Statistical approaches to the temporal and spatio-temporal surveillance of infectious diseases

Leonhard Held ${ }^{1}$ Michael Höhle ${ }^{2} \quad$ Michaela Paul ${ }^{1}$

${ }^{1}$ Biostatistics Unit
Institute of Social and Preventive Medicine University of Zurich
${ }^{2}$ Department of Statistics
University of Munich

GisVet 2007

Copenhagen, 22-24 August
Financial support by the German Science Foundation (DFG, 2003-2006) and the Swiss National Science Foundation (SNF, since 2007)

Outline

(1) Introduction
(2) Statistical outbreak detection in univariate time series
(3) Model-based surveillance

4 Discussion

1. Introduction

- This talk is about the statistical analysis of routinely collected surveillance data seen as multiple time series of counts
- Our aim is to explain concepts behind prospective and retrospective statistical surveillance and illustrate use and potential in veterinary epidemiology
- The statistical methods of this talk are implemented in the R-package surveillance available from the Comprehensive R Archive Network (CRAN) (Höhle, 2007)

Examples of disease surveillance applications

In human epidemiology

- Monitoring of congenital malformations (Chen, 1978)
- Surveillance of notifiable diseases (Robert Koch Institute, 2007; Widdowson et al., 2003)
- Monitoring surgical outcomes (Steiner et al., 2000)

In veterinary epidemiology

- Salmonella in livestock reports, Veterinary Laboratories Agency, UK (Kosmider et al., 2006)
- Rabies Surveillance (WHO Collaboration Centre for Rabies Surveillance and Research, 2007)
- Monitoring of abortions in dairy cattle (Carpenter et al., 2007)

Animal surveillance vs. surveillance for humans

- Zonoses underline the connection between animal and human surveillance
- Differences between animal and humans:
- Diverse species (cattle, pig, sheep, fox, bat, etc)
- Character of living (pet, industry, wild)
- Herd vs. the individual (isolation vs. incident)
- Consequences:
- Possibility and cost of investigation depends heavily on character of living and species
- Control strategies differ

The quality of surveillance data

Issues complicating statistical analysis of the time series

- Lack of clear case definition
- Under-reporting and reporting delays
- Often no denominator data
- Seasonality
- Low number of disease cases
- Presence of past outbreaks

2. Statistical outbreak detection in univariate time series

Contents of this section:

- Example of animal disease surveillance
- Short introduction to three surveillance methods for count data
- The Farrington algorithm (Farrington et al., 1996)
- Cumulative sum (CUSUM) likelihood ratio detectors
- Generalized likelihood ratio detectors
- Evaluating performance

Example - Rabies among foxes in Hesse 1985-2006 (1)

Monthly counts are provided by the WHO Collaboration Centre for Rabies Surveillance and Research. Thanks to Christoph Staubach, Federal Research Institute for Animal Health, Germany

The observed count time series is $\left\{y_{t}\right\}_{t=1}^{254}=\left\{y_{1: 1985}, \ldots, y_{2: 2006}\right\}$.

Example - Rabies among fox in Hesse 1985-2006 (2)

To illustrate seasonality:
(1) divide monthly cases by the respective yearly average
(2) compute monthly mean of this detrended time series

Farrington algorithm (1) - model

- Predict value $y_{t_{0}}$ at time $t_{0}=\left(t_{0}^{m}, t_{0}^{y}\right)$ using a set of reference values from window of size $2 w+1$ up to b years back:

$$
R(w, b)=\left(\bigcup_{i=1}^{b} \bigcup_{j=-w}^{w} y_{t_{0}^{m}+j: t_{0}^{y}-i}\right)
$$

- Fit a Poisson GLM with overdispersion to the $b(2 w+1)$ reference values, i.e. $\mathrm{E}\left(y_{t}\right)=\mu_{t}$, where $\log \mu_{t}=\alpha+\beta t$ and $\operatorname{Var}\left(y_{t}\right)=\phi \mu_{t}$.

