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ABSTRACT

This paper exploits pneumonia treatments recordings from a Danish production facility to de-
velop a decision support system (DSS) for on-site handling of the disease. Simple visualiza-
tions of the gathered data provide an intuitive retrospective tool to identify problematic areas
within the facility or illustrate implicit strategies applied by the workers. To achieve an op-
erational level DSS a mathematical model is developed; on a daily basis each section of the
production is assigned to one of the two categories: at risk or not at risk. Using logistic dis-
crimination for this decision problem, the effect of past decisions, neighboring sections, and
other covariates are included. Model parameters are estimated from a partition of the dataset
and the predictive performance is measured on the remaining part of the data set. Risk of over-
fitting the training set by introducing additional model parameters is illustrated. The results of
the DSS are presented to the users using risk maps – a user-interface in analogy with the earlier
intuitive plots and independent of model choice.

1. INTRODUCTION

Modern pig production implies larger production facilities together with decreasing time spent
on the individual pig. High stocking rates together with lack of early symptom detection
makes health management an important issue. Especially critical are infectious diseases; ca-
pable of quickly spreading between farms an outbreak has nationwide if not even global con-
sequences. Introducing automatic surveillance techniques and other type of on-site decision
support systems in disease management is a technological possibility to compensate for the re-
duced amount of time used per pig, see e.g. [Madsen, 2000]. Key issue in developing a system
is the ability to predict the occurrence of new cases by modeling the spread of the disease. This
being a process of extensive stochastic nature makes handling uncertainty in the domain a cru-
cial matter. Moreover does the temporal structure of the application naturally requires methods
of sequential decision making under uncertainty.

The attempt of this paper is to exploit existing on-site registrations of pneumonia treatments –
made by the site workers – for such a decision support model. Straight forward visualizations
of the data provide valuable insights about pens and sections with increased disease frequency,
effect of clearance policies against e.g. PRRS, inexpedient management routines, etc. Being
intuitive to understand the visualizations enable an immediate dialogue with the daily staff; a
dialogue of great importance. Summarizing plots although only allow a retrospective analysis;
to achieve interacting operational level support for early disease detection and prevention, a
further step toward the alarm system metaphor is needed: A mathematical model to predict the
disease spread has to be developed, filtering noise caused by uncertainty and with that capturing



the systematic patterns in the data. On a daily basis, information about earlier treatments etc.
are used to calculate risk of infection for pens and sections of the facility. Based on this daily
risk map the staff can decide to keep an higher alert level in certain sections, perform preventive
culling, etc. Crafting of these risk maps is a case of decision making: predictions should be as
precise as possible to reduce costs inflicted by misclassification. For now, sequential decision
making is interpreted as daily repetition of a single classifying decision. Section 4. provides
a discussion on modeling a setup, where the warnings of the DSS have an impact on future
treatments, thus making decisions connected over time.

2. MATERIALS AND METHODS

Data is provided by the Danish National Committee for Pig Production and originates from a
Danish test-facility named Bøgildgård. Purpose of Bøgildgård is to evaluate boars in order to
select the best for artificial insemination. Registrations cover the period from 8 January 1996
to 23 November 2000 in which a total of 21036 boars passed through the test-facility. For
registration purposes each boar is equipped with an ear tag containing a unique identification
number allowing registration of e.g. location, introduction and removal date, breed. At weaning
a boar, selected at its birth farm for testing, is transported to Bøgildgård, where the first five
weeks are spent in a climate-pen. Hereafter the boars are transfered to the test facility shown
in Figure 1, where they on average spend 90 days before being removed – either by becoming
an AI-boar or by being sent to the slaughterhouse.
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Figure 1: Map of pens and sections of the test facility at Bøgildgård. A section, e.g. S11,
consists of 4× 2 pens. The grey shaded building contain storage space and office facilities and
are therefore not used for boars.

The registered treatments cover medical intervention against a variety of diseases, e.g. diarrhea,
tail bite, paralysation. To restrict attention to an infectious disease, interest is only in treatments
against what at Bøgildgård is called pneumonia. Basically, this definition is used by the staff
whenever a pig shows pneumonia like signs, i.e. panting, a dry cough, or if the pig remains lying
for longer periods. On a clinical level such symptoms could be induced by PRRS, mycoplasma
hyopneumonia, or some type of actinobacillus pleuropneumonia [Larsen and Bækbo, 1997].

