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1. Introduction

This talk is about the statistical analysis of routinely collected
surveillance data seen as multiple time series of counts

Our aim is to explain concepts behind prospective and
retrospective statistical surveillance and illustrate use and
potential in veterinary epidemiology

The statistical methods of this talk are implemented in the
R-package surveillance available from the Comprehensive
R Archive Network (CRAN) (Höhle, 2007)
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Examples of disease surveillance applications

In human epidemiology

Monitoring of congenital malformations (Chen, 1978)

Surveillance of notifiable diseases (Robert Koch Institute,
2007; Widdowson et al., 2003)

Monitoring surgical outcomes (Steiner et al., 2000)

In veterinary epidemiology

Salmonella in livestock reports, Veterinary Laboratories
Agency, UK (Kosmider et al., 2006)

Rabies Surveillance (WHO Collaboration Centre for Rabies
Surveillance and Research, 2007)

Monitoring of abortions in dairy cattle (Carpenter et al., 2007)
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Animal surveillance vs. surveillance for humans

Zonoses underline the connection between animal and human
surveillance

Differences between animal and humans:

Diverse species (cattle, pig, sheep, fox, bat, etc)
Character of living (pet, industry, wild)
Herd vs. the individual (isolation vs. incident)

Consequences:

Possibility and cost of investigation depends heavily on
character of living and species
Control strategies differ
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The quality of surveillance data

Issues complicating statistical analysis of the time series

Lack of clear case definition

Under-reporting and reporting delays

Often no denominator data

Seasonality

Low number of disease cases

Presence of past outbreaks
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2. Statistical outbreak detection in univariate time series

Contents of this section:

Example of animal disease surveillance

Short introduction to three surveillance methods for count
data

The Farrington algorithm (Farrington et al., 1996)
Cumulative sum (CUSUM) likelihood ratio detectors
Generalized likelihood ratio detectors

Evaluating performance
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Example – Rabies among foxes in Hesse 1985-2006 (1)

Monthly counts are provided by the WHO Collaboration Centre for
Rabies Surveillance and Research. Thanks to Christoph Staubach,
Federal Research Institute for Animal Health, Germany
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The observed count time series is {yt}254
t=1 = {y1:1985, . . . , y2:2006}.
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Example – Rabies among fox in Hesse 1985-2006 (2)
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To illustrate seasonality:

1 divide monthly cases by the respective yearly average

2 compute monthly mean of this detrended time series
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Farrington algorithm (1) – model

Predict value yt0 at time t0 = (tm
0 , t

y
0 ) using a set of reference

values from window of size 2w + 1 up to b years back:

R(w , b) =

 b⋃
i=1

w⋃
j=−w

ytm
0 +j :ty

0−i


Fit a Poisson GLM with overdispersion to the b(2w + 1)
reference values, i.e. E(yt) = µt , where logµt = α+ βt and
Var(yt) = φµt .
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Farrington algorithm (2) – outbreak detection

Predict and compare:

An approximate (1− α
2 )% prediction interval for yt0 based on

the GLM has upper limit U = µ̂t0 + zα
√

Var(yt0 − µ̂t0)

If observed yt0 is greater than U then flag t0 as outbreak

Remarks:

Linear trend is only included if significant at 5% level, b ≥ 3
and no over-extrapolation occurs

Automatic correction for past outbreaks by computing
Anscombe residuals for reference values and re-fit GLM
assigning lower weights to values with large residuals

Low count protection – the algorithm raises an alarm only if
more than 5 cases in past 4 weeks
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Farrington algorithm (3) – example

Analysis of foxhes using farrington(2,0,4)
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L. Held, M. Höhle Approaches to surveillance of infectious diseases



Introduction Outbreak detection Model-based surveillance Discussion References

CUSUM likelihood ratio detectors (1)

Assume that given change-point τ

yt |zt , τ ∼
{

fθ0(·|zt) for t = 1, . . . , τ − 1 (in-control)
fθ1(·|zt) for t = τ, τ + 1, . . . (out-of-control)

where zt denotes known covariates at time t and fθ is e.g. the
Poisson probability function parametrized by θ.

Likelihood ratio (LR) based stopping time

N = inf

{
n ≥ 1 : max

1≤k≤n

[
n∑

t=k

log

{
fθ1(yt |zt)

fθ0(yt |zt)

}]
≥ cγ

}
.
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CUSUM likelihood ratio detectors (2)

With no covariates and pre-specified θ0 and θ1 the stopping rule
can be written in recursive form:

Cumulative Sum (CUSUM)

l0 = 0, ln = max

(
0, ln−1 + log

{
fθ1(xn)

fθ0(xn)

})
, n ≥ 1

with stopping-rule N = inf{n : ln ≥ cγ}.

