LadyBug – a software environment for stochastic epidemic models

Michael Höhle

Department of Statistics University of Munich, Germany

CSDA 2005 Limassol, Cyprus, 28-31 October 2005

向下 イヨト イヨト

LadyBug

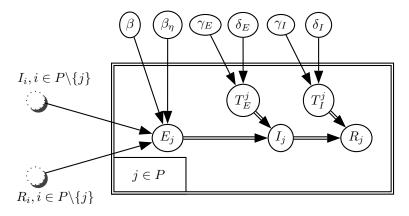
A program for *simulation* and *parameter estimation* in stochastic epidemic models.

Characteristics

- Susceptible-Exposed-Infected-Recovered compartment models
- spatial dimension of population: lattice layout.
- modeling of infectious diseases for small populations
- application areas: analysis of (small-scale) disease dynamics for infectious diseases in humans and animals

- A closed population *P* hosted in *k* units. *P* is divided into susceptible, exposed, infected, and recovered.
- The k units are arranged in a $k = k_1 \times k_2$ lattice.

•
$$S(0) = n, E(0) = m.$$

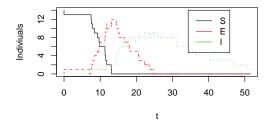

• At time t, an individual j in unit u_j meets infectious at rate

$$eta I_{u_j}(t) + eta_\eta \sum_{u \in N(u_j)} I_u(t)$$

• If a susceptible meets an infected it becomes exposed.

・ 回 ト ・ ヨ ト ・ ヨ ト

Stochastic epidemic models (2)

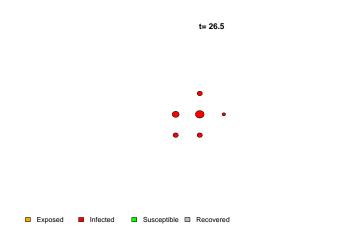


$$I_j = E_j + T_E^j, \quad R_j = I_j + T_I^j$$
$$T_X^j \sim \mathcal{G}a(\gamma_X, \delta_X), \quad X \in \{E, I\}$$

イロト イヨト イヨト イヨト

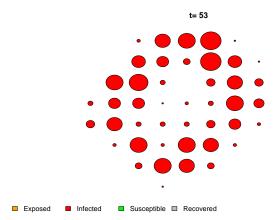
Features of LadyBug – Simulation

• Simulate epidemic trajectories, i.e. S(t), E(t), I(t) and R(t).

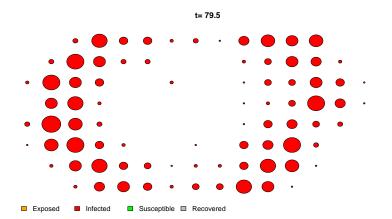


- Simulate the final size, Z, of the epidemic.
- Calculate E(Z) through Monte-Carlo Integration.
- Study the effect of control measures, e.g. vaccination.

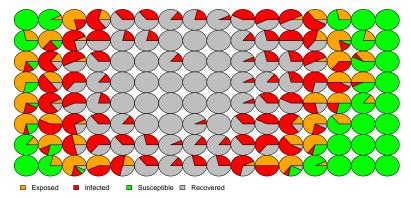
t= 0

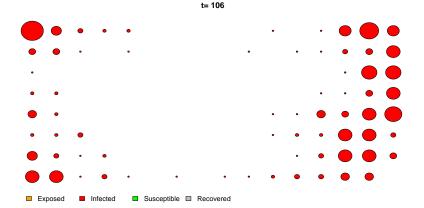

Exposed Infected Susceptible Recovered

<ロ> (四) (四) (三) (三) (三)