Initial decision support consists of straight forward summary plots illustrating the temporal,
spatial, and spatial-temporal aspects of the data. Simplicity of this approach makes these plots
suitable as basis for a communication with the workers at Bøgildgård. Being intuitive to un-
derstand the visualizations enable an immediate communication with the staff. A forte making
them convenient to illustrate results of more complicated predictive models needed when mov-
ing from retrospective analysis to operational decisions supporting the worker’ daily disease



management. Core of the such an operational DSS is a spatio-temporal model for the disease
spread by incorporating knowledge about the disease-state in neighboring sections, managment
routines etc. Using this information, the model should forecast in which sections to expect sick
pigs and alarm workers about sections with an increased risk. Formulating this spatio-temporal
model in statistical terms, let s be a section in the facility and Y s

t
a binary random variable

describing the disease state in section s at time t, i.e.

Y s

t
=

{

1 if one or more new infections appear in s on day t,
0 if no new infections appear in s on day t.

(1)

Arranging all Y s

t
according to their spatial position gives the farmer a picture of the current

state of the disease in his facility – a so called risk map.

Predicting the outcome of the disease variables is done using a classifier based on logistic
discrimination [Ripley, 1996]. Given input about relevant covariates, the classifier decides
whether new cases will occur in a specific section. Within a Bayesian framework prior prob-
abilities π0 and π1 are assumed for the two states of Y s

t
, respectively. Based on observed

covariates, Xt = xt, a statistical model is used to calculate the posterior distribution p(Y s

t
|xt).

A simple classification procedure could now just pick the class with the highest posterior prob-
ability, but this would ignore that erroneously sounding an alarm for infected pigs is regarded
less crucial than accidently missing to warn about true infections! Assuming that it possi-
ble to assign costs of L01 and L10 units for false-positives and false-negatives, respectively, a
minimum loss Bayes classifier chooses the class

c(xt) =

{

1 if p(1|xt) > L01/(L01 + L10)
0 otherwise

. (2)

It can be shown that the decision rule (2) yields the lowest expected total risk, a measure
combining misclassification probabilities and cost of misclassification, see [Ripley, 1996]. To
obtain an operating classifier and test its performance the first step is to use a training data
set to estimate the parameters in the parametric model of the posterior distribution. Then the
classifier is applied to a validation data set while counting number of correct classifications (n00

and n11) together with false-negatives, n01, and false-positives, n10. Classifier performance is
summarized by its expected cost per case

p(Y s

t
= 1)(1 − Se)L10 + (1 − p(Y s

t
= 1))(1 − Sp)L01.

Here p(Y s

t
= 1) is the prior probability of a day with new infections, i.e. n11 + n10 divided by

the total number of cases, while Se = n00/(n00 + n01) is the sensitivity and Sp = n11/(n10 +
n11) the specificity of the classifier.

Posterior probabilities in the logistic discrimination of Equation 2 are obtained using a Gener-
alized Autoregressive Model (GArM) [Fahrmeir and Tutz, 1994]. By conditioning the model
on past values, these can be included as additional covariates in a generalized linear model.
The general form of a binary and linear GArM using the logistic link function is as follows.

logit(µt) = f(covariates) + g(past) = x′

t
γ +

l
∑

i=1

βigi(Ht),

where Ht is the history up to time t, i.e. Ht = (x1, y1, . . . , xt−1, yt−1). Typically, gi is only a
function of past responses yt−i and possibly past linear combinations x′

t−i
γ. Because only a



finite number, l, of past values are included, the above corresponds to a non-stationary Markov
chain of order l.

Unfortunately, selecting appropriate values for misclassification costs is often not as simple as
it sounds. A receiver operating characteristic (ROC) curve [Greiner et al., 2002] depicts the
sensitivity and specificity of a classifier for all possible choices of threshold values in Equa-
tion 2. Hence, an ROC curve is a useful graphical illustration of a classifiers discriminative
power, independent of misclassification costs. Using the area under the curve is a way to com-
pare classifiers in case nothing is known about misclassification costs. If costs fixed, comparing
two classifiers boils down to selecting the one with lowest expected risk; in ROC space this can
be translated to finding the intersection of an iso-performance line with the convex hull gen-
erated by the ROC curves of all involved classifiers, see [Provost and Fawcett, 1997]. If costs
(and possibly priors) are subject to uncertainty, a Bayesian solution is to quantify the uncer-
tainty in r = L01

L01+L10
using a distribution function. If the setup is such that the decision maker

has initially chosen a value r0 for r, then found the optimal classifier, and now wants to investi-
gate how robust this choice is to changes in r0 a traditional sensitivity analysis has to be done.
Typically, this boils down to investigating whether the choice of optimal classifier changes if r
is varied within the interval [r0 − δ, r0 + δ].

