
Synthetic Cohomology in Homotopy Type Theory

Evan Cavallo

December 16, 2015

Contents

Introduction iii

1 Type Theory Preliminaries 1

1.1 Types and Paths . 1

1.2 Pointed Types . 3

1.3 Higher Inductive Types . 4

1.4 n-Types and Truncation . 6

1.5 Groups . 7

2 Squares and Cubes 9

2.1 The Square Type . 10

2.2 The Cube Type . 13

3 Cohomology Theories 16

3.1 Eilenberg-Steenrod Axioms . 16

3.2 Cohomology Theories from Spectra . 17

3.2.1 Suspension Axiom . 18

3.2.2 Exactness Axiom . 20

3.2.3 Additivity Axiom . 21

3.2.4 Dimension Axiom . 22

3.3 Constructing Spectra . 22

i

4 Results in Eilenberg-Steenrod Cohomology 27

4.1 Extending the Exactness Axiom . 28

4.2 Cohomology of a Binary Wedge . 31

4.3 A Coherence Lemma . 34

4.4 Sections . 36

4.5 The Mayer-Vietoris Sequence . 43

4.6 Cohomology of Products of Spheres . 49

5 Conclusions and Future Work 59

A Formalization Reference 61

ii

Introduction

This is a case study in higher type theory, the study of the infinite-dimensional structure which
arises from the identity type of intensional Martin-Löf type theory [17]. For elements x, y : A,
inhabitants of the identity type x =A y express identifications between x and y, or proofs that
x and y are in some sense equal. In extensional Martin-Löf type theory [18], such types have at
most one inhabitant, but this is not guaranteed in its intensional counterpart. In 1998, Hofmann
and Streicher [10] made this precise by presenting a model interpreting types as groupoids, with
x =A y interpreted as the discrete groupoid of morphisms from x to y in A. It was independently
confirmed by van den Berg and Garner in 2008 [24] and Lumsdaine in 2009 [16] that types are
equipped more generally with the structure of weak ω-groupoids. This opened the possibility of
augmenting the theory in order to make such structure visible internally. The most notable addition
is Voevodsky’s univalence axiom, which unifies the concepts of identifications between types and
equivalences between types. Another, which is crucial to this thesis, is the concept of higher inductive
types: types generated not only by point constructors but also path constructors, thus exhibiting
explicit higher structure. With these it becomes possible to define interesting ω-groupoids, such
as spheres, within the theory. The intensional type theory created by augmenting Martin-Löf type
theory with univalence and higher inductive types is what is now called homotopy type theory (or
HoTT).

This thesis is an exploration of basic ideas in cohomology, which is a central tool from homotopy
theory. It is an “informalization” of results developed in the HoTT-Agda library [11] over the past
two years. It is intended to serve as documentation, as a lasting account in the inevitable event of
deprecation, and as an exposition of the tools and methodology I have found useful. While cohomol-
ogy is the guiding motivation, some of the proofs and results are neither strictly cohomological nor
particularly efficient from the classical perspective. Rather, the focus is on techniques for “higher
induction.” My hope is to demonstrate the abilities and shortcomings of the current formulation
of homotopy type theory in the broader context of higher type theories. Particularly relevant as a
point of comparison is the recent work on cubical type theories, independently conducted by Co-
quand et al. [4], Brunerie and Licata [3], and Altenkirch and Kaposi [1]. While homotopy type
theory is not natively cubical, it is possible to encode some notion of cubes using inductive types.
This line of attack, initiated by Licata and Brunerie [14, 13], has been extremely fruitful as an
organizing principle, though limited by the paucity of definitional equalities in vanilla homotopy
type theory. I hope to elucidate further the flavor of the cubical approach by example.

The first chapter contains a brief introduction to the necessary prerequisites in homotopy type
theory. The second chapter adds to these the square and cube types; the results in this chapter

iii

are for the most part due to Brunerie and Licata and were previously formalized in [13]. Chapter
3 presents the definition of an Eilenberg-Steenrod cohomology theory and exhibits a class of exam-
ples. The construction of the Eilenberg-MacLane spectrum in this chapter is due to and originally
formalized by Finster and Licata [15]. The proof that spectra satisfy the cohomology axioms was
developed informally by a group at the Institute for Advanced Study during the Special Year on
Univalent Foundations of Mathematics and described by Shulman [22], but the formalization is
original. Chapter 4, which comprises the bulk of the thesis, proves a series of results which hold in
all cohomology theories. None of these are new to classical algebraic topology, but the translation
into type theory and formalization are my own.

Almost everything has been formalized in Agda; a few statements are less general in the formaliza-
tion, but only for combinatorial reasons (for example, a lemma concerning a face of a cube might
only be proven for the left face). Appendix A contains an index relating sections of this document
with library modules.

I would like to thank my advisor, Robert Harper, for introducing me to type theory (homotopy and
otherwise), welcoming me to Carnegie Mellon’s HoTT research group, and guiding me through the
process of this thesis. Special thanks go to Carlo Angiuli for steering me through my early adven-
tures in type theory. This project would not have been possible without the efforts of contributors
to the HoTT-Agda library, especially Guillaume Brunerie and Kuen-Bang Hou (Favonia). Several
tools and theorems, particularly for cubical reasoning, originated in Dan Licata’s Agda library, and
my first encounter with cubes was at Dan’s suggestion for the Mayer-Vietoris proof. I am grateful
to Jeremy Avigad and Richard Statman, who served on my defense committee. Finally, I would
like to thank the Department of Mathematical Sciences, the Department of Computer Science, and
my friends and family, for their encouragement and for enduring my erratic progress through this
project.