Prediction at time $\mathrm{t}=96$ with $\mathrm{b}=4, \mathrm{w}=2$

Farrington algorithm (2) - outbreak detection

Predict and compare:

- An approximate $\left(1-\frac{\alpha}{2}\right) \%$ prediction interval for $y_{t_{0}}$ based on the GLM has upper limit $U=\hat{\mu}_{t_{0}}+z_{\alpha} \sqrt{\operatorname{Var}\left(y_{t_{0}}-\hat{\mu}_{t_{0}}\right)}$
- If observed $y_{t_{0}}$ is greater than U then flag t_{0} as outbreak Remarks:
- Linear trend is only included if significant at 5% level, $b \geq 3$ and no over-extrapolation occurs
- Automatic correction for past outbreaks by computing Anscombe residuals for reference values and re-fit GLM assigning lower weights to values with large residuals
- Low count protection - the algorithm raises an alarm only if more than 5 cases in past 4 weeks

Farrington algorithm (3) - example

Analysis of foxhes using farrington(2,0,4)

CUSUM likelihood ratio detectors (1)

Assume that given change-point τ

$$
y_{t} \mid z_{t}, \tau \sim \begin{cases}f_{\theta_{0}}\left(\cdot \mid z_{t}\right) & \text { for } t=1, \ldots, \tau-1 \text { (in-control) } \\ f_{\theta_{1}}\left(\cdot \mid z_{t}\right) & \text { for } t=\tau, \tau+1, \ldots \text { (out-of-control) }\end{cases}
$$

where z_{t} denotes known covariates at time t and f_{θ} is e.g. the Poisson probability function parametrized by θ.

Likelihood ratio (LR) based stopping time

$$
N=\inf \left\{n \geq 1: \max _{1 \leq k \leq n}\left[\sum_{t=k}^{n} \log \left\{\frac{f_{\theta_{1}}\left(y_{t} \mid z_{t}\right)}{f_{\theta_{0}}\left(y_{t} \mid z_{t}\right)}\right\}\right] \geq c_{\gamma}\right\}
$$

CUSUM likelihood ratio detectors (2)

With no covariates and pre-specified θ_{0} and θ_{1} the stopping rule can be written in recursive form:

Cumulative Sum (CUSUM)

$$
I_{0}=0, \quad I_{n}=\max \left(0, I_{n-1}+\log \left\{\frac{f_{\theta_{1}}\left(x_{n}\right)}{f_{\theta_{0}}\left(x_{n}\right)}\right\}\right), n \geq 1
$$

with stopping-rule $N=\inf \left\{n: I_{n} \geq c_{\gamma}\right\}$.

- The CUSUM detector is optimal (in some technical sense) for the detection from θ_{0} to θ_{1}.
- CUSUM for Poisson distribution described by Lucas (1985)

CUSUM likelihood ratio detectors (3) - seasonality

What if in-control observations originate from seasonal Poisson GLM, i.e. $Y_{t} \sim \operatorname{Po}\left(\mu_{0, t}\right)$ with

$$
\log \mu_{0, t}=\alpha+\beta t+\sum_{s=1}^{S}\left(\gamma_{s} \sin \left(\omega_{s} t\right)+\delta_{s} \cos \left(\omega_{s} t\right)\right)
$$

and $\omega_{s}=\frac{2 \pi}{p} s$ with period p.

- Rossi et al. (1999) suggest a Poisson CUSUM for such time varying mean data by transformation to normality

$$
x_{t}=\frac{y_{t}-3 \mu_{0, t}+2 \sqrt{\mu_{0, t} \cdot y_{t}}}{2 \sqrt{\mu_{0, t}}}
$$

and applying a Gaussian CUSUM to these transformed values

CUSUM likelihood ratio detectors (4) - seasonality cnt'ed

- Rogerson and Yamada (2004) compute time-varying parameters of the Poisson CUSUM to keep in-control ARLs fixed:

$$
\begin{gathered}
S_{t}=\max \left\{0, S_{t-1}+c_{t}\left(x_{t}-k_{t}\right)\right\}, \quad \text { with } \\
k_{t}=\frac{\mu_{1, t}-\mu_{0, t}}{\log \left(\mu_{1, t}\right)-\log \left(\mu_{0, t}\right)},
\end{gathered}
$$

with $\mu_{1, t}=\mu_{0, t}+s \sqrt{\mu_{0, t}}$ and $c_{t}=h / h_{t}$ scales the contribution of $\left(x_{t}-k_{t}\right)$. The decision interval h_{t} is determined at each time point as the decision interval of a Poisson CUSUM with reference value k_{t} having $A R L_{0}$.

