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Abstract. To make qualified decisions when extrapolating results from
a survey sample with imprecise tests requires careful handling of uncer-
tainty. Both the imprecise test and uncertainty introduced by the sam-
pling have to be taken into account in order to act optimally. This paper
formulates an influence diagram with discrete and continuous nodes to
handle an example typical for animal production: a veterinarian who —
as part of a biosecurity program — has to decide whether to treat a herd
of animals after inspecting a small fraction of them.

Our aim is to investigate the robustness of the obtained strategy by per-
forming a two-way sensitivity analysis with respect to the proportion of
false positives and false negatives of the test. Output of the analysis is
a treatment map illustrating how the chosen strategy varies according
to variation in these proportions. The map helps to investigate whether
a certain variation is acceptable or if the test procedure has to be stan-
dardized in order to reduce variation. Objective of the paper is to be an
appetizer to work more with the issues raised in obtaining a practical
solution.

1 Introduction

Traditional survey sampling as e.g. in [1] is concerned with establishing the
proportion of individuals having a specific characteristic in a population. This
is done by extrapolating results from a sample to the entire population. In the
traditional case, investigation of each individual in the sample will reveal its true
state, i.e. as either having the property or not. In many practical applications
such precise answers are not available — the test is imprecise thus introducing
both false negatives and false positives. An example from the veterinarian field
is the use of a diagnostic test to determine the disease prevalence of a herd.
The task of establishing the disease status of a herd is typical for biosecurity
programs, e.g. for salmonella in pigs or Johne’s disease in cattle [2,3]. Similar
examples are found in clinical decision making or when testing for GM-seeds in
seed lots [4,5]. Estimates on disease prevalence, 0 < p < 1, need to take the



sensitivity and specificity of the diagnostic test into account, i.e. respectively
the fractions of diseased and non-diseased cases correctly diagnosed by the test.
In practical situations these fractions can be hard and resource demanding to
establish for a test method. Even worse, they are also open for a great deal
of variation. For example when different veterinarians have to determine herd
prevalence of e.g. pneumonia or diarrhea in a section of slaughter pigs [4].

If the same test is performed in all cases, an investigation could be performed
to establish the sensitivity and specificity (Se, Sp) of the test procedure. With the
uncertainty in p due to sampling taken into account a biosecurity program could
recommend the following treatment strategy: Treat all animals in the section at
cost Cp if p is above some threshold 7" and do nothing if p < T'. Based on the true
prevalence and treatment chosen at the current time stage a reward is given. The
aim is to choose the threshold maximizing the expected reward. Even though we
find the optimal T, and recommend the strategy to all veterinarians, we would
not take into account the variability in (Se, Sp) due to each veterinarian making
his own subjective clinical diagnosis for every investigated individual. Assume
the specific veterinarian has a true (but unknown) setup of (Se + 0, Sp + ¢€). If
he follows the threshold based on (Se, Sp) he might not achieve the maximum
expected utility because his uncertainty in p is of a different magnitude and
shape.

Current biosecurity programs, e.g. the voluntary herd status program against
Johne’s disease [2], operate with fixed point estimates on sensitivity and speci-
ficity of the diagnostic test. To assess the impact of the above variability a proper
sensitivity analysis should therefore be an integral part of the modeling. Methods
such as one-way and two-way sensitivity analysis, tornado, rainbow diagrams,
etc., provide valuable insights about implementational robustness of an optimal
strategy [6]. Another approach would be to quantify uncertainty on sensitiv-
ity and specificity by distributions [7,8]. Our interest, however, is the decision
analytic dimension of the problem: How does variability affect a biosecurity pro-
gram that assume fixed point estimates on sensitivity and specificity? How large
deviations are allowed before the recommended strategy is suboptimal.

The following sections will show how the above considerations boil down to
performing a two-way sensitivity analysis for an influence diagram with both
discrete and continuous nodes. How to perform analytically sensitivity analy-
sis in Bayesian networks is already well established [9,10] whereas the matter
is more complicated in influence diagrams. Here, especially sequential decision
problems quickly become intractable to handle [11,10]. As the above treatment
considerations only contain a single decision, analytical calculations are tractable
up to certain herd sizes, e.g. using Maple [12]. Solution of the diagram can also
be done numerically using Gibbs sampling, where sensitivity analysis becomes a
matter of performing many point-wise evaluations. For small herds both analytic
and numeric solutions can be applied to verify correctness, while the numeric
approach is the only tractable method once herd size become large.

