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Abstract

This contribution considers the monitoring of change-points in categorical time series.
In its simplest form these can be binomial or beta-binomial time series modeled by logistic
regression or generalized additive models for location, scale and shape. The aim of the
monitoring is to online detect a structural change in the intercept of the expectation model
based on a cumulative sum approach known from statistical process control. This is then
extended to change-point detection in multicategorical regression models such as multino-
mial or cumulative logit models. Furthermore, a Markov chain based method is given for
the approximate computation of the run-length distribution of the proposed CUSUM detec-
tors. The proposed methods are illustrated using three categorical time series representing
meat inspection at a Danish abattoir, monitoring the age of varicella cases at a pediatrist
and an analysis of German Bundesliga teams by a Bradley-Terry model.

1 Introduction

In the year 2000 and as part of my Ph.D. project, I had the pleasurable experience of getting
hold of a copy of Fahrmeir & Tutz (1994b) in my attempt of modeling a multivariate binomial
time series of disease treatments in a pig farm. After some enquiries, I ended up implementing
the extended Kalman filter approach described in Fahrmeir & Wagenpfeil (1997) and in Section
8.3 of Fahrmeir & Tutz (1994b). With the present contribution I take the opportunity to return
to this problem from another point of view while at the same time honoring the work of Ludwig
Fahrmeir. Specifically, the focus in this chapter is on monitoring time series with categorical
regression models by statistical process control (SPC) methods.

A general introduction to SPC can be found in Montgomery (2005). Hawkins & Olwell (1998)
give an in-depth analysis of the CUSUM chart, which is one commonly used SPC method. De-
tection based on regression charts with normal response can be found in the statistics and engi-
neering literature (Brown, Durbin & Evans 1975, Kim & Siegmund 1989, Basseville & Nikiforov
1998, Lai 1995, Lai & Shan 1999). Generalized linear models based detectors are described in
the literature for especially count data time series (Rossi, Lampugnani & Marchi 1999, Skinner,
Montgomery & Runger 2003, Rogerson & Yamada 2004, Höhle & Paul 2008). For categorical
time series, however, less development has been seen – with monitoring of a binomial propor-
tion being the exception (Chen 1978, Reynolds & Stoumbos 2000, Steiner, Cook, Farewell &
Treasure 2000). Retrospective monitoring of multinomial sequences is discussed in Wolfe &
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Chen (1990). Prospective monitoring of multivariate discrete response variable imposes a great
challenge.

The present work contains a novel adaptation of the likelihood ratio based cumulative sum
(CUSUM) for the categorical regression context. Accompanying this CUSUM is a newly for-
mulated approximate Markov chain approach for calculating its run-length distribution. Three
examples are presented as illustration of the proposed categorical CUSUM: Meat inspection data
from a Danish abattoir monitored by a beta-binomial regression model, disease surveillance by
a multinomial logit model for the age distribution of varicella cases at a sentinel pediatrist, and
finally – in honour of Fahrmeir & Tutz (1994a) – an analysis of paired comparison data for six
teams playing in the best German national soccer league (1. Bundesliga). Fahrmeir & Tutz
(1994a) analyzed the 1966/67–1986/87 seasons of this example using state-space methodology
for categorical time series. My contribution continues their analysis up to the 2008/09 season
with a special focus on change-point detection.

The structure of this chapter is as follows. Section 2 provides an introduction to modeling
categorical time series while Section 3 contains the novel proposals for performing online change-
point detection in such models. Application of the proposed methodology is given in Section 4.
Section 5 closes the chapter with a discussion.

2 Modeling Categorical Time Series

Modeling categorical data using appropriate regression models is covered in Agresti (2002) or
Fahrmeir & Tutz (1994b). The interest of this chapter lies in using such regression approaches
for the modeling of time series with categorical response. Kedem & Fokianos (2002) and also
Fahrmeir & Tutz (1994b) provide an introduction to this topic. A categorical time series is
a time series where the response variable at each time point t takes on one of k ≥ 2 possible
categories. Let XXX t = (Xt1, . . . ,Xtk)′ be a length k vector with Xt j, j = 1, . . . ,k, being one if the j’th
category is observed at time t and zero otherwise. Consequently, ∑

k
j=1 Xt j = 1. Assuming that a

total nt of such variables are observed at time t, define YYY t = ∑
nt
l=1 XXX t,l as the response of interest.

Furthermore, assume that the distribution of YYY t can adequately be described by a multinomial
distribution with time series structure, i.e.

YYY t ∼Mk(nt ,πππ t), (1)

for t = 1,2, . . ., πππ t = (πt1, . . . ,πtk)′ and ∑
k
j=1 πt j = 1 for all t. Here πt j = P(Yt = j|Ft−1) is the

probability for class j at time t and Ft−1 denotes the history of the time series up to time t−1,
i.e. just before but not including time t. When considering a single component j ∈ {1, . . . ,k} of a
multinomial distributed YYY t , the resulting distribution of Yt j is Bin(nt ,πt j). As a consequence, one
strategy to describe a multinomial time series is to consider it as a set of independent binomial
time series for each component. However, this ignores any correlations between the variables
and does not provide a model with total probability 1.