This research was sponsored in part by the National Science Foundation under grant numbers
CCF-1116703 and CCF-1445995 (REU).

iv

Chapter 1

Type Theory Preliminaries

In general, we assume familiarity with informal homotopy type theory in the style of Homotopy
Type Theory [8]; the material of Chapters 1-2 is assumed, with 3-6 relevant to varying degrees.
Beyond intensional Martin-Löf type theory, we take particular advantage of pushout types [8, §6.8]
as well as truncations [8, §6.9] and more generally n-types [8, §7]. In order to fix notation, we give
a brief overview.

1.1 Types and Paths

We write U for our universe of types. Technically (and in the formalization) we use a universe
hierarchy U0 : U1 : U2 : · · · , but we will leave this implicit, as none of our results require attention
to universe levels. For any type A : U and family (i.e. fibration) B : A→ U , we have the dependent
function type

∏
x:ABx : U of maps which, given a : A, produce an element of Ba; if for every a : A

we have b : Ba we write λa.b :
∏
a:ABa for the corresponding function term. As a special case,

for A,B : U we have the non-dependent function type (A → B) :≡
∏

:AB. Likewise, we have
the dependent sum type

∑
a:ABa : U of pairs (a, b) where a : A and b : Ba, with the cartesian

product A × B as the non-dependent special case. Finally, for any x, y : A we have the identity
type x =A y : U of identifications (or paths) between x and y, which is inductively generated by
single constructors reflx : x =A x for x : A. We write x = y when A is clear from context. The
elimination rule for the identity states:

Definition 1.1 (Path Induction). For any family C :
∏
x,y:A(x = y)→ U , in order to construct a

function f :
∏
x,y:A

∏
p:x=y C(x, y, p), it suffices to give a term d :

∏
x:AC(x, x, reflx). A function f

defined in this way satisfies f(x, x, reflx) ≡ d(x).

We use the symbol ≡ for the external definitional equality, which we think of as syntactic equality
modulo computation, that is, the congruence generated by β-reduction and η-expansion. This is
strictly stronger than the internal notion of equality = captured by the identity type (sometimes
called propositional equality).

1

That = is a congruence is derivable using the elimination rule. For any two paths p : x = y and
q : y = z we have their concatenation p · q defined by refl · q :≡ q (we can define an alternate,
equivalent composition by inducting instead on q). For any p : x = y, q : y = z, and r : z = w,
there is an associativity path assoc p q r : (p ·q) ·r = p ·(q ·r) defined by assoc refl refl refl :≡ refl. For
any path p : x = y we have an inverse path p−1 : y = x defined by refl−1 :≡ refl, along with identities
·-inv-l p : p · p−1 = refl and ·-inv-r p : p−1 · p = refl defined by ·-inv-l refl :≡ refl and ·-inv-r refl :≡ refl.
Any function f : A→ B induces a corresponding function on paths apf : (x =A y)→ (fx =B fy)
defined by apf refl :≡ refl.

Between two types A,B : U we have a third notion of identity, that of equivalence A ' B. An
equivalence e : A ' B consists of

• maps f : A→ B and g : B → A (for which we generally write e and e−1),

• homotopies (i.e. families of paths) p :
∏
a:A g(fa) = a, q :

∏
b:B f(gb) = b,

• a two-dimensional homotopy
∏
a:A apf (pa) = q(fa).

For the technical considerations which motivate this definition, see [8, Chapter 4], which refers
to this particular characterization as half adjoint equivalence. For our purposes we only need the
following:

Assertion 1.2. To construct an equivalence e : A ' B, it suffices to give maps f : A → B,
g : B → A and homotopies

∏
a:A g(fa) = a,

∏
b:B f(gb) = b. The resulting equivalence has f and g

as maps, but its inverse data may differ from those provided.

We can define a map idtoeqv : (A = B)→ (A ' B) by path induction, taking idtoeqv refl to be the
identity equivalence. The univalence axiom, a central feature distinguishing homotopy type theory
from standard intensional type theory, states that the notions of equivalences and identifications
between types correspond in the following sense:

Definition 1.3 (Univalence Axiom). For any typesA,B : U , the map idtoeqv : (A = B)→ (A ' B)
is an equivalence. We write ua : (A ' B)→ (A = B) for the given inverse.

We use the univalence axiom freely and implicitly to simplify arguments, typically to deduce that
F (A) ' F (B) from the fact that A ' B. We believe, however, that none of these applications are
strictly necessary. In our estimation, the only essential use of univalence in this development is in
the computation of πk(K(G,n)) in §3.3.

For any f, g : A → B, we write f ∼ g for the type
∏
a:A fa = ga of homotopies from f to g. The

univalence axiom implies function extensionality, as originally shown by Voevodsky:

Assertion 1.4 (Function Extensionality). For any f, g : A→ B, the map happly : (f = g)→ (f ∼
g) defined by happly refl :≡ id is an equivalence with inverse funext : (f ∼ g)→ (f = g).

Given a type A : U and family B : A → U , an identification p : x =A y induces a relationship
between the fibers Bx and By. We have a map transportBp : Bx → By defined by path induction

2

with transportBrefl :≡ id. This map is easily seen to be an equivalence. We also have a notion of path
lying over p in the total space:

Definition 1.5. Let A : U , B : A→ U , x, y : A, and p : x = y be given. For any u : Bx and v : By
we have the dependent path type (or path-over type) u =B

p v, which is defined by induction on p

with (u =B
refl v) :≡ (u = v).