CUSUM likelihood ratio detectors (5) - example

Analysis of foxhes using CUSUM Rogerson: poisson

Generalized likelihood ratio detector (1) - model

- A problem of the LR scheme is that detection is only optimal for pre-specified θ_{1}. Generalization:

Generalized likelihood ratio (GLR) based stopping rule

$$
N_{G}=\inf \left\{n \geq 1: \max _{1 \leq k \leq n} \sup _{\theta_{1} \in \Theta_{1}}\left[\sum_{t=k}^{n} \log \left\{\frac{f_{\theta_{1}}\left(y_{t} \mid z_{t}\right)}{f_{\theta_{0}}\left(y_{t} \mid z_{t}\right)}\right\}\right] \geq c_{\gamma}\right\}
$$

- No recursive updating as in CUSUM possible
- However, for Poisson case with

$$
\log \mu_{1, t}=\log \mu_{0, t}+\kappa
$$

efficient computations are possible (Höhle, 2006)

Generalized likelihood ratio detector (2) - example

Analysis of foxhes using glrpois: intercept

Evaluating the performance of a surveillance algorithm

Choice of threshold in surveillance algorithms should be based on performance measure:

- Location parameters of the run length distribution, e.g. the ARLs $\mathrm{E}(N \mid \tau=0)$ or $\mathrm{E}(N \mid \tau=\infty)$.
- Conditional expected delay $E(N-\tau \mid \tau, N \geq \tau)$
- Probability of false alarm within first m time points, i.e.

$$
P(N \leq m \mid \tau=\infty)
$$

- Sensitivity, Specificity, ROC-Curves

Computation of measures rarely available as closed formulas. Instead Monte-Carlo sampling is used.

3. Model-based surveillance

Philosophy so far:
(1) Use of a simple statistical model to describe the incidence, e.g. a Poisson GLM
(2) No modelling of epidemic behaviour
\rightarrow Attempt to detect outbreaks instead of predicting them
\rightarrow Implicit assumption that no outbreak has happened in the past (except ad-hoc adjustment in Farrington et al. (1996))

Modelling surveillance data

Goal: Development of a realistic stochastic model for the statistical analysis of surveillance data of infectious disease counts

Features that should be taken into account:

- Count data, possibly overdispersion
- Epidemic nature
- No information about number of susceptibles
- Seasonality
- Dependencies between time series

Our model approach

- A compromise is needed between mechanistic and empirical modelling
- Our model is based on a generalized branching process with immigration
- Note: Branching process is a useful approximation of SIR-models in the absence of information on susceptibles
- Explicit decomposition of the incidence in endemic and epidemic component (Held et al., 2005)
- Past counts act additively on disease incidence \rightarrow model is not a GLM

Model

$$
\begin{aligned}
y_{t} & \sim \operatorname{Po}\left(\mu_{t}\right) \\
\mu_{t} & =\nu_{t}+\lambda y_{t-1} \\
\log \left(\nu_{t}\right) & =\alpha+\sum_{s=1}^{S}\left(\gamma_{s} \sin \left(\omega_{s} t\right)+\delta_{s} \cos \left(\omega_{s} t\right)\right)
\end{aligned}
$$

- Autoregressive coefficient $\lambda<1$ determines stationarity of y_{t}, can be interpreted as epidemic proportion
- $\log \nu_{t}$ is modelled parametrically as in log-linear Poisson regression; includes terms for seasonality
- Adjustments for overdispersion straightforward: Replace $\operatorname{Po}\left(\mu_{t}\right)$ by $\operatorname{NegBin}\left(\mu_{t}, \psi\right)$-Likelihood
- Model can be fitted by Maximum-Likelihood in surveillance

Example: Hepatitis A in Germany 2001-2005

Parameter estimates

S	$\hat{\lambda}_{M L}(\mathrm{se})$	$\hat{\psi}_{M L}(\mathrm{se})$	$\log L(\mathbf{y}, \boldsymbol{\theta})$	$\|\boldsymbol{\theta}\|$	AIC
1	$0.65(0.03)$	-	-893.9	4	1795.8
1	$0.62(0.06)$	$13.94(1.98)$	-770.6	5	1551.2
2	$0.57(0.06)$	$14.70(2.13)$	-767.0	7	1548.0
3	$0.54(0.06)$	$15.36(2.26)$	-763.8	9	1545.6
4	$0.54(0.06)$	$15.42(2.27)$	-763.4	11	1548.9

Fitted values

L. Held, M. Höhle

Approaches to surveillance of infectious diseases

Multivariate modelling

- Suppose now multiple time series $i=1, \ldots, n$ are available over the same time horizon $t=1, \ldots, T$
- Notation: $y_{i, t}$ is the number of disease cases made from the i-th time series at time t
- Examples:
- Incidence in different age groups
- Incidence of related diseases
- Incidence in different geographical regions
- Idea: Include now also the number of counts from other time series as autoregressive covariates
\rightarrow multi-type branching process