・ロン ・回 と ・ ヨ と ・ ヨ と


-21


イロン イヨン イヨン イヨン

イロン イヨン イヨン イヨン

t= 79.5

イロト イヨト イヨト イヨト

Michael Höhle LadyBug – software for stochastic epidemic models

・ロン ・回 と ・ ヨ と ・ ヨ と

t= 159

٠

Infected

Susceptible Recovered

・ロン ・回 と ・ ヨ と ・ ヨ と

٠

-21

t= 185.4

Infected

Susceptible Recovered

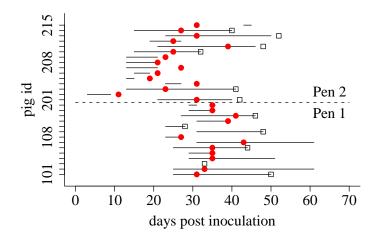
<ロ> (四) (四) (三) (三) (三)

Full data, i.e. E, I, R-event times for all individuals

Likelihood or Bayesian inference for $\boldsymbol{\theta} = (\beta, \beta_{\eta}, \gamma_{E}, \delta_{E}, \gamma_{I}, \delta_{I}).$

Missing or censored event times

Impute missing/censored event times. Estimation through a Gibbs within Metropolis-Hastings MCMC algorithm.


Model Selection

Use Akaike's information criterion (likelihood) or the deviance information criterion (bayes) to investigate e.g. the spatial heterogeneity.

イロン 不同と 不同と 不同と

Example: CSFV Transmission Experiment (1)

- Population of 29 healthy pigs divided into two pens.
- Inoculate one pig with classical swine fever virus (CSFV).

Example: CSFV Transmission Experiment (2)

// A subset of the experiment by Dewulf. et al., "An experimental // infection with classical swine fever in E2 sub-unit marker-vaccine // vaccinated and in non-vaccinated pigs", Vaccine 19, pp. 475-482. unit 1 1 14 0 unit 1 2 14 1 beta 0.001 0.001 (0.4) betan 0.001 0.001 (0.005) incu 0.001 0.001 (1) $0.001 \ 0.001 \ (1)$ inf 0.001 0.001 (1) 0.001 0.001 (0.110) diag 0.001 0.001 (8) 0.001 0.001 (0.8) //x E R. D у Ι (26)(32) CE

イロト イヨト イヨト イヨト

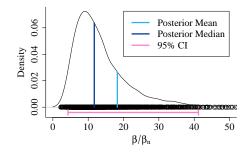
-

Example: CSFV Transmission Experiment (3)

// Author: Michael Höhle <hoehle@stat.uni-muenchen.de>
// Description: LadyBug configuration file to estimate parameters in CSFV
// dataset using MCMC

(options

seed=	1999	//fix seed value
incuTimePDF=	gamma	//Distribution of incubation time.
infTimePDF=	gamma	//Distribution of the infectious time
diagTimePDF=	gamma	//Distribution of the seroconversion time
meanVar=	false	<pre>//Mean variance representation of periods.</pre>
ignoreE=	true	
ignoreI=	false	<pre>//ignore all inf times in the data file?</pre>
ignoreD=	false	<pre>//ignore all sero times in the data file?</pre>


)

```
(method mcmc
samples=2500
thin=25
burnin=25000
...
```

・ロン ・回と ・ヨン・

Example: CSFV Transmission Experiment (4)

• Quantify relationship between β and β_{η} for the CSFV experiment.

- Mean = 18.25, Median = 11.72, 95% CR = [4.3,41.2]
- The DIC₄'s are 664.76 (homogeneous model) and 633.35 (heterogeneous model).

A (1) > A (2) > A

- ∢ ⊒ ⊳

LadyBug

A Java program for the *simulation* and *parameter estimation* in stochastic epidemic models.

Homepage

http://www.stat.uni-muenchen.de/~hoehle/software/ladybug/

Literature

Inference in disease transmission experiments using stochastic epidemic models, M. Höhle, E. Jørgensen, and P.D. O'Neill, Journal of the Royal Statistical Society, Series C, volume 54, part 2 (2005), pages 349-366.

イロト イヨト イヨト イヨト