Assertion 1.6. For any A : U , B : A → U , x, y : A, u : Bx, and v : By, there is an equivalence
between the types (x, u) =Σa:ABa (y, v) and

∑
p:x=y(u =B

p v).

Analogous to the non-dependent ap, every dependent function f :
∏
a:ABa induces a map apdf :∏

p:x=Ay
fx =B

p fy defined by apdf refl :≡ refl. Composition of dependent paths takes α : u =B
p v

and β : u =B
q v and outputs α ·d β : v =B

p·q w; it is defined by induction on p and q, taking

α ·d β :≡ α · β when p ≡ q ≡ refl. For sake of convenience, we use alternate definitions when
composing non-dependent paths with dependent ones: for α : u = v, β : v =B

q w, γ : w = x we

define αC β : u =B
q w and β B γ : v =B

q x by reflC β :≡ β and β B refl :≡ β.

In certain cases, we can give an explicit characterization of the dependent path type. For example,
when the fibration is a family of path types, we have:

Assertion 1.7. Let f, g : A→ B, x, y : A, and p : x =A y. For any u : fx =B gx and v : fy =B gy,
the types u =z.fz=gz

p v and u · apg(p) = apf (p) · v are equivalent.

When the fibration is a family of function types parameterized by domain or codomain and the
base path is an equivalence:

Assertion 1.8. Let functions f : A→ B, g : A→ C and an equivalence e : B ' C be given. The
type f =D.A→D

ua e g is equivalent to e ◦ f = g.

Assertion 1.9. Let functions f : A → C, g : B → C and an equivalence A ' B be given. The
type f =D.D→C

ua e g is equivalent to f = g ◦ e.

Finally, a broadly useful gadget: for A,B : U , C : B → U , f : A → B, p : x =A y, u : C(fx), and

v : C(fy), we have a function over-ap-inf : (u =C◦f
p v)→ (u =C

apfp
v), which is defined by induction

on p with over-ap-inf :≡ id in the case p :≡ refl.

1.2 Pointed Types

We are often interested in types which are accompanied by a specified basepoint; thus we define
the universe of pointed types U∗ :≡

∑
A:U A. We generally use letters X,Y, Z, . . . for pointed types

and write x0, y0, z0, . . . for their respective basepoints, whereas ordinary types are named from
A,B,C, We overload most of our notation to apply to both non-pointed and pointed types –
for example, for X,Y : U∗ we write X → Y for the function type of the underlying types. For any

3

X,Y : U∗, we also have the type (X ·→Y) :≡
∑

f :X→Y (fx0 = y0) of basepoint-preserving functions,
or more simply pointed functions. Composition is defined by

(g, q) ◦ (f, p) :≡ (g ◦ f, apgp · q)

The identity map on X is id�X :≡ (idX , refl) – in general, we use the superscript � where necessary
to distinguish a pointed version of some previously defined concept. We have a modified form of
function extensionality:

Assertion 1.10. Let (f, p) and (g, q) be basepoint-preserving functions from X to Y . Given a
homotopy h :

∏
x:X fx = gx and a path α : p = hx0 · q, we can construct a path (f, p) =X·→Y (g, q).

Note that, in contrast to the unpointed case, two pointed functions may not be equal even if they
agree on all arguments. We also have a pointed version of univalence, and a means of relating
pointed functions over equivalences:

Assertion 1.11. Let X,Y : U∗ and a basepoint-preserving equivalence (e, q) : X ' Y be given
(here q : ex0 = y0). Then there is a path ua� : X =U∗ Y .

Assertion 1.12. Let a functions (f, p) : X ·→ Y , (g, q) : X ·→ Z and a basepoint-preserving
equivalence (e, r) : Y ' Z be given. Then (f, p) =W.X·→W

ua�(e,r) (g, q) is equivalent to (e, r) ◦ (f, p) =

(g, q).

Assertion 1.13. Let functions (f, p) : X ·→ Z, (g, q) : Y ·→ Z and a basepoint-preserving equiva-
lence (e, r) : X ' Y be given. Then (f, p) =W.W ·→Z

ua�(e,r) (g, q) is equivalent to (f, p) = (g, q) ◦ (e, r).

For any X : U∗, the loop space ΩX is the pointed type (x = x, refl). Composition of loops gives a
pointed map conc� : ΩX × ΩX ·→ ΩX, where the basepoint of a product is of course the pair of
basepoints.

1.3 Higher Inductive Types

As in standard intensional type theory, we may define inductive types such as the natural numbers
N and the integers Z. In addition to these, homotopy type theory introduces higher inductive types.
Where an ordinary inductive type A is generated by a collection of constructors which introduce
elements of A, a higher inductive type may also include a collection of path constructors which
introduce identifications between elements. For our purposes, the main higher inductive type of

interest is the pushout type. For any span of maps A
f← C

g→ B, the pushout type A tC B (with
functions left implicit) is generated by point constructors left : A→ AtCB and right : B → AtCB
along with a path constructor glue :

∏
c:C left(fc) = right(gc). Visually, we picture A tC B like so:

4

Bg[C]

C

A f [C]

If we have a span of pointed spaces X
(f,p)
←· Z

(g,q)
·→ Y , then we make X tZ Y a pointed type with

basepoint left x0, and the maps left and right can be made pointed with basepoint-preservation
paths refl and aprightq

−1 · glue z0
−1 · apleftp respectively.