Bivariate modelling

Joint analysis of two time series $i=1,2$

$$
\begin{aligned}
y_{i, t} & \sim \operatorname{Neg} \operatorname{Bin}\left(\mu_{i, t}, \psi\right) \\
\mu_{i, t} & =\nu_{t}+\lambda y_{i, t-1}+\phi y_{j, t-1} \quad \text { where } j \neq i
\end{aligned}
$$

Note: ψ, ν_{t}, λ and ϕ may also depend on i

Example: Influenza and meningococcal disease

- Interdependencies between disease cases caused by different pathogens might be of particular interest to further understand the dynamics of such diseases
- For example, several studies describe an association between influenza and meningococcal disease (Cartwright et al., 1991; Hubert et al., 1992; Makras et al., 2001; Jensen et al., 2004)
- We analyse routinely collected surveillance data from Germany, 2001-2006

Data

L. Held, M. Höhle

Approaches to surveillance of infectious diseases

Univariate analysis of influenza infections

S	$\hat{\lambda}_{M L}(\mathrm{se})$	$\hat{\psi}_{M L}(\mathrm{se})$	$\log L(\mathbf{y}, \boldsymbol{\theta})$	$\|\boldsymbol{\theta}\|$	AIC
0	$0.99(0.01)$	-	-4050.9	2	8105.9
0	$0.98(0.05)$	$2.41(0.27)$	-1080.2	3	2166.5
1	$0.86(0.05)$	$2.74(0.31)$	-1064.1	5	2138.2
2	$0.76(0.05)$	$3.12(0.37)$	-1053.3	7	2120.6
3	$0.74(0.05)$	$3.39(0.41)$	-1044.1	9	2106.3
4	$0.74(0.05)$	$3.44(0.42)$	-1042.2	11	2106.3

Univariate analysis of meningococcal infections

S	$\hat{\lambda}_{M L}(\mathrm{se})$	$\hat{\psi}_{M L}(\mathrm{se})$	$\log L(\mathbf{y}, \boldsymbol{\theta})$	$\|\boldsymbol{\theta}\|$	AIC
0	$0.50(0.04)$	-	-919.2	2	1842.4
0	$0.48(0.05)$	$11.80(2.09)$	-880.5	3	1767.0
1	$0.16(0.06)$	$20.34(4.83)$	-845.6	5	1701.2
2	$0.16(0.06)$	$20.41(4.86)$	-845.5	7	1705.0

Multivariate analyses

Model	S		$\hat{\lambda}_{M L}(\mathrm{se})$		$\hat{\phi}_{M L}(\mathrm{se})$	
	flu	men	flu	men	flu	men
1	3	1	$0.74(0.05)$	$0.16(0.06)$		-
2	3	1	$0.74(0.05)$	$0.16(0.06)$	$0.000(0.000)$	-
3	3	1	$0.74(0.05)$	$0.10(0.06)$	-	$0.005(0.001)$
4	3	1	$0.74(0.05)$	$0.10(0.06)$	$0.000(0.000)$	$0.005(0.001)$

Model	$\hat{\psi}_{M L}($ se $)$		$\log L(\mathbf{y}, \boldsymbol{\theta})$	$\|\boldsymbol{\theta}\|$	AIC
	flu	men			
1	$3.39(0.41)$	$20.34(4.83)$	-1889.7	14	3807.5
2	$3.39(0.41)$	$20.34(4.83)$	-1889.7	15	3809.5
3	$3.39(0.41)$	$25.32(6.98)$	-1881.0	15	3791.9
4	$3.40(0.41)$	$25.32(6.98)$	-1881.0	16	3793.9

Fitted time series

L. Held, M. Höhle

Approaches to surveillance of infectious diseases

Spatio-temporal models

- Suppose surveillance data on the same pathogen are available for several geographical locations $i=1, \ldots, n$
- A possible model extension is:

$$
\mu_{i, t}=\nu_{t}+\lambda y_{i, t-1}+\phi \sum_{j \neq i} w_{j i} y_{j, t-1}
$$

- A possible choice for the weights $w_{j i}$ is $w_{j i}=\mathbb{1}(j \sim i)$, i.e. only regions adjacent to region i are taken into account
- Perhaps more natural is $w_{j i}=1 / n_{j} \cdot \mathbb{1}(j \sim i)$, where n_{j} denotes the number of neighbours of region j
- Note: λ and ϕ may also depend on i