2.1 Binomial and Beta-Binomial Data

The simplest form of categorical data is the case k = 2, which describes individuals experiencing
an event or items as being faulty. In this case, the resulting distribution of Yt1 in (1) is Bin(nt ,πt1)
while Yt2 = nt −Yt1. When modeling binomial data, interest is often in having an additional
overdispersion not provided by the multinomial distribution. A parametric tool for such time
series is the use of the beta-binomial distribution, i.e. Yt ∼ BetaBin(nt ,πt ,σt), where t = 1,2, . . .,
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0 < πt < 1 and σt > 0, and having probability mass function (PMF)

f (yt |nt ,πt ,σt) =
(

Γ(nt + 1)Γ(yt + 1)
Γ(nt − yt + 1)

)
·

(
Γ(yt + πt

σt
) ·Γ( 1

σt
) ·Γ(nt + 1−πt

σt
− yt)

Γ(nt + 1
σt

) ·Γ( πt
σt

) ·Γ( 1−πt
σt

)

)
,

mean E(Yt) = nt ·πt and variance

Var(Yt) = ntπt(1−πt)
(

1 +(nt −1)
σt

σt + 1

)
.

In other words, σt is the dispersion parameter and for σt → 0 the beta-binomial converges to
the binomial distribution. Beta-binomial models can be formulated and fitted in the context
of generalized additive models for location, scale and shape (GAMLSS, Rigby & Stasinopoulos
(2005)). Here, the time varying proportion πt is modeled by a linear predictor ηt on the logit-
scale similar to binomial logit-modeling, i.e.

logit(πt) = log
(

πt

1−πt

)
= ηt = zzz′tβββ , (2)

where zzzt is a p×1 vector of covariates and βββ is a p×1 vector of covariate effects. Additionally,
in a GAMLSS the dispersion can be modeled by a separate linear predictor log(σt) = www′tγγγ, but
for notational and computational simplicity the dispersion is assumed to be time constant and
not depending on covariates, i.e. σt = σ for all t.

2.2 Nominal Data

In case the k groups of the response variable lack a natural ordering, i.e. in case of a nominal
time series, one uses a multinomial logistic model with one of the categories, say category k, as
reference:

log
(

πt j

πtk

)
= zzz′tβββ j, j = 1, . . . ,k−1.

As a result, the category specific probabilities can be computed as

πt j =
exp(zzz′tβββ j)

1 + exp(zzz′tβββ j)
, j = 1, . . . ,k−1, and

πtk =
1

1 + ∑
k−1
j=1 exp(zzz′tβββ j)

.

Let yyy1:N = (yyy1, . . . ,yyyN) denote the observed time series up to time N given as a (m×N) matrix,
where each yyyt = (yt1, . . . ,ytk)′, t = 1, . . . ,N contains information on how the nt observations fell
into the k categories, i.e. ∑

k
j=1 yt j = nt . The likelihood of the above model is given by

L(βββ ;yyy1:N) =
N

∏
t=1

k

∏
j=1

π
yt j
t j (βββ ),

where βββ = (βββ
′
1, . . . ,βββ

′
k−1)′. Statistical inference for the model parameters βββ based on this like-

lihood is described in detail in Fahrmeir & Tutz (1994b, Section 3.4) or Fokianos & Kedem
(2003). Asymptotics for such categorical time series is studied in Kaufman (1987) and Fahrmeir
& Kaufmann (1987).
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2.3 Ordinal Data

If the k categories of the response variable can be considered as ordered, it is beneficial to
exploit this additional information in order to obtain more parsimonious models. Denoting the
categories of the ordered response variable by the ordered set {1, . . . ,k}, a cumulative model
described in, e.g., Fahrmeir & Tutz (1994b, p. 76) for the response at time t looks as follows

P(Yt ≤ j) = F(θ j + zzz′tβββ ), j = 1, . . . ,k,

with −∞ = θ0 < θ1 < .. . < θk = ∞ being the set of threshold parameters. When using the logistic
distribution function F(x) = exp(x)/(1 + exp(x)), the resulting model is called the proportional
odds model, but in use are also other link functions such as the extreme-minimal-value distribu-
tion function. Consequently, the specific category probabilities can be derived as

πt j = F(θ j + zzz′tβββ )−F(θ j−1 + zzz′tβββ ), j = 1, . . . ,k.