For any P : A tC B → U , the induction principle for A tC B states that in order to construct a
function k :

∏
γ:AtCB P (γ) it suffices to give

• a function l :
∏
a:A P (left a),

• a function r :
∏
b:B P (right b),

• a dependent homotopy h :
∏
c:C l(fc) =P

glue c r(gc).

A function k defined in this way satisfies k(left a) ≡ l(a), k(right b) ≡ r(b), and apdk(glue c) = h(c).
Note that we only assume the reduction for the path constructor holds propositionally – this is
in part an artifact of limitations in the Agda formalization and in part due to uncertainty in the
current understanding of the theory. In the non-dependent case where the target is a type D,
the induction principle can be simplified to requiring functions l : A → D, r : B → D, and
h :
∏
c:C l(fc) = r(gc), and the resulting function k : A tC B → D satisfies apk(glue c) = h(c).

A few pushouts are of particular interest to us:

1. For X,Y : U∗, the pushout of the span X
x0←· 1

y0·→Y is the wedge X ∨Y ; in this case we write
winl, winr, and wglue : winl x0 = winr y0 for the three constructors.

2. For A : U , the pushout of the span 1 ← A → 1 is the suspension ΣA; we write north, south :
ΣA, and merid : A→ north = south.

3. For any map f : A → B, the pushout of the span 1 ← A
f→ B is the cofiber type Cof f ; we

write cfbase : Cof f , cfcod : B → Cof f , and cfglue :
∏
a:A cfbase = cfcod (fb).

5

4. For A,B : U , the pushout of the span of projections A
fst← A×B snd→ B is the join A ∗B.

5. For X,Y : U∗, the smash product X ∧Y is the cofiber type of the map X ∨Y → X×Y which
takes winl x to (x, y0), winr y to (x0, y), and wglue to refl(x0,y0)

X

Y

x0

y0

(a) the wedge type X ∨ Y

A

north

south

(b) the suspension type ΣA

Bf [A]

A

(c) the cofiber type Cof f

Figure 1.1: Special cases of the pushout type

Finally, we define the 0-sphere S0 to be the inductive type generated by two points true and false,
and define the n-spheres inductively by Sn+1 :≡ ΣSn.

1.4 n-Types and Truncation

For any type A, iterating the construction of identity types gives rise to an infinite hierarchy of
structure: for x, y : A we can consider the type of identifications x =A y, for p, q : x = y we can
consider p =x=y q, and so on. However, not every type has nontrivial structure at every level. A
type A for which the structure cuts off at “level n” is called an n-type, defined precisely for n ≥ −2
as follows:

• A is a (−2)-type if there exists a : A and a homotopy
∏
x:A a = x. We say that A is

contractible.

• For n ≥ −2, A is an (n+ 1)-type if, for every x, y : A, the path type x =A y is an n-type.

We write has-level n A for the type of proofs that A is an n-type, that is, has-level (−2) A :≡∑
a:A

∏
x:A(a = x) and has-level (n + 1) A :≡

∏
x,y:A has-level n (x = y). The unusual numbering

scheme ensures that the 0-types are the sets, those types A for which any two paths p, q : x =A y
can be identified – in particular, for which any path p : x =A x is equal to reflx. The (−1)-types
are the mere propositions or truth values, those types A for which any two points x, y : A can be
identified.

Given any type, we can obtain its best approximation as an n-type for some n via the truncation
modality ‖−‖n : U → U . The truncation modalities are definable as higher inductive types, but
we will use a derivable characterization which is more convenient (see [8, §7.3]). For any type A,
its n-truncation ‖A‖n is generated by a constructor |−|n : A → ‖A‖n as well as an element of
has-level n ‖A‖n. The accompanying induction principle is as follows:

6

Definition 1.14 (Truncation Induction). Let B : ‖A‖n → U be given. If Bt is an n-type for every
t : ‖A‖n, then any map f :

∏
a:AB|a|n induces a map f ′ :

∏
t:‖A‖n Bt which satisfies f ′(|a|n) ≡ f(a).

If A : U is an n-type, then |−|n : A → ‖A‖n is an equivalence. Our main interest is in the set
truncation ‖−‖0 and propositional truncation (or squash) ‖−‖−1. For a function type A→ B, the
truncated type ‖A→ B‖0 is the set of homotopy classes of maps A→ B; this will be essential for
exhibiting examples of cohomology theories. The (−1)-truncation is generally useful when we want
to ignore the path structure of a particular type; we will see an example in the next section. We
use the qualifier mere to describe (−1)-truncated types: for example, to inhabit ‖

∑
a:AB(a)‖−1 is

to say there merely exists a : A such that B(a) holds. We will make use of the following lemma:

Assertion 1.15. For any x, y : A, the types ‖x = y‖n and |x|n+1 = |y|n+1 are equivalent.

1.5 Groups

A group consists of an underlying set (that is, a 0-type) G, a composition operation (− · −) :
G × G → G, an inverse operation (−)−1 : G → G, and a unit e : G, along with paths expressing
the group laws:

• for every g : G, paths e · g = g and g · e = g,

• for every g, h, k : G, a path (g · h) · k = g · (h · k),

• for every g : G, paths g−1 · g = e and g · g−1 = e.

We abuse notation and write G for the group itself, specifying intention where ambiguous. We
write Grp for the type of groups, and Ab for the type of abelian groups (which additionally satisfy∏
g,h:G g ·h = h ·g). A homomorphism is a map between groups, which consists of a map ϕ : G→ H

of underlying sets along with an inhabitant of
∏
g1,g2:G ϕ(g1 ·g2) = ϕ(g1)·ϕ(g2). Since the underlying

sets are required to be 0-types, two homomorphisms are equal precisely when their underlying
functions are equal. Univalence guarantees that equality among groups is the expected notion of
isomorphism:

Assertion 1.16. For any G,H : Grp, the type G =Grp H is equivalent to the type of homomor-
phisms ϕ : G→ H whose underlying maps are equivalences.