The structure of this article is as follows. Section 2 describes how the clin-
ical treatment example can be formulated as an influence diagram. Hereafter,



Section 3 describes how to calculate expected utilities in this model in order to
select the best decision alternative. Robustness of these decisions to variation of
the diagnostic test sensitivity and specificity is illustrated in Section 4. Finally,
a discussion of the obtained results is given.

2 Influence Diagram Formulation

This section introduces the notation used to describe the decision problem. Let
the herd be of size N from which a simple random sample of size n is drawn. The
aim of the investigation is to determine the proportion of diseased animals, i.e.
p = d/N with d being the number of sick in the population. We assume that the
true number of diseased individuals in the sample, D7, is obtained by drawing a
sample of size n without replacement from the population. In this case D fol-
lows the hypergeometric distribution with parameters N, d,n. If sampling is with
replacement or an infinite population can be assumed, DY is a sample from the
binomial distribution with herd prevalence p € [0, 1]. Also, if n is small compared
to both d and N — d the binomial distribution is a good approximation to the
hypergeometric distribution. Such approximations are necessary because com-
putations with the hypergeometric distribution quickly become intractable [1].
In the following, only binomial sampling is considered. The number of test posi-
tives, TF, is then given as a sum of two binomial distributions with fixed values
of the sensitivity, Se, and specificity, Sp, of the diagnostic test as parameters.
Note that our interest is in the fixed value Se and Sp situation; otherwise a
natural way to quantify uncertainty on the two variables would be by e.g. a beta
distribution as in [7, 8]. Figure 1 illustrates the above as a graphical model using
notation from [13]. By specifying a graphical model we obtain a clear overview
of the dependence structure of the variables. Furthermore, the decision part is
easily specified using influence diagram notation for which software would exist
to solve at least a discretized version of the problem.

Fig. 1. Graphical model illustrating how the number of test positives, 7", is obtained
by sampling with replacement introducing both false positives and false negatives.
Double lined nodes indicate continuous nodes, however, the Se and Sp distributions
will be trivial in our application.



The above distributional explanations are expressed as

D" ~ Bin(n, p),
Tt ~ Bin(D*, Se) + Bin(n — DT, 1 — Sp).

Inference for the herd prevalence can be formulated in the Bayesian context as
follows. Given {n, T, Se, Sp}, what is the posterior distribution on p? A typical
application would be to use this distribution to calculate a posterior mean for
p together with a credibility interval. This estimate could then be used by the
veterinarian to determine whether a herd should be classified as disease free [7,
8].

Classical survey sampling would be concerned with how large to choose n in
order to get a certain confidence in p. Our focus is, however, on the application
of the prevalence estimate, namely a decision to apply a treatment reducing
prevalence. Going back the the herd context, a veterinarian typically has to
decide between two decision alternatives: Either treat all animals in the herd,
e.g. by adding antibiotics to the water supply, or do nothing. Whether to apply
treatment is decided by the observed number of test positives. In order to decide
which treatment to use, it is necessary to model how the disease prevalence will
develop with time and how treatment influences it. A reward is given based on
the disease prevalence which reflects the price of animals being sick. Figure 2
extends the graphical model from Fig. 1 with decision and utility nodes (see [14])
making it an influence diagram.

Fig. 2. Influence diagram describing the treatment strategy based on the number of
animals tested positive.

Here, the D; node is the treat decision with states treat all (ta) and do nothing
(dn). Furthermore, p;, 1 is the new prevalence®, Cp a utility node reflecting the
cost of the treatment, and U4 a utility node indicating the cost of disease as
a function of the new prevalence. The transition probability between the two

3 Basically, the situation could be handled without introducing a p;+1 node by sim-
ply integrating the disease development into the utility function. But our choice is
conceptual clearer.



prevalences is given by

k’3pt if Dt =ta

P(pis1lpe, Di) = { py  otherwise

To illustrate the principle, simple proportional reduction in case of treating, i.e.
0 < k3 <1 and preservation of status quo in case of not treating, is used. This
ignores that an infectious disease would spread within the population if nothing
is done. Modeling such a characteristic could although easily be done using e.g.
a logistic model.

Economic preference is modeled with the two utility nodes Cp and Uyyg.
Typically, costs can be established on a per animal basis, which requires knowl-
edge of the the number of animals, IV, in the herd to make calculations realistic.
A possible specification of the two utility functions could then be as follows.

C(Dy) = —k1N I(D; = treat all)
Ui1(pe+1) = —k2(pe41N),

where [ is an indicator function.