2.4 Paired Comparisons

One application of the proportional odds model is the analysis of paired-comparison data used
to determine preference or strength of items. Such data are typical in sports like chess or tennis,
where world rankings of m players are based on pairwise comparisons having categorical outcomes
(e.g. win, loose). Other areas of application are consumer preference, sensory studies and studies
of animal behavior (Courcoux & Semenou 1997, Bi 2006, Whiting, Stuart-Fox, O’Connor, Firth,
Bennett & Blomberg 2006). The basic Bradley-Terry model (Bradley & Terry 1952) is a logistic
regression model quantifying the probability of a positive outcome (i.e. winning) for the first
mentioned player in a match of two players. Each player i ∈ {1, . . . ,m} has ability or strength
αi ∈ R, and the probability that a match between the i’th and j’th player results in a win for
player i is given by

logit{P(Yi j = 1)}= αi−α j.

In the above, Yi j is a binary random variable with states 1 (i wins) and 2 (i looses). As a
consequence, P(Yi j = 1) = 1/2 if αi = α j and P(Yi j = 1) > 1/2 if αi > α j. To ensure identifiably, one
has to impose a constraint such as αm = 0 or ∑

m
i=1 αi = 0 on the α ′s. Extensions of the Bradley-

Terry model consist of letting strength be given by additional covariates such as home court
advantages, age or injuries (Agresti 2002). Another common extension is to handle additional
tied outcomes or even more complicated ordinal response structure (Tutz 1986).

If the time interval over which the paired-comparisons are performed is long, one might expect
the abilities of players to change over time (Fahrmeir & Tutz 1994b, Glickman 1999, Knorr-
Held 2000). Following Fahrmeir & Tutz (1994a), a general time-dependent ordinal paired-
comparison model including covariates can be formulated as

P(Yti j = r) = F(θtr + αti−αt j + zzz′ti jβββ t)−F(θt,r−1 + αti−αt j + zzz′ti jβββ t), (3)

with r = 1, . . . ,k being the category, t = 1,2, . . . denoting time and i, j = 1, . . . ,m being the players
compared. For example in the application of Section 4.3, Yti j will denote paired comparisons
of six teams within each season of the best German national soccer league (1. Bundesliga).
In what follows, I will assume time constant covariate effects βββ t = βββ for all t and similar time
constant thresholds θθθ t = (θt0, . . . ,θtk)′ = θθθ = (θ0, . . . ,θk)′ for all t.

After having presented the basic modeling techniques, the focus is now on the online detection
of changepoints in such models.
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3 Prospective CUSUM Changepoint Detection

The cumulative sum (CUSUM) detector is a method known from statistical process control for
online detecting structural changes in time series. An overview of the method can be found in
Hawkins & Olwell (1998). Use of the method for count, binomial or multicategorical time series
using regression models is still a developing field. Höhle & Paul (2008) treats one such approach
for count data and Grigg & Farewell (2004) provide an overview. For multicategorical time
series Topalidou & Psarakis (2009) contains a survey of existing monitoring approaches. My
interest is in monitoring a time varying vector of proportions πππ t in a binomial, beta-binomial
or multinomial setting having time-varying nt . Regression models for categorical time series
provide a versatile modeling framework for such data allowing for time trends with seasonality
and possible covariate effects. Sections 3.1–3.3 contain my proposal for combining CUSUM
detection with categorical time series analysis.

Let f (yyyt ;θθθ) denote the PMF of the response variable at time t. While new observations
arrive, the aim is to detect as quickly as possible if the parameters of f have changed from
the in-control value of θθθ 0 to the out-of-control value θθθ 1. Following Frisén (2003), define the
likelihood ratio based CUSUM statistic as

Cs = max
1≤t≤s

[
s

∑
i=t

log
{

f (yyyi;θθθ 1)
f (yyyi;θθθ 0)

}]
, s = 1,2, . . . . (4)

Given a fixed threshold h > 0, a change-point is detected at the first time s where Cs > h, and
hence the resulting stopping time S is defined as

S = min{s≥ 1 : Cs > h}. (5)

At this time point, enough evidence is found to reject H0 : θθθ = θθθ 0 in favor of H1 : θθθ = θθθ 1. Let
now LLRt = log f (yt ;θθθ 1)− log f (yt ;θθθ 0) be shorthand for the loglikelihood ratio at time t in (4).
If θθθ 0 and θθθ 1 are known, (4) can be written in recursive form

C0 = 0 and Cs = max(0,Cs−1 + LLRt) , for s≥ 1. (6)

One sees that for time points with LLRt > 0, i.e. evidence against in-control, the LLRt contri-
butions are added up. On the other hand, no credit in the direction of the in-control is given
because Cs cannot get below zero.