For any homomorphism ϕ : G→ H, the kernel of ϕ is the set Ker ϕ :≡ Σg:G(ϕ(g) = e) of elements
of G which map to e. The image of ϕ is the set Im ϕ :≡ Σh:H‖Σg:G(ϕ(g) = h)‖−1 of elements of
H for which there merely exists g : G with ϕ(g) = h. The use of mere existence guarantees that
any element of H appears no more than once in the image, as opposed to once for every element
of G which maps to it. A homomorphism ϕ is injective if ϕ(g) = e implies g = e, equivalently if
Ker ϕ = 1. It is surjective if for any h : H there merely exists g : G with ϕ(g) = h.

Assertion 1.17. Let ϕ : G → H be a homomorphism. If ϕ is injective and surjective, then ϕ is
an isomorphism.

7

As a sketch of the proof, recall that surjectivity gives for any element h : H a term of type
‖Σg:G(ϕ(g) = h)‖−1. If ϕ is injective, then there is at most one g : G such that ϕ(g) = h, which
means that Σg:G(ϕ(g) = h) is already a (−1)-type. Thus ‖Σg:G(ϕ(g) = h)‖−1 ' Σg:G(ϕ(g) = h)
and we can transform each mere existence proof into a full existence proof, defining an inverse to
ϕ by associating each h with its specified g.

8

Chapter 2

Squares and Cubes

Constructions involving higher inductive types commonly require us to build paths between paths.

For example, consider the pushout U tX∨Y V of a span U
f← X ∨ Y g→ V . Say we wish to

construct a function h : U tX∨Y V → C. Per the induction principle, this requires in particular
that we specify the value of aph(glue w) : h (left (f w)) = h (right (g w)). If we in turn specify the
definition of w 7→ aph(glue w) by induction, we must relate the two paths aph(glue (winl x0)) and
aph(glue (winr y0)) by giving the value of apdaph◦glue(wglue), which has type

aph(glue (winl x0)) =
w.h(left(fw))=h(right(gw))
wglue aph(glue (winr y0))

Thus, constructing functions out of inductive types requires a means of dealing with dependent
paths between paths. Assertion 1.7 tells us that the types u =z.fz=gz

p v and u · apg(p) = apf (p) · v
are equivalent. We can therefore think of a dependent path of type u =z.fz=gz

p v as expressing that
the following square of paths commutes:

fx fy

fy fy

u

apfp

v

apgp

We can extend this perspective to higher dimensions:

dependent path in a family of path types ∼ commutative square
dependent path in a family of square types ∼ “commutative cube”

To accomplish this, we define inductive types which represent square and cube relationships directly,
and which serve as higher-dimensional analogues of the identity type. These were first used in Agda
by Licata and Brunerie in the library [13] and described on paper in [14].

9

2.1 The Square Type

We define Square as an inductive family indexed by four points and four paths: a00, a01, a10, a11 : A
along with p0- : a00 = a01, p-0 : a00 = a10, p-1 : a01 = a11, and p1- : a10 = a11.

a00 a10

a01 a11

p
0
-

p-0

p
1
-

p-1

We will write the fully applied type as Square p0- p-0 p-1 p1-, omitting the point arguments for
brevity. The type is generated by

• For every a : A, the identity square at a, srefla : Square refla refla refla refla.

As with the identity type, this simple definition gives rise to a complex structure. To begin with,
we have horizontal and vertical composition operations with corresponding identities. For example,
the horizontal composition s ·h s′ as below can be defined by induction on s, with srefl ·h s′ :≡ s′:

a00 a10 a20

a01 a11 a21

s

p
0
-

p-0

s′

p
1
-

q-0

q
2
-

p-1 q-1

a00 a20

a01 a21

s ·h s′

p
0
-

p-0·q-0

q
2
-

p-1·q-1

We can define a identity for horizontal composition srefl-hp : Square p refl refl p by taking srefl-hrefl :≡
srefl; we have srefl-h ·h s′ = s′ for any square s′. The fact that srefl-h is a right “identity,” while true
in some sense, is less easily expressed, since s and s ·h srefl-h may have different types. The vertical
composition ·v and identity srefl-v are analogously defined.

Using the horizontal and vertical identities, we can define “based” induction principles for squares,
for example with a preselected left edge:

Lemma 2.1. Let a00, a01 : A and p0- : a00 = a01. Let a dependent family

P :
∏

a10,a11:A

∏
p-0:a00=a10

∏
p-1:a01=a11

∏
p1-:a01=a11

(Square p0- p-0 p-1 p1- → U)

be given (we will elide all but the square argument). In order to define a function

f :
∏

a10,a11:A

∏
p-0:a00=a10

∏
p-1:a01=a11

∏
p1-:a01=a11

∏
s:Square p0- p-0 p-1 p1-

Ps

it suffices to give an element d : P srefl-hp0- .

10

Proof. Let a square s : Square p0- p-0 p-1 p1- be given as above. By square induction we may
assume s ≡ srefl; we must construct an element of P srefl. Since p0- ≡ refl in this case, we have
srefl-hp0- ≡ srefl, and therefore d : P srefl serves.

In particular, if the left edge is refl, it suffices to show P srefl.

As with paths, functions act functorially on squares.