3. RESULTS

A coarse way to provide insight is to perform visualizations of the Bøgildgård data. Two
types treatments against pneumonia are used: individual injections of antibiotics or addition of
medication to the water supply of an entire section. Figure 2(b) shows the cumulated number
of individually treated pigs for each pen at Bøgildgård, whereas (b) shows the same plot for
both individual and water treatments.
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Figure 2: Cumulated number of treatments for each pen in the test facility; (a) shows both
treatment forms, where as (b) shows individual treatments only.

The plot reveals, that pens towards the entrance – especially section S11 – have a higher disease
risk. Discussions with the staff of Bøgildgård revealed that this might be due to an opposite
tall barn together with virtually no surrounding vegetation. A setup which can cause fast wind
streams to occur, stressing the ventilation system of the section.

Turning to the disease prediction system, an important issue in the design is the choice of
GArM. Investigating the effect of various covariates is done by looking at histograms such
as Figure 3, which reveals an influence of age of pig as well as season. Discussions with



the staff did not reveal an immediate explanation for the 40-day peak, but it might be due
to declining effect of the vaccine used at introduction to Bøgildgård. To keep things simple,
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Figure 3: Histogram of treatments split according to (a) days since introduction of the boar to
the test-facility and (b) month of the year.

the selected GArM model contains only main effect together with a a straightforward additive
nearest neighbour impact. The mean structure for the disease occurrence in section s on day t
containing xs

no boars of average age xs

age and t located in season xseason thus looks as follows.

logit(µs

t
) = xs

noγ1 + xs

ageγ2 + γseason
3 + β0 +

∑

s′∈N∗

4
(s)

l
∑

i=1

βs
′

i
ys

′

t−i
, (3)

where N∗

4 (s) denotes the four compass direction neighbors of s – if they exist – together with
the unit itself, e.g. N ∗

4 (S11) = {S11}∪{S12, S21}. The integer l denotes the order of the autore-
gressive part of the model. Choice of l is a matter of model selection — the auto-covariance
function of the time series and an argument that l should be sufficiently large to cover factors
such as incubation time of the disease and insertion policy can be used as guidelines. Training
the classifier on half the dataset available for a specific section and then evaluating it on the
remaining entries, yields a ROC curves for each model. Figure 4 shows that increased l results
in nicer fits for the training data, but introduction of the large amount of extra model parameters
also results in typical over-fitting revealed by deteriorating performance on the validation set.
Best performance is apparently obtained by using as little memory as possible, which indicates
that the model is not able to capture many systematic patterns in the data.

4. DISCUSSION

The result from the previous section show that using treatment data to develop a DSS for dis-
ease management is not an easy task. Prediction based on logistic discrimination is not able
to provide a very high quality. This might both be due high irregularity in the data set and
use of a black-box model depending on data only. A white-box model such as e.g. the SIR-
model [Andersson and Britton, 2000] based on population dynamics integrates prior knowl-
edge, allowing a more advantageous utilization of the data. Important is, that the visualization
methods, e.g. risk maps, for communication with the daily staff is independent of the un-
derlying model. Hence, other choices for the underlying classifier including neural networks,
classification trees, etc. [Ripley, 1996], could be investigated.

An intrinsic difficulty in performing disease prediction using treatment data is that treatment
only gives partial information about the current disease state; factors such as an implicit man-
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Figure 4: ROC curves for the two data partitions obtained by various choices of GArM(l) to
predicted section S11. Optimal classifier for r = 1/11 and r = 1/101 are shown in (a) using
the convex hull method by [Provost and Fawcett, 1997].

agement strategy together with an imprecise test procedure for disease detection add uncer-
tainty. In theory it is possible to extend the models of this paper to cope for separation between
the true – but unobserved disease state – and recorded treatments. Controlled experiments and
qualified guesses are then necessary to quantify the connection between those two. Further-
more, risk maps generated by an operating DSS will lead to measures influencing the future
health state; a setup corresponding to a partially observed Markov decision process Kaelbling
et al. [1998]. Besides an almost intractable solution complexity of such a POMDP, such mod-
eling also requires expensive investigations to quantify the effect of classification results on the
future state.
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