The CUSUM detector is optimal (in some technical sense) for
the detection from θ0 to θ1.

CUSUM for Poisson distribution described by Lucas (1985)
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CUSUM likelihood ratio detectors (3) – seasonality

What if in-control observations originate from seasonal Poisson
GLM, i.e. Yt ∼ Po(µ0,t) with

logµ0,t = α+ βt +
S∑

s=1

(
γs sin(ωst) + δs cos(ωst)

)
and ωs = 2π

p s with period p.

Rossi et al. (1999) suggest a Poisson CUSUM for such time
varying mean data by transformation to normality

xt =
yt − 3µ0,t + 2

√
µ0,t · yt

2
√
µ0,t

and applying a Gaussian CUSUM to these transformed values
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CUSUM likelihood ratio detectors (4) – seasonality cnt’ed

Rogerson and Yamada (2004) compute time-varying
parameters of the Poisson CUSUM to keep in-control ARLs
fixed:

St = max{0,St−1 + ct(xt − kt)}, with

kt =
µ1,t − µ0,t

log(µ1,t)− log(µ0,t)
,

with µ1,t = µ0,t + s
√
µ0,t and ct = h/ht scales the

contribution of (xt − kt). The decision interval ht is
determined at each time point as the decision interval of a
Poisson CUSUM with reference value kt having ARL0.
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CUSUM likelihood ratio detectors (5) – example

Analysis of foxhes using CUSUM Rogerson: poisson
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Generalized likelihood ratio detector (1) – model

A problem of the LR scheme is that detection is only optimal
for pre-specified θ1. Generalization:

Generalized likelihood ratio (GLR) based stopping rule

NG = inf

{
n ≥ 1 : max

1≤k≤n
sup
θ1∈Θ1

[
n∑

t=k

log

{
fθ1(yt |zt)

fθ0(yt |zt)

}]
≥ cγ

}

No recursive updating as in CUSUM possible

However, for Poisson case with

logµ1,t = logµ0,t + κ

efficient computations are possible (Höhle, 2006)
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Generalized likelihood ratio detector (2) – example

Analysis of foxhes using glrpois: intercept
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Evaluating the performance of a surveillance algorithm

Choice of threshold in surveillance algorithms should be based on
performance measure:

Location parameters of the run length distribution, e.g. the
ARLs E(N|τ = 0) or E(N|τ = ∞).

Conditional expected delay E (N − τ |τ,N ≥ τ)

Probability of false alarm within first m time points, i.e.
P(N ≤ m|τ = ∞).

Sensitivity, Specificity, ROC-Curves

Computation of measures rarely available as closed formulas.
Instead Monte-Carlo sampling is used.
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3. Model-based surveillance

Philosophy so far:

1 Use of a simple statistical model to describe the incidence, e.g.
a Poisson GLM

2 No modelling of epidemic behaviour

→ Attempt to detect outbreaks instead of predicting them

→ Implicit assumption that no outbreak has happened in the
past (except ad-hoc adjustment in Farrington et al. (1996))
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Modelling surveillance data

Goal: Development of a realistic stochastic model for the
statistical analysis of surveillance data of infectious disease
counts

Features that should be taken into account:

Count data, possibly overdispersion
Epidemic nature
No information about number of susceptibles
Seasonality
Dependencies between time series
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Our model approach

A compromise is needed between mechanistic and empirical
modelling

Our model is based on a generalized branching process with
immigration

Note: Branching process is a useful approximation of
SIR-models in the absence of information on susceptibles

Explicit decomposition of the incidence in endemic and
epidemic component (Held et al., 2005)

Past counts act additively on disease incidence
→ model is not a GLM
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Model

yt ∼ Po(µt)

µt = νt + λyt−1

log(νt) = α+
S∑

s=1

(γs sin(ωst) + δs cos(ωst))

Autoregressive coefficient λ < 1 determines stationarity of yt ,
can be interpreted as epidemic proportion

log νt is modelled parametrically as in log-linear Poisson
regression; includes terms for seasonality

Adjustments for overdispersion straightforward: Replace
Po(µt) by NegBin(µt , ψ)-Likelihood