Example: Measles in Lower Saxony

- In the administrative district "Weser-Ems", located in the eastern part of the German state Lower Saxony, two measles epidemics occurred in the years 2001 and 2002
- Measles has an incubation period of 9-12 days
- Here we analyse bi-weekly surveillance counts from the corresponding $m=17$ areas of this district in the years 2001-2005
- The data showed a better fit for the aggregated bi-weekly data

Data

Parameter estimates

Model	$w_{j i}$	S	$\hat{\lambda}_{M L}(\mathrm{se})$	$\hat{\phi}_{M L}(\mathrm{se})$
1	-	1	$0.73(0.10)$	-
2	$\mathbb{1}(j \sim i)$	1	$0.61(0.09)$	$0.029(0.007)$
3	$1 / n_{j} \cdot \mathbb{1}(j \sim i)$	1	$0.59(0.09)$	$0.149(0.034)$
4	$1 / n_{j} \cdot \mathbb{1}(j \sim i)$	1	$0.00(0.00)-1.04(0.59)$	$0.142(0.032)$
5	$1 / n_{j} \cdot \mathbb{1}(j \sim i)$	1	$0.49(0.07)$	$0.000(0.000)-0.859(0.361)$
6	$1 / n_{j} \cdot \mathbb{1}(j \sim i)$	1	$0.00(0.00)-0.97(0.54)$	$0.000(0.000)-0.788(0.328)$

Model	$\hat{\psi}_{M L}($ se $)$	$\log L(\mathbf{y}, \boldsymbol{\theta})$	$\|\boldsymbol{\theta}\|$	AIC
1	$0.34(0.05)$	-961.8	21	1965.7
2	$0.38(0.05)$	-933.4	22	1910.9
3	$0.41(0.06)$	-929.2	22	1902.4
4	$0.46(0.07)$	-917.9	38	1911.9
5	$0.51(0.07)$	-897.6	38	1871.3
6	$0.59(0.09)$	-884.3	54	1876.5

Spatio-temporal coefficients

Yearly incidence

Spatio-temporal coefficient

Fitted values

L. Held, M. Höhle

Approaches to surveillance of infectious diseases

Incorporating travel information

- Linking of parallel time series based on adjacencies $w_{j i}=\mathbb{1}(j \sim i)$ or $w_{j i}=1 / n_{j} \cdot \mathbb{1}(j \sim i)$ may be unrealistic in a globalized world
- Alternative: Include (air) travel information, if available
- Convincing example: SARS epidemic, as analysed in Hufnagel et al. (2004)
- Our example: Influenza in USA, as analysed in Brownstein et al. (2006)

Example: Influenza in USA, 1997-2007

- Data on weekly mortality from pneumonia and influenza obtained from the CDC 121 Cities Mortality Reporting System
- These reports summarize the total number of deaths due to pneumonia and influenza in 9 geographical regions
- Data on the average/yearly number of passengers travelling by air obtained from TranStats database, U.S. Department of Transportation

Data

Air travel data, 1997-2007

Shown is the average yearly number of passengers per 100,000

Parameter estimates

Model	$w_{j i}$	S	$\hat{\lambda}_{M L}(\mathrm{se})$	$\hat{\phi}_{M L}(\mathrm{se})$
1	-	4	$0.23(0.04)-0.47(0.04)$	-
2	$1 / n_{j} \cdot \mathbb{1}(j \sim i)$	4	$0.17(0.05)-0.47(0.04)$	$0.001(0.011)-0.650(0.253)$
3	$p_{j i}$ (average)	4	$0.16(0.05)-0.47(0.04)$	$0.000(0.001)-0.805(0.137)$
4	$p_{j i}$ (yearly)	4	$0.14(0.05)-0.44(0.05)$	$0.001(0.032)-0.725(0.113)$

Model	$\hat{\psi}_{M L}(\mathbf{s e})$	$\log L(\mathbf{y}, \boldsymbol{\theta})$	$\|\boldsymbol{\theta}\|$	AIC
1	$31.82(0.93)$	-19817.2	27	39688.5
2	$32.80(0.97)$	-19766.6	36	39605.3
3	$32.95(0.97)$	-19758.6	36	39589.3
4	$33.15(0.98)$	-19746.6	36	39565.1

Here $p_{j i}$ denotes the relative proportion of persons travelling from region j to region i

Fitted values

Outlook

- Validation through out-of-sample predictions
- Comparison of predictions with actually observed data based on proper scoring rules (Gneiting and Raftery, 2007)
- Model-based approach can also be used for outbreak detection using time varying λ (Held et al., 2006)