Lemma 2.2. Let a00, a01, a10, a11 : A and p0- : a00 = a01, p-0 : a00 = a10, p-1 : a01 = a11,
p1- : a01 = a11. Let a square s : Square p0- p-0 p-1 p1- be given. For any function f : A→ B we have
a square ap-square s : Square (apfp0-) (apfp-0) (apfp-1) (apfp1-).

Proof. By square induction on s; when s ≡ srefl we set ap-square s :≡ refl.

In general, an element of a square type serves as a proof that its sides commute, and we can show
that every square corresponds to a proof of commutativity.

Lemma 2.3. Let a00, a01, a10, a11 : A and p0- : a00 = a01, p-0 : a00 = a10, p-1 : a01 = a11,
p1- : a01 = a11. The types p0- · p-1 = p-0 · p1- and Square p0- p-0 p-1 p1- are equivalent.

Proof. We must define a function disc-to-square : p0- · p-1 = p-0 · p1- → Square p0- p-0 p-1 p1- and an
inverse square-to-disc.

• For the forward direction, we are given p0-, p-0, p-0, p1-, and α : p0- · p-1 = p-0 · p1-. By path
induction, we assume that the first three paths are refl, which leaves α with type refl = p1-.
We can then induct on α, so that p1- ≡ refl as well. In this case, srefl gives the desired square.

• For the backward direction, we have p0-, p-0, p-0, p1-, and s : Square p0- p-0 p-1 p1-. By square
induction, we may assume s ≡ srefl and therefore all four paths are refl. In this case, refl gives
the desired path.

Showing that these constructions are mutually inverse is easily accomplished with the same pattern
of inductions.

Special cases of the previous lemma give us several ways of constructing squares from paths; for
example, a path α : p =x=y q gives rise to squares hsquare α : Square p refl refl q, vsquare α :
refl p q refl and brsquare α : Square refl refl p q, and all of these constructions are equivalences. We
also have an equivalence relating squares and dependent paths.

Lemma 2.4. Let f, g : A→ B, x, y : A, and p : x =A y. For any u : fx =B gx and v : fy =B gy,
the types u =z.fz=gz

p v and Square u (apf (p)) (apg(p)) v are equivalent.

Proof. By induction we may assume p ≡ refl, in which case hsquare gives the desired equivalence.

11

Corollary 2.5. Let f, g : A → B be given along with h :
∏
a:A fa = ga. For any x, y : A and

p : x = y, we have a square natural-sq h p : Square (hx) (apf (p)) (apg(p)) (hy). In particular,
natural-sq h refl = srefl-h.

Proof. This follows from the previous lemma by converting apdh(p) : hx =a.fa=ga
p hy to a square.

The second condition may be confirmed by tracing definitions and induction.

A key property of squares is the existence of square fillers. Given a box – the frame of a square
minus one side – there is a (propositionally) unique fourth side, the composite, for which the square
type is inhabited. This inhabitant is called the filler.

a00 a10

a01 a11

p
0
-

p-0

p-1

a00 a10

a01 a11

p
0
-

p-0

p-1

Theorem 2.6 (Square Fillers). Let a00, a01, a10, a11 : A be given along with p0- : a00 = a01,
p-0 : a00 = a10, and p-1 : a01 = a11. Then there exists a path square-comp-r p0- p-0 p-1 : a10 = a11

and a square of type Square p0- p-0 p-1 (square-comp-r p0- p-0 p-1). Moreover, for any q : a10 = a11

such that Square p0- p-0 p-1 q is inhabited, we have a path q = square-comp-r p0- p-0 p-1.

Proof. By path induction, we may assume p-0 and p-1 are both refl. In this case, we define
square-comp-r p0- p-0 p-1 :≡ p0-. The square srefl-hp0- then serves as the desired filler. For the
uniqueness criterion, let q : a10 = a11 and s : Square p0- p-0 p-1 q be given. By square induc-
tion, we may assume s is srefl. In this case, both q and square-comp-r p0- p-0 p-1 are refl, so that
q = square-comp-r p0- p-0 p-1 by reflexivity.

Of course, this theorem generalizes for fillers with any missing face, not only the right. For the
two-dimensional case, there is a simple explicit definition of the filler: square-comp-r p0- p-0 p-1 must
be p-0

−1 · p0- · p-1, the propositionally unique q satisfying p0- · p-1 = p-0 · q. For cubes, however, the
situation is more complex.

Finally, just as we have a notion of dependent path in a fibration, we have a notion of a dependent
square. In the same way that we can express a dependent path in a family of simple path types
as a square, we can express a dependent path in certain families of dependent path types as a
dependent square. For any frame as pictured below, we define the type SquareBs q0- q-0 q-1 q1- by
square induction on s, setting SquareBsrefl q0- q-0 q-1 q1- :≡ Square q0- q-0 q-1 q1-.

12

b00 : Ba00 b10 : Ba10

a00 : A a10 : A

s : Square p0- p-0 p-1 p1-

a01 : A a11 : A

b01 : Ba01 b11 : Ba11

b
0
0
=
Bp
0
- b

0
1

q-0:b00=Bp-0b10

b
1
0
=
Bp
1
- b

1
1

p-0:a00=a10

p
0
- :a

0
0
=
a

0
1

p
1
- :a

1
0
=
a

1
1

p-1:a01=a11

q-1:b01=Bp-1b11

Figure 2.1: A dependent square. The inner square lies in the base space of the fibration B : A→ U ,
with the outer square sitting above it in the total space.