Model can be fitted by Maximum-Likelihood in surveillance
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Example: Hepatitis A in Germany 2001-2005
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Parameter estimates

S λ̂ML (se) ψ̂ML (se) log L(y, θ) |θ| AIC

1 0.65 (0.03) - -893.9 4 1795.8
1 0.62 (0.06) 13.94 (1.98) -770.6 5 1551.2
2 0.57 (0.06) 14.70 (2.13) -767.0 7 1548.0
3 0.54 (0.06) 15.36 (2.26) -763.8 9 1545.6
4 0.54 (0.06) 15.42 (2.27) -763.4 11 1548.9
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Fitted values
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Multivariate modelling

Suppose now multiple time series i = 1, . . . , n are available
over the same time horizon t = 1, . . . ,T

Notation: yi ,t is the number of disease cases made from the
i-th time series at time t

Examples:

Incidence in different age groups
Incidence of related diseases
Incidence in different geographical regions

Idea: Include now also the number of counts from other time
series as autoregressive covariates
→ multi-type branching process

L. Held, M. Höhle Approaches to surveillance of infectious diseases
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Bivariate modelling

Joint analysis of two time series i = 1, 2

yi ,t ∼ NegBin(µi ,t , ψ)

µi ,t = νt + λyi ,t−1 + φyj ,t−1 where j 6= i

Note: ψ, νt , λ and φ may also depend on i

L. Held, M. Höhle Approaches to surveillance of infectious diseases
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Example: Influenza and meningococcal disease

Interdependencies between disease cases caused by different
pathogens might be of particular interest to further
understand the dynamics of such diseases

For example, several studies describe an association between
influenza and meningococcal disease (Cartwright et al., 1991;
Hubert et al., 1992; Makras et al., 2001; Jensen et al., 2004)

We analyse routinely collected surveillance data from
Germany, 2001-2006
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Univariate analysis of influenza infections

S λ̂ML (se) ψ̂ML (se) log L(y, θ) |θ| AIC

0 0.99 (0.01) - -4050.9 2 8105.9
0 0.98 (0.05) 2.41 (0.27) -1080.2 3 2166.5
1 0.86 (0.05) 2.74 (0.31) -1064.1 5 2138.2
2 0.76 (0.05) 3.12 (0.37) -1053.3 7 2120.6
3 0.74 (0.05) 3.39 (0.41) -1044.1 9 2106.3
4 0.74 (0.05) 3.44 (0.42) -1042.2 11 2106.3

L. Held, M. Höhle Approaches to surveillance of infectious diseases



Introduction Outbreak detection Model-based surveillance Discussion References

Univariate analysis of meningococcal infections

S λ̂ML (se) ψ̂ML (se) log L(y, θ) |θ| AIC

0 0.50 (0.04) - -919.2 2 1842.4
0 0.48 (0.05) 11.80 (2.09) -880.5 3 1767.0
1 0.16 (0.06) 20.34 (4.83) -845.6 5 1701.2
2 0.16 (0.06) 20.41 (4.86) -845.5 7 1705.0
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Multivariate analyses

Model S λ̂ML (se) φ̂ML (se)
flu men flu men flu men

1 3 1 0.74 (0.05) 0.16 (0.06) -
2 3 1 0.74 (0.05) 0.16 (0.06) 0.000 (0.000) -
3 3 1 0.74 (0.05) 0.10 (0.06) - 0.005 (0.001)
4 3 1 0.74 (0.05) 0.10 (0.06) 0.000 (0.000) 0.005 (0.001)

Model ψ̂ML (se) log L(y, θ) |θ| AIC
flu men

1 3.39 (0.41) 20.34 (4.83) -1889.7 14 3807.5
2 3.39 (0.41) 20.34 (4.83) -1889.7 15 3809.5
3 3.39 (0.41) 25.32 (6.98) -1881.0 15 3791.9
4 3.40 (0.41) 25.32 (6.98) -1881.0 16 3793.9
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Fitted time series
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Spatio-temporal models

Suppose surveillance data on the same pathogen are available
for several geographical locations i = 1, . . . , n

A possible model extension is:

µi ,t = νt + λyi ,t−1 + φ
∑
j 6=i

wjiyj ,t−1

A possible choice for the weights wji is wji = 1(j ∼ i), i.e.
only regions adjacent to region i are taken into account

Perhaps more natural is wji = 1/nj · 1(j ∼ i), where nj

denotes the number of neighbours of region j

Note: λ and φ may also depend on i

L. Held, M. Höhle Approaches to surveillance of infectious diseases
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Example: Measles in Lower Saxony