To solve the decision scenario of Fig. 2 it is necessary to find the decision
alternative for Dy, which given evidence e = {n, T, Se, Sp}, yields the highest
expected utility. Because we are using a continuous representation of p, standard
Bayesian Network software for solving the influence diagram of Fig. 2 is not di-
rectly applicable. Instead both an analytic solution method in Maple [12] and a
simulation based using WinBugs [15] are investigated. For small herds the ana-
lytic approach is doable and allows us to verify how good an approximation the
sampling approach is in this situation. Advantage of the analytic implementa-
tion is also that we can use the capabilities of Maple when performing sensitivity
analysis.

3 Derivation of the expected utility

In order to calculate the required expected utility given e = {n, T, Se, Sp} we
need to calculate the posterior distribution P(p:11|e), which again requires cal-
culation of P(p¢|e). As already mentioned, only the binomial case is considered.
To calculate P(p¢|e) we exploit the standard result, see e.g. [16], that

n—x

P(Tt=2z|..)= <Z> {pSe-ﬁ-(l —p)(l—Sp)r {p(l — Se)+ (1 —p)Sp

If expert information exist on the prevalence of the herd this is easily integrated
using prior distributions. If nothing is known, a uniform prior distribution for p
is sufficient. Bayes Rule is exploited to obtain the posterior distribution

P(p|T*,n, Se, Sp) o< P(T™"|p,n, Se, Sp)P(p|n, Se, Sp).

To ensure that the above distribution is proper it is necessary to find an expres-
sion for the normalization constant P(T"|n, Se, Sp). Normally in a Bayesian



analysis proportionality of the posterior is sufficient, but, as P(T"|n, Se, Sp)
depends on Se and Sp, calculating it becomes a concern in the latter sensitivity
analysis.

Continuing our calculations we observe that p;41 is just a functional transfor-
mation of p; when D; = ta, i.e. we can use the standard rule for transformation
of random variables to calculate the posterior P(p;y1le, Dy = ta). If D; = dn no
transformation is needed. Regarding Uy as a random variable its distribution
can be obtained in the same way as for p;y1 by exploiting the above rule. Given
an observed number of test positives, 7T = z, the expected utility of the treat
and no-treat alternatives can now be calculated as

EU(Dt = ta) =E [Ut+1(pt+1, Dt = ta)] + CD (ta),
EU(Dt = dn) =F [Ut+1(pt+1, Dt = dn))] + CD (dn)

The above has been implemented in Maple yielding functions of Se, Sp. To eval-
uate the approximation of a simulation based approach the model was also for-
mulated in WinBugs [15], which uses Gibbs sampling to calculate the expected
utility. Figure 3 shows the posterior distribution of U;4; obtained from Gibbs
Sampling (using 10,000 samples after a burn-in of 1,000) and the analytical dis-
tribution of EU(D; = ta) in a pseudo realistic setup of Se = 0.8, Sp = 0.6,n =
5Tt =2k = %,k’g = —20,k; = —1, N = 100. In the figure the analytical ex-
pected utility (obtained by integrating the density between the worst case -1100
and best case -100) is —475.1. The numeric mean (obtained as empirical mean
of the samples) is —481.2. In the case D; = dn we obtain values of —750.4 and
—762.5, respectively. Hence, in the chosen setup we decide to treat all animals.
Note that the WinBugs approach is much easier to implement and solve than the
analytic approach and appears to be a good approximation. However, it lacks
the power of being able to describe the expected utility as function of sensitivity
and specificity.

— MCMC
- Analytic

-1000 -800 —600 2400 2200
U1

Fig. 3. Comparison of the posterior density P(U¢+1]...) calculated analytically and
numerically; the x-axis is obtained utility while the y-axis is the corresponding density.
The MCMC density is obtained by kernel smoothing the posterior samples obtained
from WinBugs. The deviations at the end points are partly due to the kernel smoother
and partly due to problems of the Gibbs sampler to investigate these areas.



The desired strategy for D; is now obtained by investigating the expected
utility for both the ta and dn alternative for all 0 < 7T < n, Empirical in-
vestigations show that for this strategy there will exist a unique threshold T,
s.t.

arg max EU(D; = d;|TT = x) =

dt€Dy

dnif0<zx<T
taif T<x<n

That is, with the chosen specification of utilities and transitions, any strategy
for D; can be compactly represented by the minimum number of test positives
necessary before all animals will be treated. In the setup used in Fig 3 we obtain
T =0, i.e. we trivially treat no matter the number of observed test-positives.

Assuming n, Sp, and Se to be fixed, the expected value of a strategy s for
D, is given as

EU(s) = ZP(T'|r = x|n, Se, Sp) EU(D4|T" = x,n, Se, Sp),

=0

where EUg(Dy| . ..) denotes the expected utility obtained for D; when choosing
the decision dictated by s(z).

