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Summary. The R-Package ’surveillance’ implements algorithms for the detection
of aberrations in routinely collected surveillance data. It contains the procedures
described by Stroup et al. [10], Farrington et al. [4] and the system used at the Robert
Koch Institute, Germany. For evaluation purposes, the package includes example
data sets and functionality to generate surveillance data by simulation. To compare
the algorithms benchmark numbers like sensitivity, specificity, and detection delay
can be computed for a set of time series. Being an open-source package it should be
easy to integrate new algorithms. As an example of this process, a simple Bayesian
surveillance algorithm is described, implemented and tested.
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1 Introduction

Public health authorities have, in an attempt to meet the threats of infectious
diseases, created comprehensive mechanisms for the collection of disease data.
The vast amounts of data resulting from this acquisition demands the devel-
opment of automated algorithms for the detection of abnormalities. Typically,
such an algorithm monitors a univariate time series of counts by a combination
of heuristic methods and statistical modelling. Prominent examples of surveil-
lance algorithms are the work by Stroup et al. [10] and Farrington et al. [4].
A comprehensive survey of outbreak detection methods can be found in [3].

The R-package surveillance available from CRAN' was written with the
aim of providing a test-bench for surveillance algorithms. It allows users to test
new algorithms and compare their results with those of standard surveillance
methods. Real world outbreak datasets are included together with mechanisms
for simulating surveillance data. With the package at hand, comparisons like
the one described by Hutwagner et al. [6] should be easy to conduct.

! http://cran.r-project.org
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This paper is organized as follows. Section 2 gives a brief introduction to
surveillance data and illustrates how to create new datasets by simulation.
Section 3 exemplifies the use of surveillance algorithms by analysing German
outbreak data. Finally, Section 4 provides a discussion and indicates directions
of future work.

2 Surveillance Data

Denote by {y; ;t = 1,...,n} the time series of counts. Because such data
typically are collected on a weekly basis, the alternative notation {y;.;}
shall also be used, with j = {1,...,52} being the week number in year
i ={-b,...,—1,0}. That way the years are indexed such that the most cur-
rent year has index zero. For evaluation of the outbreak detection algorithms
it is also possible for each week to store — if known — whether there was an out-
break that week. The resulting multivariate series {(y;,z:);t =1,...,n} isin
surveillance given by an object of class disProg (disease progress), which is
basically a 1ist containing two vectors: the observed number of counts and a
boolean vector state indicating whether there was an outbreak that week. A
number of time series are contained in the data directory, mainly originating
from the SurvStat@RKI database at http://www3.rki.de/SurvStat/ main-
tained by the Robert Koch Institute, Germany [9]. For example the object
k1 describes cryptosporidiosis surveillance data for the German federal state
Baden-Wiirttemberg 2001-2005. The peak in 2001 is due to an outbreak of
cryptosporidiosis among a group of army-soldiers in boot-camp. In surveil-
lance the readData function brings the time series on disProg form.

> k1 <- readData("k1", weekb3to52 = TRUE)
> plot(kl, main = "Cryptosporidiosis in BW 2001-2005")
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Fig. 1. Weekly cryptosporidiosis counts in Baden-Wiirttemberg 2001-2005.
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For test purposes it is also often of interest to generate surveillance data
by simulation. A Hidden Markov Model (HMM) is introduced, where a binary
state Xy,t = 1,...,n, denotes whether there was an outbreak and Y; is the
number of observed counts. The state X; is given by a homogeneous Markov
chain with a 2 x 2 transition matrix specified by two parameters p and 7:
P(Xt+] = O‘Xt = 0) =p and P(Xt+] = 1|Xt = 1) =r.In addition, the
observed Y; is Poisson-distributed with log-link mean depending on a seasonal
effect and time trend, i.e.

logus = A -sin(w- (t+ ¢)) + a + Bt.

In case of an outbreak (X; = 1) the mean increases with a value of K, alto-
gether

The model in (1) corresponds to a single-source, common-vehicle outbreak,
where the length of an outbreak is controlled by the transition probability r
and the frequencies of outbreaks by p. The advantage of (1) is that it allows
for an easy definition of a correctly identified outbreak: each X; = 1 has to
be identified. More advanced setups would require different definitions of an
outbreak, e.g. as a connected series of time instances, where the number of
outbreak cases is greater than zero. Care is then required in defining what a
correctly identified outbreak for time-wise overlapping outbreaks means.