In practical applications, the in-control and out-of-control parameters are, however, hardly
ever known beforehand. A typical procedure in this case is to use historical phase 1 data for the
estimation of θθθ 0 with the assumption that these data originate from the in-control state. This
estimate is then used as plug-in value in the above CUSUM. Furthermore, the out-of-control
parameter θθθ 1 is specified as a known function of θθθ 0, e.g. as a known multiplicative increase in
the odds. Using categorical regression to model the PMF f as a function of time provides a novel
use of statistical process control for monitoring categorical time series. Sections 3.1–3.3 discuss
monitoring in case of beta-binomial, multinomial and ordered response. Section 3.4 contains a
corresponding method to compute the important run-length distribution of the different CUSUM
proposals.

3.1 Binomial and Beta-Binomial CUSUM

Extending the work of Steiner et al. (2000) to a time varying proportion, the aim is to detect a
change from odds π0

t /(1−π0
t ) to odds R ·π0

t /(1−π0
t ) for R > 0, i.e. let

logit(π
1
t ) = logit(π

0
t )+ logR. (7)
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Figure 1: (a) Loglikelihood ratio (LLR) as a function of y for a binomial distribution with n = 20
and π0 = 0.15 and π1 = 0.35. Also shown are the same LLRs for the corresponding beta-binomial
distribution with σ = 0.05. (b) Binomial LLR as a function of n when y = 0.25 ·n, π0 = 0.15 and
when comparing against four different π1.

In other words, let logit(π1
t ) = logit(π0

t ) + logR correspond to such a change in the intercept of
the linear predictor in (2). The change-point detection is thus equivalent to a detection from
the in-control proportion π0

t to the out-of-control proportion π1
t in (6) using the beta-binomial

PMF as f .
Figure 1(a) illustrates the LLR as a function of the number of positive responses in a binomial

distribution for one specific time point (note that t is dropped from the notation in this example).
Starting from y = 5 one has LLR > 0, i.e. observations with y ≥ 5 contribute evidence against
the null-hypothesis and in favor of the alternative hypothesis. Note also, that the beta-binomial
distribution has smaller LLR contributions because the variance of the distribution is larger
than for the binomial distribution. Similarly, Figure 1(b) shows that the larger n the larger is
the LLR contribution of the observation y = 0.25 ·n. In other words, the greater n is the more
evidence against H0 : π = 0.15 there is from an empirical proportion of 0.25. This is of interest in
a binomial CUSUM with time varying nt : the relevance (as measured by its contribution to Ct)
of a large proportion of faulty items thus depends on the number of items sampled. However,
for π1 = 0.4 the value y = 0.25 · n does not provide evidence against H0 in Figure 1(b). This
means that for large out-of-control proportions the observation y = 0.25 · n results in negative
LLRs and hence speaks in favor of H0.

At time t and given the past value of the CUSUM statistic Ct−1, the minimum number of
cases necessary to reach the threshold h at time t is

at = min
y∈{0,...,nt}

{
LLR(y ; nt ,π

0
t ,π1

t ,σ) > h−Ct−1

}
. (8)

Note that the set of y fulfilling the above inequality can be empty, in this case at does not exists.
If at exists, the solution of (8) can be derived explicitly for the binomial case as

at = max
{

0,

⌈
h−Ct−1−nt · (log(1−π1

t )− log(1−π0
t ))

log(π1
t )− log(π0

t )− log(1−π1
t )+ log(1−π0

t )

⌉}
.
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In the beta-binomial case the solution has to be found numerically, e.g. by trying possible
y ∈ {0, . . . ,nt} until the first value fulfills the inequality.

3.2 Multinomial CUSUM

This section looks at generalization of the previous binomial CUSUM to the multinomial dis-
tribution Mk(nt ,πππ t) for k > 2, and where πππ t is modeled by multinomial logistic regression. Let
πππ0

t be the in-control probability vector and πππ1
t the out-of-control probability vector resulting

from the models with parameters θθθ 0 and θθθ 1. A simple approach would be to monitor each
of the k components separately using the methodology from Section 3.1. However, this would
ignore correlations between the measurements with reduced detection power as consequence.
Instead, I consider detection as the task of investigating change-points in the linear predictors
of the multicategorical logit model. The proposed approach extends the work of Steiner, Cook
& Farewell (1999), who monitored surgical performance of a k = 4 outcome using two paired
binomial CUSUMs with time-constant means.

Based on a multicategorical logit model, let the in-control probabilities for the non-reference
categories be

log

(
π0

t j

π0
tk

)
= zzz′tβββ j, j = 1, . . . ,k−1.

As for the binomial CUSUM, the out-of-control probabilities are given by specific changes in the
intercept of this model, i.e.

log

(
π1

t j

π1
tk

)
= log

(
π0

t j

π0
tk

)
+ log(R j), j = 1, . . . ,k−1.

Figure 2 illustrates the approach for a YYY ∼M3(20,πππ0) distribution with πππ0 = (0.22,0.17,0.61)′

and log(RRR) = (1.30,1.10)′. One observes that many states with high LLR are concurrently very
unlikely and that for larger n or k, the approximating multivariate Gaussian distribution can be
used to determine states with high enough probability to investigate its LLR.