Discussion/Summary

- Distinction between prospective and retrospective surveillance
- The focus of prospective surveillance is on outbreak detection
- Retrospective surveillance tries to explain temporal and spatio-temporal pattern in the data through statistical modelling
- We have emphasized the time series aspect of surveillance as an alternative to spatial and spatio-temporal cluster detection methods, e.g. scan statistics

Literature I

Brownstein, J. S., C. J. Wolfe, and K. D. Mandl (2006). Empirical evidence for the effect of airline travel on inter-regional influenza spread in the United States. PLOS Medicine 3(10), 1826-1835.
Carpenter, T. E., M. Chrièl, and M. Greiner (2007). An analysis of an early-warning system to reduce abortions in dairy cattle in Denmark incorporating both financial and epidemiologic aspects. Preventive Veterinary Medicine 78, 1-11.

Cartwright, K., D. Jones, A. Smith, J. Stuart, E. Kaczmarski, and S. Palmer (1991). Influenza A and meningococcal disease. Lancet 338(8766), 554-557.

Chen, R. (1978). A surveillance system for congenital malformations. Journal of the American Statistical Association 73, 323-327.

Farrington, C., N. Andrews, A. Beale, and M. Catchpole (1996). A statistical algorithm for the early detection of outbreaks of infectious disease. Journal of the Royal Statistical Society, Series A 159, 547-563.
Gneiting, T. and A. E. Raftery (2007). Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association 102, 359-378.

Held, L., M. Hofmann, M. Höhle, and V. Schmid (2006). A two-component model for counts of infectious diseases. Biostatistics 7, 422-437.

Held, L., M. Höhle, and M. Hofmann (2005). A statistical framework for the analysis of multivariate infectious disease surveillance data. Statistical Modelling 5, 187-199.

Literature II

Höhle, M. (2006). Poisson regression charts for the monitoring of surveillance time series. Technical report, Department of Statistics, University of Munich. SFB Discussion Paper 500.
Höhle, M. (2007). surveillance: An R package for the surveillance of infectious diseases. Computational Statistics. To appear. Currently available as online first Article.

Hubert, B., L. Watier, P. Garnerin, and S. Richardson (1992). Meningococcal disease and influenza-like syndrome: a new approach to an old question. Journal of Infectious Diseases 166, 542-545.
Hufnagel, L., D. Brockmann, and T. Geisel (2004). Forecast and control of epidemics in a globalized world. Proceedings of the National Academy of Sciences 101, 15124-15129.
Jensen, E., S. Lundbye-Christensen, S. Samuelson, H. Sorensen, and H. Schonheyder (2004). A 20-year ecological study of the temporal association between influenza and meningococcal disease. European Journal of Epidemiology 19, 181-187.

Kosmider, R., L. Kelly, S. Evans, and G. Gettinby (2006). A statistical system for detecting salmonella outbreaks in british livestock. Epidemiology and Infection 134, 952-960.

Lucas, J. M. (1985). Counted data CUSUMs. Technometrics 27(2), 129-144.

Literature III

Makras, P., S. Alexiou-Daniel, A. Antoniadis, and D. Hatzigeorgiou (2001). Outbreak of meningococcal disease after an influenza b epidemic at a hellenic air force recruit training center. Clinical Infectious Diseases 33, e48-50.
Robert Koch Institute (2007). SurvStat@RKI. http://www3.rki.de/SurvStat.
Rogerson, P. and I. Yamada (2004). Approaches to syndromic surveillance when data consist of small regional counts. Morbidity and Mortality Weekly Report 53, 79-85.
Rossi, G., L. Lampugnani, and M. Marchi (1999). An approximate CUSUM procedure for surveillance of health events. Statistics in Medicine 18, 2111-2122.
Steiner, S. H., R. J. Cook, V. T. Farewell, and T. Treasure (2000). Monitoring surgical performance using risk-adjusted cumulative sum charts. Biostatistics 1(4), 441-452.
WHO Collaboration Centre for Rabies Surveillance and Research (2007). WHO Rabies - Bulletin - Europe. http://www.rbe.fli.bund.de/.

Widdowson, M.-A., A. Bosman, E. van Straten, M. Tinga, S. Chaves, L. van Eerden, and W. van Pelt (2003). Automated, laboratory-based system using the internet for disease outbreak detection, the Netherlands. Emerging Infectious Diseases 9(9), 1046-1052.