Lemma 2.7. Let A : U , B : U , and C : B → U along with f, g : A → B, q :
∏
a:A fa = ga,

u :
∏
a:AC(fa), and v :

∏
a:AC(ga) be given. For any x, y : A, p : x = y, α : ux =C

qx vx, and

β : uy =C
qy vy, the types α =

z.uz=Cqzvz
p β and

SquareCnatural-sq q p α (over-ap-inf (apdup)) (over-ap-ing(apdvp)) β

are equivalent.

Proof. By path induction we may assume p ≡ refl, so that x ≡ y. In this case our goal is to show
α = β is equivalent to SquareCsrefl-hqx α refl refl β. By generalizing we may induct on qx, leaving us
to prove that α = β is equivalent to square Square α refl refl β; in this case we have an equivalence
given by hsquare.

2.2 The Cube Type

As with Square, the type family Cube is indexed by its frame: eight points, twelve paths, and six
squares, which fit together in the appropriate way. We write Cube sleft sright sback stop sbottom sfront
for the fully-applied type, leaving the other arguments implicit. The type is generated by

• For every a : A, the identity cube at a, crefla : Cube srefla srefla srefla srefla srefla srefla.

Just as squares can be used to represent dependent paths in a family of path types, cubes can be
used to represent dependent paths in a family of square types, though the proof is more involved.
First, let us observe some connections between paths, squares, and cubes: a square in a path type
gives rise to a cube, as does a path in a square type.

13

a000 a100

a010 a110

sleft

p
0
-0

p-00

p
1
-0

p-10

a001 a101

a011 a111

sright

p
0
-1

p-01

p
1
-1

p-11

a000 a001

a010 a011

sback

p
0
-0

p00-

p
0
-1

p01-

a000 a001

a100 a101

stop

p
-0

0

p00-

p
-0

1

p10-

a010 a011

a110 a111

sbottom

p
-1

0

p01-

p
-1

1

p11-

a100 a101

a110 a111

sfront

p
1
-0

p10-

p
1
-1

p11-

Figure 2.2: Faces of a cube.

Lemma 2.8. Let paths p0- : a00 = a01, p-0 : a00 = a10, p-1 : a01 = a11, and p1- : a10 = a11 be
given. For any two squares s, s′ : Square p0- p-0 p-1 p1- with a path α : s = s′, there is a cube of
type Cube s s′ srefl-h srefl-h srefl-h srefl-h.

Proof. By induction we may assume s ≡ srefl and α ≡ refl, in which case we can take crefl.

Lemma 2.9. Let paths p00, p01, p10, p11 : a0 = a1 be given with two-dimensional paths α0- : p00 =
p01, α-0 : p00 = p10, α-1 : p01 = p11, and α1- : p10 = p11. As a special case of Lemma 2.3, the two-
dimensional paths correspond to squares s0- : Square refl p00 p01 refl, s-0 : Square refl p00 p10 refl, s-1 :
Square refl p01 p11 refl, and s1- : Square refl p10 p11 refl. Given a square of type Square α0- α-0 α-1 α1-,
we can construct a cube of type Cube srefl srefl s0- s-0 s-1 s1-.

Proof. Let a square of type Square α0- α-0 α-1 α1- be given. By square induction, we may assume
this square is srefl. In this case, the two-dimensional paths are all refl, and per the proof of Lemma
2.3 the corresponding squares are all srefl. In this case, crefl gives the desired cube.

We can prove the existence of cube fillers by reducing to the case of squares and using the square
filling theorem.

Theorem 2.10 (Cube Fillers). Let sleft , sback , stop , sbottom , sfront be five faces of a cube, as in
Figure 2.2. Then there is a propositionally unique composite square s′ such that
Cube sleft s

′ sback stop sbottom sfront is inhabited.

Proof. By square induction, we may assume sfront and sback are srefl; these squares have no paths in
common, so there is no problem of interference in inducting on both. In this case, the other squares
have refl on two sides, and correspond by Lemma 2.3 to paths αleft , αtop , and αbottom . By square
filling (Theorem 2.6), there is a path α′ and a square t : Square αleft αtop αbottom α′. The path α′

itself corresponds to a square s′. By a variant of the previous lemma (taking back and front as the
degenerate faces), t gives rise to a corresponding cube, of type Cube sleft s

′ srefl stop sbottom srefl.
Thus s′ is a composite for the given box.

14

For the uniqueness condition, let another right face r and a cube c : Cube sleft r sback stop sbottom sfront
be given. We go by cube induction on c. In the case c ≡ crefl, all faces of c are srefl, and one can
check that the composite defined above reduces to srefl in this case. Hence r is equal to the
composite.

Using the uniqueness of cube composites, we can give a converse to Lemma 2.8. This lemma in
turn enables us to construct dependent paths in square types by inhabiting certain cubes.

Lemma 2.11. Let paths p0- : a00 = a01, p-0 : a00 = a10, p-1 : a01 = a11, and p1- : a10 = a11 be given.
For any two squares s, s′ : Square p0- p-0 p-1 p1- and a cube c : Cube s s′ srefl-h srefl-h srefl-h srefl-h,
there is a path α : s = s′.

Proof. By induction we may assume s ≡ srefl, in which case c has type Cube srefl s′ srefl srefl srefl srefl.
Since Cube srefl srefl srefl srefl srefl srefl is inhabited, namely by crefl, it follows by uniqueness of
cube composites that s′ = srefl.