If the number of possible categories k of the multinomial is very high, log-linear models
provide an alternative as done by Qiu (2008). However, in his work time-constant problems are
dealt with and the prime goal is to detect a shift in the median of any component without a
specific formulation of the alternative. However, a suitable extension of the proposed monitoring
in this chapter might be to monitor against an entire set of possible out-of-control models with
the different RRR’s specifying different directions.

3.3 Ordinal and Bradley-Terry CUSUM

The multinomial CUSUM proposal from the previous section can be used as a change-point
detection approach for ordinal time series: Based on the proportional odds model to generate the
in-control and out-of-control proportions. In particular, this approach is considered for the time
varying Bradley-Terry model (3) from Section 2.4. Let YYY t = (Yti j ; i = 1, . . . ,m, j = 1, . . . ,m, i 6= j)
consist of all K = m× (m−1) paired comparisons occurring at time t, i.e. YYY t ∈ {1, . . . ,k}K . Given
the parameters of a time varying Bradley-Terry model, the probability of a state YYY t = yyyt can
thus be computed as

f (yyyt ; ααα t ,βββ ,θθθ) =
m

∏
i=1

m

∏
j=1,i6= j

f (yti j ; ααα t ,βββ ,θθθ),

7



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y1 n

y 2
n

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●
● ● ● ● ● ● ●
● ● ● ● ● ●
● ● ● ● ●
● ● ● ●
● ● ●
● ●
●

+ + + + + + + + + +
+ + + + + + + + + +

+ + + + + + + + + +
+ + + + + + + + + +

+ + + + + + + + + +
+ + + + + + + + + +
+ + + + + + + + +

+ + + + + + + + +
+ + + + + + + + +

+ + + + + + + + +
+ + + + + + + + +

+ + + + + + + + +
+ + + + + + + + +
+ + + + + + + +
+ + + + + + +
+ + + + + +
+ + + + +
+ + + +
+ + +
+ +
+

− − − − − − − − − − −
− − − − − − − − − −
− − − − − − − − −
− − − − − − − −
− − − − − − −
− − − − − −
− − − − − −
− − − − −
− − − −
− − −
− −
−

ππ0

ππ1

Figure 2: Illustration of the LLR for a M3(20,πππ) multinomial CUSUM with πππ0 = (0.22,0.17,0.61)′

and πππ1 = (0.43,0.26,0.32)′. Shown are the first two components y1 and y2 of each possible state
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out-of-control probabilities. Shading indicates the probability of yyy in a model with πππ = πππ0 – the
whiter the cell the higher is the probability of the corresponding state.
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where f (·) denotes the PMF given in (3). The interest is now on detecting a structural change
in the ability of one or several teams, i.e. ααα1

t = ααα0
t + RRR, where RRR is a vector of length m with

for example one component being different from zero. The LLR in a corresponding CUSUM
detector can then be computed as

LLRt =
m

∑
i=1

m

∑
j=1,i 6= j

log
f (yyyti j;ααα1

t ,βββ ,θθθ)

f (yyyti j;ααα0
t ,βββ ,θθθ)

. (9)

3.4 Run-length of Time Varying Categorical CUSUM

The distribution of the stopping time S in (5) for the CUSUMs proposed in sections 3.1–3.3
when data are sampled from either πππ0

t or πππ1
t is an important quantity to know when choosing

the appropriate threshold h. Specifically, the expected run length E(S) (aka. the average run
length (ARL)), the median run length or the probability P(S ≤ s) for a specific s ≥ 1 are often
used summaries of the distribution and can be computed once the PMF of S is known. Let
θθθ be the set of parameters in the multicategorical regression model and let πππ be the resulting
proportions under which the distribution of S is to be computed. For example, the above θθθ is
equal to θθθ 0 if the in-control ARL is of interest.

Brook & Evans (1972) formulated an approximate approach based on Markov chains to
determine the PMF of the stopping time S of a time-constant CUSUM detector. They describe
the dynamics of the CUSUM statistic Ct by a Markov chain with a discretized state space of
size M + 2:

State 0: Ct = 0

State i: Ct ∈
(
(i−1) · h

M , i · h
M

]
, i = 1,2, . . . ,M

State M + 1: Ct > h

Note that state M + 1 is absorbing, i.e. reaching this state results in H0 being rejected, and
therefore no further actions are taken. The discretization of the continuum of values of the
CUSUM statistic into a discrete set of states represents an approximation. The size of M
controls the quality of the approximation. Adopting this approach to the present time-varying
context, let PPPt be the (M + 2)× (M + 2) transition matrix of Ct |Ct−1, i.e.