4 Sensitivity Analysis

In realistic situations, the sensitivity and specificity of the test are either un-
known or subject to a great deal of variation. If we e.g. recommend a fixed
threshold to all veterinarians investigating diarrhea in pig herds, the large vari-
ation in the two parameters between veterinarians would be ignored. A way to
investigate a strategy’s robustness towards variations in sensitivity and speci-
ficity is to find out how the best decision alternative changes with variation in
Se and Sp. Here, the analytical representation in Maple is of advantage because
we immediately have the expected utility as a function of Se and Sp. This is not
possible using a simulation approach, instead the influence diagram would have
to be solved for a grid of Se and Sp combinations.

Continuing with the values from the veterinarian example, but changing the
sample size n to 10 and increasing the price of a treatment to k; = —2, gives a
more interesting example. Figure 4 shows the line of indifference, i.e. the solution
of

f(Se, Sp) = EU(D; = ta|Se, Sp) — EU(D; = dn|Se, Sp) = 0.

To investigate the robustness of the decision using the sensitivity and speci-
ficity configuration p = (Se’, Sp’) it might be worth to investigate how much p
can change before a different decision is made. This is equivalent to finding the
distance to the intersection line, i.e.

ro = dist(p,1), where [ ={(Se,Sp)| f(Se, Sp)=0}

also known as the radius of change or radius of the safe-ball, see [11,10]. The
higher this radius the more robust the specific policy is against variations. Also,



Fig. 4. Indifference between the two decision alternatives occurs on the line f(Se, Sp) =
0, The figure shows the intersection of f(Se,Sp) with z = 0, i.e. the z-axis is the
difference in utility between the two strategies. To the left of the intersection line, dn
is selected, to the right ta.

the difference in expected utility between the two alternatives evaluated at spe-
cific points tells us about the benefit of getting the (Se, Sp) correctly estimated.

To get a better overview of the variation in the strategy we can illustrate the
obtained T-values as a function of Se and Sp — a two-dimensional analogue of
a rainbow diagram. Figure 5 shows this treatment map in case 30 of the herd’s
100 individuals are investigated.

For a fixed sensitivity above 0.6, T is higher for specificities near 0.5 than
those near 1. This might be surprising because a heuristic like “the higher the
test quality the higher the number of positive tests before we react” feels natural.
But such a heuristic neglects that a good test also results in fewer test-positives,
because fewer are erroneously classified as positives. Looking at the figure also
reveals that the radius of change for T" will be quite low due to the high variation
of T values over the parameter space. Again, this underlines the fact that care
should be taken when sensitivity and specificity varies.

5 Discussion

Generation of treatment maps illustrating the sensitivity for varying probabilities
is a strong tool helping to provide insight into the decision scenario. Calculations,
where the expected utility function is given as an analytical function of Se and
Sp works until samples sizes of 30-40. Hereafter, Maple is not capable of dealing
with the generated polynomials anymore. By fixing (Se, Sp) and calculating its
values on a grid much higher n can be achieved — either in Maple or by using
Gibbs sampling in WinBugs.

Estimation of the constants ki, ko, and k3 for a specific decision problem is
problematic; guesstimates, small scale experiments, and sensitivity analysis could
be employed. Once a reasonable single time-slice model is established, extension
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Fig. 5. Threshold T as a function of (Se, Sp) — a so called treatment map. Calculated
by evaluating the analytical expression for a grid layout of (Se, Sp) configurations.

to the more realistic case with additional time-slices is desirable. Biosecurity
programs are often a temporal matter, where diagnosis and treatment are made
repetitively. Limited memory strategies as in [17] might be necessary to obtain
a tractable solution of the influence diagram. Despite such approximation our
approach to sensitivity analysis would not scale up very well in respect to addi-
tional decisions; even Gibbs sampling would only be feasible for a small number
of decisions.

To establish how large a sample size n to choose in order to make an op-
timal decision about treatment would require conversion of n in Fig. 2 into a
decision node together with a cost of performing the diagnostic test. An ana-
lytical computation quickly becomes intractable here because n is part of the
exponent of P(TF]|...). Solving the influence diagram with the two sequential
decisions would have to be done by numerical methods such as forward Monte
Carlo sampling or Markov chain Monte Carlo sampling as described in [18,19].

All these above mentioned problems would arise, in case one tries to evalu-
ate and revise e.g. the current Danish Salmonella treatment strategy [3], which
currently is taking neither uncertainty from imprecise tests nor any variability
in sensitivity and specificity into account. This paper is merely an appetizer to
work more intensively with the issues raised to get a practical solution.
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