In surveillance the function sim.pointSource is used to simulate such
a point-source epidemic; the result is an object of class disProg.

> sts <- sim.pointSource(p = 0.99, r = 0.5, length = 400,
+ A =1, alpha = 1, beta = 0, phi = 0, frequency = 1,
+ state = NULL, K = 1.7)

> plot(sts)
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Fig. 2. A simulated time series. The triangles indicate time points, where X; = 1.
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3 Surveillance Algorithms

Surveillance data often exhibit strong seasonality, therefore most surveillance
algorithms only use a set of so called reference values: Let yg.; be the number
of cases of the current week (denoted week ¢ in year 0), b the number of years
to go back in time and w the number of weeks around ¢ to include from these
previous years. For the year zero we use wg as the number of previous weeks
to include — typically wg = w. Altogether the set of reference values is:

b w —1
R(w,wq,b) = U U Y—iittj U( U y[):t+k>.

i=1j=—w k=—wq

This gives the number of cases at time points with similar conditions as at yq.;.
Note that the number of cases of the current week is not part of R(w,wq,b).

A surveillance algorithm is a procedure using the reference values to create
a prediction gjy.; for the current week. This prediction is then compared with
the observed yq.;: if the observed number of cases is much higher than the
predicted number, the current week is flagged for further investigations. In
order to do surveillance for time O : ¢ an important concern is the choice of
b and w. Values as far back as time —b : ¢ — w contribute to R(w,wp,b) and
thus have to exist in the observed time series.

Four different types of algorithms are implemented in surveillance. The
Centers for Disease Control and Prevention (CDC) method [10], the Commu-
nicable Disease Surveillance Centre (CDSC) method [4], the method used at
the Robert Koch Institute (RKI), Germany [1], and a Bayesian approach doc-
umented in Riebler [8]. To give an idea of the concepts the Bayesian approach
developed in Riebler [8] is presented.

The model assumes that the reference values are identically and inde-
pendently Poisson distributed with parameter A and a gamma distribution
is used as prior distribution for A. The reference values are defined to be
Rpayes = R(w,wp,b) = {y1,...,yn} and yo. is the value to predict. Thus,
A ~ Ga(a, ) and y;|A ~ Po(A), i = 1,...,n. Standard derivations show that
the posterior distribution is

A|y17,ynNGa(a+Zyl,B+n)

i=1

Computing the predictive posterior distribution for the next observation

F@nia |1, ym) = /f(ynHM)f(A\y].,...,yn)dA
0

one gets the Poisson-gamma distribution, which is a generalization of the
negative binomial distribution. Altogether
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n
Ynt+1|Y1s - - -y Yn ~ NegBin(a + Zyz Bf—:il)

i=1

Using the Jeffrey’s prior Ga(%, 0) as non-informative prior distribution for A
the parameters of the negative binomial distribution are

- 1 B +n |RBayes‘
a i = = and = .

" ; g 2 " yi!j;;ayesyz.] B +n+1 ‘RBayeS| +1
Using a quantile-parameter «, the smallest value y, is computed, so that
P(ynt1 < Yaly1s---,yn) > 1 —a. Now Aoy = I(yo.t > Ya), i-€. if the observed
value yq.; is equal or greater than y, then the current week is flagged as an
alarm. For example, the Bayes1 method uses the last six weeks as reference
values, i.e. R(w,wq,b) = (6,6,0), and is applied to the k1 dataset with a =
0.01 as follows.

> k1.b660 <- algo.bayes(kl, control = list(range = 27:192,
+ b=0, w=6, alpha = 0.01))
> plot(k1.b660, disease = "k1", firstweek = 1, startyear = 2001)
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Fig. 3. The Bayes1 algorithm with R(w,wo,b) = (6,6,0) applied to the k1 dataset.
Red triangles indicate alarms and should be compared to the known outbreaks (green
triangles).

As an example of applying the more traditional algorithms the following
call applies the CDC and Farrington procedure to the simulated time series
sts from Fig. 2. Note that the CDC procedure operates with four-week ag-
gregated data to better compare the upper bound value, the aggregated
number of counts for each week are thus shown as circles in the plot.