pti j = P(Ct ∈ State j|Ct−1 ∈ State i), i, j = 0,1, . . . ,M + 1

Let a < b and c < d represent the lower and upper limits of class j and i, respectively. To
operationalize the Markov chain approach one needs to compute

pt,i, j = P(a < Ct < b|c < Cn−1 < d) =
∫ d

c
{Ft(b− s)−Ft(a− s)}dµ(s), (10)

where µ(x) is the unknown distribution function of Ct−1 conditional on c < Ct−1 < d and Ft(·) is
the distribution function of the likelihood ratio LLRt at time t when yyyt is distributed according
to a multinomial distribution with parameters derived from a categorical regression model with
parameters θθθ . Investigations in Hawkins (1992) for the homogeneous case suggest using the
uniform distribution for measure µ(x). Furthermore, he suggests using Simpson’s quadrature
rule with midpoint m = (c + d)/2 to approximate the integral in (10) instead of the Riemann
integral used in Brook & Evans (1972). Altogether, Hawkins (1992) adapted to the present time
varying case yields

P(a < Ct < b|c < Cn−1 < d)≈ 1
6
{Ft(b− c)+ 4Ft(b−m)+ Ft(b−d)}

− 1
6
{Ft(a− c)+ 4Ft(a− f )+ Ft(a−d)} .

9



Specifically, Ft(·) can be computed for the categorical CUSUM by computing the likelihood
ratio of all valid configurations yyyt ∈ {0,1, . . . ,nt}k,∑k

j=1 yt j = nt , together with the probability
P(YYY t = yyyt) of its occurrence under θθθ . However, if nt or k is large, this enumeration strategy
can quickly become infeasible and one would try to identify relevant states with P(yyy) > ε and
approximate Ft(·) by only considering these states in the computations. One strategy to perform
this identification could be to compare with the approximating normal distribution.

Borrowing ideas from Bissell (1984), the cumulative probability of an alarm at any step up
to time s, s≥ 1, is

P(S≤ s) =

[
s

∏
t=1

PPPt

]
0,M+1

,

i.e. the required probability is equivalent to the probability of going from state zero at time one
to the absorbing state at time s as determined by the s-step transition matrix of the Markov
chain. The PMF of S can thus be determined by P(S = s) = P(S≤ s)−P(S≤ s−1), where for s = 1
one defines P(S = 0) = 0. Hence, E(S) can be computed by the usual expression ∑

∞
s=1 s ·P(S = s).

In practice, one would usually compute P(S≤ s) only up to some sufficiently large s = smax such
that P(S≤ s)≥ 1−ε for a small ε. This results in a slightly downward bias in the derived ARL.
If the Markov chain is homogeneous, then the ARL can alternatively be computed as the first
element of (III−RRR)−1 · 111, where RRR is obtained from PPP by deleting the last row and column, III is
the identity matrix and 111 a vector of ones.

In practice, covariates or nt are usually not available for future time points. As the predicted
in-control and out-of-control probabilities are conditional on these values, it is more practicable
to compute P(S ≤ s) for phase 2 data where the covariates already have been observed instead
of trying to impute them for future time points.

4 Applications

The following three examples illustrate the use of the proposed CUSUM monitoring for cate-
gorical time series by applications from veterinary quality control, human epidemiology and –
as continuation of Fahrmeir & Tutz (1994b) – sports statistics.

4.1 Meat Inspection

At Danish abattoirs, auditing is performed for each processed pig in order to provide guarantees
of meat quality and hygiene and as part of the official control on products of animal origin
intended for human consumption (regulated by the European Council Regulation No 854/2004).
Figure 3 shows the time series of the weekly proportion of positive audit reports for a specific
pig abattoir in Denmark. Reports for a total of 171 weeks are available with monitoring starting
in week 1 of 2006.

Using the data of the first two years as phase 1 data, a beta-binomial model with intercept
and two sinusoidal components for logit(πt) is estimated using the R function gamlss (Rigby &
Stasinopoulos 2005). These estimated values are then used as plug-in values in the model to
predict π0

t for phase 2. The out-of-control π1
t is then defined by specifying R = 2 in (7), i.e. a

doubling in the odds of a positive audit report is to be detected as quickly as possible. Figure 4
shows the results from this monitoring. After the first change-point is detected the CUSUM
statistic is set to zero and monitoring is restarted.

Figure 5 displays the run length distribution when using h = 4 by comparing the Markov
chain approximation using M = 5 with the results of a simulation based on 10000 runs. Note
that the Markov chain method provides results much faster than the simulation approach.
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Figure 3: Weekly proportion yt/nt of pigs with positive audit reports indicated by bars (scale on
the left axis). The dotted line shows the weekly total number of pigs nt (scale as on right axis).
Roman letters denote quarters of the year.
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Figure 5: Comparison of the in-control run-length PMF P0(S = s) between the Markov chain
method and a simulation based on 10000 samples.

