nowcast) than the purely right truncation adjusting method. For the
simulated data the right-truncation adjusting procedures performs better for all lags, which
is further indication that the delay distribution changed during the outbreak and that the
bias of the non-adjusting procedures (too much weight on the short delays) coincides with
the real delays getting shorter. Except for long lags in the actual data does bayes.trunc.ddcp
outperform the two other procedures; for the simulated data this result is an emphasis of the
effect of the epidemic curve on the nowcasts.

As a final comparison, Fig. 6 shows the mean RPS score as a function of the nowcasted
time points in T . We observe high values of the mean-score for the early time points, where
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Figure 6: Mean-score as a function of time T , where the nowcasting is performed.

the number of cases is high. Altogether, when averaging over the 10 included lags, the
bayes.trunc.ddcp procedure appears to perform best. However, early in the outbreak the
procedure is not superior – even though it is the only procedure adjusting for the change
in delay distribution. A closer examination reveals that the combination of a flexible delay
distribution model and the 2nd order polynomial leads to over-extrapolation in this situa-
tion. Stronger priors might be a way to obtain better results this situation. Note also that
the further scoring gets away from the 23 May 2011, the more are differences between the
bayes.trunc and bayes.trunc.ddcp procedures due to the penalized TP spline acting on the
epidemic curve. Altogether, it appears that once the peak has been reached the hierachical
model works very well, while in the early phases it might contain too much flexibility.

In conclusion, ignoring truncation for the outbreak data is an ad-hoc way to compensate
for the fact that, early in the outbreak, delays reduced significantly. However, right-truncation
adjusted procedures are to be recommended as proper adjustment methods. A simple but
robust way to handle time varying delay distributions with the methods from Sect. 3 is to use a
moving window in the delay distribution estimation. Figures 4 and 5 in the Web Appendix
contain the results of the daily updated delay distribution estimate when using a moving
window of 25 days. For comparison, Tab. 2 in the Web Appendix contains the mean scores
when using a moving-window procedure of 25 days and Fig. 6 in the Web Appendix shows
the mean scores by lag. A small improvement is noticed for all Bayes procedures. However,
a moving window based procedure remains a compromise between including only recent
events and having enough events to obtain a reliable estimation. Altogether, the reporting
dynamics of the STEC outbreak emphasizes the need to handle time-varying reporting delay
distributions – either using simple moving window approaches or more complex regression
models for the delay distribution. Furthermore, the results show that imposing a smoothness
restriction on the epidemic curve as done in Sect. 4 helps improve the nowcasts. At the early
stages of the outbreak, when only few observations are available, such flexible models are,
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however, difficult to identify and the interplay between epidemic curve component and delay
distribution component in the estimation is non-trivial.

7 Discussion

Real-time tracking of the epidemic curve during the STEC/HUS outbreak was an important
component of the outbreak management. The results of the nowcasts were circulated amongst
the stakeholders at the RKI on a daily basis and were hence part of the body of evidence
used to assess epidemiological trends each day. In case communication of a more qualitative
output for the epidemic trend is required, an additional decision procedure could categorize
the nowcasts into, e.g., trend states “up”, “stable” and “down”. Such answers are immediate
from the penalized TP spline for log(λt) as visualized in the Web Animation 3. Because the
outbreak was a time-limited event, it was in retrospect possible for us to determine the true
number of daily hospitalizations due to HUS. Having the true number of hospitalizations
allowed a unique evaluation of the quality of the nowcasts by proper scoring rules.

Our comparisons showed that the proposed Bayesian nowcast procedures, which took
the count data nature into account, provided better results than the discretized Lawless
procedure.

Within the Bayesian procedures, addressing right-truncation under the assumption of a
time homogeneous delay distribution only provided small improvements for the STEC/HUS
outbreak. The main reason is that the actual delay pattern was time-varying, because of
intervention measures to ensure faster reporting and other complex factors, e.g. awareness
of hospital doctors towards HUS and its reporting, resources at local health institutions,
media attention and case definition. Altmann et al. (2011) contains a more detailed analysis
of the reporting delay during the outbreak. Since the intervention towards faster reporting
occurred at an early stage of the outbreak, a moving window based approach is a way to
address the problem. The model based approach reflecting knowledge about the intervention,
however, showed better results and appears less ad-hoc. The Poisson formulation of the
nowcasting problem also makes it obvious that a frequentist alternative could have been to
fit a generalized additive model containing a penalized spline for the trend and a factor for
the delay (Wood, 2006). However, the hierarchical Bayes approach is more flexible, because it
allows the combination of complex models for both delay and epidemic curve. Furthermore,
predictive distributions are immediately available due to the data-augmenting nature of the
Bayes approach.

The evaluations based on scoring rules depend on the specific time-period investigated, i.e.
it makes a difference whether the early outbreak with many cases and fluctuating reporting
patterns or the late outbreak period with few cases and less dramatic changes is investigated.
Our choice of evaluation period for the scoring was based on an interest of what method –
in retrospect – would have been the best way to address the nowcasting problem as posed
by the circumstances of the outbreak then. As easy as it is to model details in hindsight, we
underline that during outbreaks consistency is more important than accuracy (Cowden, 2010)
and hence robustness is often more important than the best fit. To promote application of
nowcasting procedures in future outbreak situations or even non-infectious disease applica-
tions, the proposed methods are available in the R package surveillance (Höhle, 2007) as
function nowcast.

15



7.1 Supplementary Materials

Web Appendices, Tables, Figures and Animations referenced in the Sections 1, 3 and 6 are
available with this paper at the Biometrics website on Wiley Online Library. Furthermore,
a R file for analysing the data corresponding to Fig. 1 of the Web appendix is available from
this website1.

7.2 Acknowledgments

We thank Leonhard Held for fruitful discussions and helpful suggestions at the initial stages
of our work. Thanks also goes to Doris Altmann for preparing the SQL query, which ex-
tracted the necessary data for our analysis from the SurvNet@RKI database. Comments
and suggestions by the associate editor and two anonymous reviewers helped improve the
manuscript substantially.

References

Altmann, M., Wadl, M., Altmann, D., Benzler, J., Eckmanns, T., Krause, G., Spode,
A., and an der Heiden, M. (2011). Timeliness of surveillance during outbreak of shiga
toxin–producing Escherichia coli infection, Germany, 2011. Emerging Infectious Diseases,
17(10):1906–1909.

Brookmeyer, R. and Damiano, A. (1989). Statistical methods for short-term projections of
AIDS incidence. Stat Med, 8(1):23–34.

Buchholz, U., Bernard, H., Werber, D., Böhmer, M. M., Remschmidt, C., Wilking, H.,
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