> par(mfcol = c(1, 2))
> cntrl <- list(range = 300:400, m = 1, w = 3, b = 5, alpha = 0.01)
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sts.cdc <- algo.cdc(sts, control = cntrl)
sts.farrington <- algo.farrington(sts, control = cntrl)
plot(sts.cdc, legend = F)

plot(sts.farrington, legend = F)
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Fig. 4. The Farrington (left) and the CDC (right) algorithm applied to the simulated
time series from Fig. 2.

Typically, one is interested in testing and comparing surveillance algo-
rithms. An easy way is to look at the sensitivity and specificity of the pro-
cedure. A correct identification of an outbreak is defined as follows: If the
algorithm raises an alarm for time ¢, i.e. A4; = 1 and X; = 1, one has a correct
classification. If A; = 1 and X; = 0, one has a false-positive. To compute vari-
ous performance scores the function algo.quality can be used on a SurvRes
object.

> print(algo.quality(k1.b660))

TP FP TN FN Sens Spec dist mlag
[1,] 2 10 1564 0 1 0.9390244 0.06097561 0

This computes the number of false positives, true negatives, false negatives,
the sensitivity and the specificity. Finally, 1ag is the average number of weeks
between the first of a consecutive number of X; = 1’s (i.e. an outbreak) and
the first alarm raised by the algorithm.

To compare the results of several algorithms on a single time series, a list
of control objects is declared — each containing the name and settings of the
algorithm to be applied to the data. A test on a set of time series is then
made as follows. Firstly, a list containing all time series is created. Secondly,
all the algorithms specified in the afore mentioned control object are applied
to each series. Consequently, all predefined algorithms are applied to the 14
surveillance time series from SurvStat@RKI (i.e. outbrksNames) as follows:
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> outbrks <- lapply(outbrksNames, function(name) {
+ enlargeData(readData(name), range = 1:(4 * 52), times = 2)
+ })
> one.survstat.surv <- function(outbrk) {
+ algo.compare(algo.call(outbrk, control = control))
+ }
> algo.summary (lapply (outbrks, one.survstat.surv))

TP FP TN FN sens spec dist mlag
rki(6,6,0) 38 62 2646 180 0.17 0.98 0.83 5.43
rki(6,6,1) 65 83 2625 153 0.30 0.97 0.70 5.57
rki(4,0,2) 80 106 2602 138 0.37 0.96 0.63 5.43
bayes(6,6,0) 61 206 2502 157 0.28 0.92 0.72 1.71
bayes(6,6,1) 123 968 1740 95 0.56 0.64 0.56 1.36
bayes(4,0,2) 162 920 1788 56 0.74 0.66 0.43 1.36
cdc(4%,0,5) 65 94 2614 153 0.30 0.97 0.70 7.14
farrington(3,0,5) 25 26 2682 193 0.11 0.99 0.89 8.21

The above results and previous simulation studies show that the Bayesian
approach seems to do quite well. However, the extent of the above comparisons
do not make allowance for any more supported statements. Consult the work
of Riebler [8] for a more thorough comparison using simulation studies.

4 Discussion and Future work

The package provides a framework for the application of surveillance algo-
rithms using the freely available environment for statistical computing “R”.
Combining the functionality of R with Sweave [7] and LaTeX allows for easy
access to SQL databases and automatic generation of reports.

Casting surveillance algorithms into a Bayesian framework and thus inter-
preting alarm thresholds as quantiles of the posterior predictive distribution
gives a new way to see outbreaks compared to the more traditional asymp-
totic normal based confidence intervals. However, an important issue remains
multiple testing and the choice of the correct threshold. Several extensions
of the described simple Bayesian approach are imaginable, e.g. the inane
over-dispersion of surveillance data could be modeled by using a negative-
binomial distribution and mechanisms to correct for past outbreaks could be
added. However, in these situations methods like Markov Chain Monte Carlo
or heuristic approximations have to be used in order to obtain the required
alarm thresholds.

Currently, work is done to implement new algorithms into the package,
e.g. the one described in [5]. An important aspect here is the visualisation
and handling of multivariate surveillance time series. A further extension is to
provide more complex mechanisms for the simulation of epidemics. In partic-
ular it would be interesting to include multi-day outbreaks originating from
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single-source exposure, but with delay due to varying incubation time [6] or
SEIR-like epidemics [2].
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