4.2 Agegroups of Varicella Cases

A varicella sentinel was established in April 2005 by the Arbeitsgemeinschaft Masern und
Varizellen (Robert Koch Institute 2006) to monitor a possible decline in the number of monthly
varicella after the introduction of a vaccination recommendation. One particular point of in-
terest is the monitoring of possible shifts in the age distribution of the cases. This is done by
dividing the age of cases into one of five groups: <1, 1-2, 3-4, 5-9, and >9 years. A shift in
the age distribution is now defined to be a structural change in the proportions πππ controlling
which of the five age groups a case falls into. As proof of concept of the proposed methodology,
the time series of a single pediatrist participating in the sentinel is considered. Figure 6 shows
the time series of monthly proportions across the five age groups – note that summer vacations
result in a seasonal pattern. Using the first 24 months as phase 1 data, a multinomial logistic
model using intercept, linear time trend and two seasonal components is fitted by the R func-
tion multinom (Venables & Ripley 2002). Figure 7 shows the fitted model and the resulting
in-control proportions for the five age groups for the subsequent 18 months.

Applying the proposed categorical CUSUM based on the multinomial PMF with the age
group 1-2 acting as reference category, one obtains Figure 8. From an epidemiological point of
view it is in the 1-2 age group where a decline of cases is expected because primarily this group
is vaccinated. Detecting an increase in the remaining four groups is one way to identify such a
shift. As a consequence, log(RRR) = (1,1,1,1)′ is used. Figure 8 shows the resulting Ct together
with the two detected change-points.

The threshold h = 2.911 is selected such that P0(S≤ 18) = 0.058 as computed by the Markov
chain approach with M = 25. By simulation of the run-length using 10000 runs, one obtains
P0(S≤ 18) = 0.060. To get an understanding of the consequences of currently ignored estimation
error for the phase 1 parameters, a parametric bootstrap investigation is performed. Let θ̂θθ 0
represent the estimated phase 1 parameters. In the b’th bootstrap sample, simulate new data
phase 1 data yyyt,b, t = 1, . . . ,24 by sampling from a multinomial model with probabilities derived
from θ̂θθ 0. Then use this yyyt,b to estimate the phase 1 parameters θ̂θθ 0,b and derive πππ0

b and πππ1
b

from θ̂θθ 0,b for phase 2. Now use the Markov chain procedure to compute P0,b(S ≤ 18). A 95%
percentile bootstrap interval for P0(S≤ 18) based on 100 bootstrap replications is (0.013,0.070),
which emphasizes the effect of estimation error on the run length properties.

12



time (months)

2006

1

2008

1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 0−1

time (months)

P
ro

po
rt

io
n

2006

1

2008

1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 1−2

time (months)

P
ro

po
rt

io
n

2006

1

2008

1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 3−4

time (months)

P
ro

po
rt

io
n

2006

1

2008

1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 5−9

time (months)

P
ro

po
rt

io
n

2006

1

2008

1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 9+

Figure 6: Multinomial time series of monthly cases at a pediatrist participating in the varicella
sentinel surveillance. The values of nt range from 0 to 19.
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4.3 Strength of Bundesliga Teams

The time series analysed in this section contains the paired comparison data for a subset of
six teams playing in the best German national soccer league (1. Bundesliga) as described in
Fahrmeir & Tutz (1994a). For each of the 44 seasons from 1966/67–2008/09, all teams play
against each other twice – once with the first team having home-court advantage and once with
the second team having this advantage. Conceptually, it would have been feasible to perform
the comparison based on all teams having played in the primary division since 1965/66, but I
conduct the analysis in spirit of Fahrmeir & Tutz (1994a) by using only six teams. Each match
has one of three possible outcomes: home team wins, tie and away team wins. In what follows,
the ability of each team is assumed constant within the season but varies from season to season,
i.e. αit denotes the ability of team i in season t = 1, . . . ,44.

Figure 9 shows the resulting abilities of each team as determined by a Bradley-Terry model
fitted using the vglm function from package VGAM (Yee & Wild 1996, Yee 2008). The team
VfB Stuttgart is selected as reference category with α3t = 0 for all t. For each team a time
trend is modeled by a cubic B-spline with five equidistant interior knots and an intercept, i.e.
αit = fi(t) = βi0 + ∑

8
k=1 βikBk(t). This model was found to be the model with equidistant knots

minimizing Akaike’s information criterion. Seasons where a team did not play in the first division
are indicated in Figure 9 by missing abilities for that particular season.

The estimated abilities only reflect strengths based on the six selected teams. Hence, they do
not necessarily reflect the overall strength of the team that season, which explains for example
the somewhat weak ability of 1. FC Kaiserslautern in the 1990/91 season where they won the
cup. Fahrmeir & Tutz (1994a), with their state space approach also noted the drop for FC
Bayern München around 1976-1980, which was due to Franz Beckenbauer leaving the club.