In the administrative district “Weser-Ems”, located in the
eastern part of the German state Lower Saxony, two measles
epidemics occurred in the years 2001 and 2002

Measles has an incubation period of 9-12 days

Here we analyse bi-weekly surveillance counts from the
corresponding m = 17 areas of this district in the years
2001-2005

The data showed a better fit for the aggregated bi-weekly data
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Parameter estimates

Model wji S λ̂ML (se) φ̂ML (se)

1 - 1 0.73 (0.10) -
2 1(j ∼ i) 1 0.61 (0.09) 0.029 (0.007)
3 1/nj · 1(j ∼ i) 1 0.59 (0.09) 0.149 (0.034)
4 1/nj · 1(j ∼ i) 1 0.00 (0.00) - 1.04 (0.59) 0.142 (0.032)
5 1/nj · 1(j ∼ i) 1 0.49 (0.07) 0.000 (0.000) - 0.859 (0.361)
6 1/nj · 1(j ∼ i) 1 0.00 (0.00) - 0.97 (0.54) 0.000 (0.000) - 0.788 (0.328)

Model ψ̂ML (se) log L(y, θ) |θ| AIC

1 0.34 (0.05) -961.8 21 1965.7
2 0.38 (0.05) -933.4 22 1910.9
3 0.41 (0.06) -929.2 22 1902.4
4 0.46 (0.07) -917.9 38 1911.9
5 0.51 (0.07) -897.6 38 1871.3
6 0.59 (0.09) -884.3 54 1876.5

L. Held, M. Höhle Approaches to surveillance of infectious diseases
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Spatio-temporal coefficients

Yearly incidence Spatio-temporal coefficient
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0 0.8594
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Fitted values
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Incorporating travel information

Linking of parallel time series based on adjacencies
wji = 1(j ∼ i) or wji = 1/nj · 1(j ∼ i) may be unrealistic in a
globalized world

Alternative: Include (air) travel information, if available

Convincing example: SARS epidemic, as analysed in Hufnagel
et al. (2004)

Our example: Influenza in USA, as analysed in Brownstein
et al. (2006)

L. Held, M. Höhle Approaches to surveillance of infectious diseases
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Example: Influenza in USA, 1997-2007

Data on weekly mortality from pneumonia and influenza
obtained from the CDC 121 Cities Mortality Reporting System

These reports summarize the total number of deaths due to
pneumonia and influenza in 9 geographical regions

Data on the average/yearly number of passengers travelling by
air obtained from TranStats database, U.S. Department of
Transportation

L. Held, M. Höhle Approaches to surveillance of infectious diseases
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Air travel data, 1997-2007

1 214.1

Shown is the average yearly number of passengers per 100,000
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Parameter estimates

Model wji S λ̂ML (se) φ̂ML (se)

1 - 4 0.23 (0.04) - 0.47 (0.04) -
2 1/nj · 1(j ∼ i) 4 0.17 (0.05) - 0.47 (0.04) 0.001 (0.011) - 0.650 (0.253)
3 pji (average) 4 0.16 (0.05) - 0.47 (0.04) 0.000 (0.001) - 0.805 (0.137)
4 pji (yearly) 4 0.14 (0.05) - 0.44 (0.05) 0.001 (0.032) - 0.725 (0.113)

Model ψ̂ML (se) log L(y, θ) |θ| AIC

1 31.82 (0.93) -19817.2 27 39688.5
2 32.80 (0.97) -19766.6 36 39605.3
3 32.95 (0.97) -19758.6 36 39589.3
4 33.15 (0.98) -19746.6 36 39565.1

Here pji denotes the relative proportion of persons travelling from
region j to region i

L. Held, M. Höhle Approaches to surveillance of infectious diseases
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Fitted values
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Outlook

Validation through out-of-sample predictions

Comparison of predictions with actually observed data based
on proper scoring rules (Gneiting and Raftery, 2007)

Model-based approach can also be used for outbreak detection
using time varying λ (Held et al., 2006)
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Discussion/Summary

Distinction between prospective and retrospective surveillance

The focus of prospective surveillance is on outbreak detection

Retrospective surveillance tries to explain temporal and
spatio-temporal pattern in the data through statistical
modelling

We have emphasized the time series aspect of surveillance as
an alternative to spatial and spatio-temporal cluster detection
methods, e.g. scan statistics
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