From a sports manager perspective, it could be of interest to online monitor the ability of
a team for the purpose of performing strategic interventions. Applying the methodology from
Section 2.4, consider the case of monitoring the ability of FC Bayern München starting from
year 1990. A Bradley-Terry model with an intercept only is fitted to the data before 1990 and a
change of RRR = (−0.5,0,0,0,0)′ is to be detected for the abilities of all teams except the reference
team. Figure 10 illustrates both the abilities obtained from fitting the phase 1 data and the
resulting predicted out-of-control abilities for phase 2. The aim is to detect when the strength
of FC Bayern München drops by 0.5 units compared to the average strength of 0.741 during
the 1965/1966 to 1988/1989 seasons. This means that the probability of winning against VfB
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Stuttgart at home court drops from 0.742 to 0.636 (θ̂1 = 0.315).
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Figure 10: (a) In-control abilities fitted from phase 1 data (before the vertical bar). Also shown
are the out-of-control abilities for phase 2 (starting at the vertical bar) obtained by prediction
from the phase 1 fitted model. (b) CUSUM statistics when monitoring using the in-control and
out-of-control abilities from (a) for phase 2. The upper line shows the threshold h.

Using h = 2.681, Figure 10(b) shows the resulting Ct statistic of such CUSUM monitor-
ing. No change-points are detected, but one notices the seasons with weaker performance

15



as compared with Figure 9. Run-length computations are not immediately possible in this
case as the determination of the distribution function of the LLR requires enumeration over
km(m−1) = 330 = 2.06 · 1014 states. As seen from (9), the LLR is a sum over the 30 possible
paired-comparisons, i.e. it is the convolution of 30 independent but not identically distributed
three-state variables. However, with the specific value of RRR, where the ability of only one team
changes between in-control and out-of-control, only the 2(m− 1) = 10 matches involving FC
Bayern München will have a non-zero contribution to the LLR. Hence, it is only necessary to
investigate 310 = 59049 states.

Since the proposed in-control and out-of-control models are time-constant, the in-control
ARL can be computed by inversion of the approximate CUSUM transition matrix based on
M = 25. Using the specified h = 2.681 yields an ARL of 100.05. In other words, using h = 2.681
means that a structural change from ααα0 to ααα1 is detected by pure chance on average every
100.05’th season when the data generating mechanism is ααα0.

5 Discussion

A likelihood ratio CUSUM method for the online changepoint detection in categorical time
series was presented based on categorical regression models, such as the multinomial logit model
and the proportional odds model. Altogether, the presented categorical CUSUM together with
the proposed run-length computation provides a comprehensive and flexible tool for monitoring
categorical data streams of very different nature.

The utilized time series modeling assumed that observations were independent given the
time trend and other covariates of the model. This assumption could be relaxed using for
example pair-likelihood approaches (Varin & Vidoni 2006) or autoregressive models (Fahrmeir
& Kaufmann 1987). It would also be of interest to embed the change-point detection within the
non-Gaussian state-space modeling for ordinal time series of Fahrmeir & Tutz (1994a).

The Markov chain approximation for deriving the run length distribution of the proposed
CUSUM constitutes a versatile tool for the design of categorical CUSUMs. It also constitutes a
much faster alternative to this problem than simulation approaches. Embedding the approach
in a numerical search procedure could be useful when performing the reverse ARL computation:
Given πππ0, ARL0, ARL1 and a direction RRR∗, ||RRR∗|| = 1, find the corresponding magnitude c > 0
such that the desired run-length results are obtained for RRR = c ·RRR∗. Currently, the distribution
function of the likelihood ratio is calculated by investigating all possible states – an approach
which for large k or nt can become intractable. Section 4.3 showed that reductions for the
number of states to investigate are possible in specific applications. Still, clever approximate
strategies are subject to further research – for example by identifying a subset of most probable
configurations. Finally, use of the Markov chain approximation is not limited to categorical
time series – also the run length of time varying count data CUSUMs can be analyzed. For
example, Höhle & Mazick (2009) consider CUSUM detectors for negative binomial time series
models with fixed overdispersion parameter which could be analyzed by the proposed Markov
chain approach.

Other approaches exist to perform retrospective and prospective monitoring based on re-
gression models. For example the work in Zeileis & Hornik (2007) provides a general framework
for retrospective change-point detection based on fluctuation tests, which also finds prospective
use. The method is, for example used in Strobl, Wickelmaier & Zeileis (2009) to retrospectively
assess parameter instability in Bradley-Terry models in a psychometric context. Instead of mon-
itoring against a specific change, another alternative is to try to detect a general change based
on model residuals. For this approach, the deviance statistic is an immediate likelihood ratio
based alternative suitable for monitoring within the proposed categorical CUSUM framework.
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An implementation of the methods is available as functions categoricalCUSUM and LR-
CUSUM.runlength in the R package surveillance (Höhle 2007) available from CRAN.
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