Theorem 2.12 (Dependent Paths from Cubes). Let f00, f01, f10, f11 : A→ B be given along with
p0- :

∏
a:A f00a = f01a, p-0 :

∏
a:A f00a = f10a, p-1 :

∏
a:A f01a = f11a, and p1- :

∏
a:A f10a = f11a.

For any x, y : A, q : x = y, and two squares sx : Square (p0-x) (p-0x) (p-1x) (p1-x) and
sy : Square (p0-y) (p-0y) (p-1y) (p1-y), we can construct a term of type

sx =z.Square (p0-z) (p-0z) (p-1z) (p1-z)
q sy

from a term of type

Cube sx sy (natural-sq p0- q) (natural-sq p-0 q) (natural-sq p-1 q) (natural-sq p1- q)

Proof. By path induction, we may assume q ≡ refl. In this case the theorem follows from the
previous lemma.

This concludes the collection of basic facts we will need regarding squares and cubes.

15

Chapter 3

Cohomology Theories

For any type X and n ≥ 1, we have the homotopy group πn(X) :≡ ‖Sn ·→X‖0, the set of homotopy
classes of n-dimensional loops in X with composition as the group operation. The homotopy groups
of a type give an algebraic description of its structure at each dimension, which we can use to
differentiate between types: for example, we know S1 6= S2, since π1(S1) = Z and π1(S2) = 1.
Unfortunately, it is often difficult to compute homotopy groups – the homotopy groups of spheres
are extremely complex and many remain unknown.

Cohomology is an alternative tool. There are many notions of cohomology, but most are united
under a common foundation: a family (Hn)n:Z of contravariant functors, from pointed types to
abelian groups, which satisfies the Eilenberg-Steenrod axioms. Such a collection is called a coho-
mology theory. As with homotopy groups, the cohomology groups of a type give us an algebraic
description of its dimensional structure. Cohomology groups have the advantage of being more
easily computable for many common types; we will give an example of a cohomology theory for
which we can quickly calculate Hn(Sm) for any n, m.

We will first define the axioms that a cohomology theory must satisfy. These were originally
presented by Eilenberg and Steenrod in [6]. Their type-theoretic translation was developed at the
Institute for Advanced Study during Special Year on Univalent Foundations of Mathematics, by a
group including Brunerie, Finster, Lumsdaine, Licata, and Shulman [7, 22]. Next, we describe a
method of constructing models, using the notion of spectrum. Finally, we outline the construction
of the Eilenberg-MacLane spectra originally given in [15] and discuss the construction of other
spectra.

3.1 Eilenberg-Steenrod Axioms

Let a collection of functors (Hn)n:Z from pointed types to abelian groups be given. We abbreviate
the functorial action Hn(f, p) for (f, p) : X ·→ Y as (f, p)∗ where unambiguous. We say that H is
a (generalized) cohomology theory if it satisfies the following axioms:

16

(Suspension) For any n : Z andX : U∗, there is an isomorphism susp-isonX : Hn+1(ΣX) ' Hn(X).
Moreover, susp-isonX is natural in X, that is, for (f, p) : X ·→Y we have susp-isonX ◦(Σ(f, p))∗ =
(f, p)∗ ◦ susp-isonY .

(Exactness) For any n : Z, X,Y : U∗, and (f, p) : X ·→ Y , the sequence of homomorphisms

Hn(Cof(f, p))
cfcod�

∗

−→ Hn(Y)
(f,p)∗−→ Hn(X)

is exact. We say that a sequence of homomorphisms ψn : Gn → Gn+1 (in a finite or infinite
range of integers n) is exact if the kernel of each map is the image of the preceding map, in
the sense that for g : Gn+1 we have ψn+1(g) = e if and only if there merely exists h : Gn such
that ψn(h) = g.

We say that H is an ordinary cohomology theory if it also satisfies an additional axiom:

(Dimension) For any n : Z with n 6= 0, Hn(S0) ' 1.

The cohomology groups of a large class of types can be expressed in terms of the cohomology groups
of S0. In an ordinary theory, they can be expressed in terms of the single group H0(S0).

Classically, there is an additional axiom, which describes the cohomology of a general wedge sum.
Given I : U and X : I → Ptd, the general wedge sum

∨
i:I Xi is generated by the following

constructors:

• an element wbase :
∨
i:I Xi,

• for i : I and x : Xi, an element winix :
∨
i:I Xi,

• for i : I, a path wgluei : wbase = winix
i
0, where xi0 is the basepoint of Xi.

The axiom can then be stated like so:

(Additivity?) For any I : Set and X : I → U∗ the map Hn(
∨
i:I Xi) →

∏
i:I H

n(Xi) sending g
to λi.wini

∗g is an equivalence.

We will not assume this axiom, as the cohomology theories we present will not satisfy it. To prove
that this axiom holds in typical theories requires a form of the axiom of choice which is not available
by default in homotopy type theory. In §3.2 and §3.3, we will discuss the issues with verifying this
axiom and the special cases in which it holds. We prove the case where I = 2 in §4.2 using only
the Exactness Axiom.

3.2 Cohomology Theories from Spectra

Recall that we defined the homotopy groups of X as πn(X) :≡ ‖Sn ·→X‖0. Since Sn+1 = ΣSn, we
can take advantage of the fact that suspension is adjoint to loop space in the category of pointed

17

spaces. For example, this tells us that πn(X) = ‖ΩnX‖0 and that πn+1(X) = πn(ΩX). For
cohomology, we use this adjoint property in the opposite direction: rather than look at maps out of
a sequence of spaces related by the suspension functor, we look at maps into a sequence of spaces
related by the loop space functor. We say a family of pointed types E : Z → U∗ is a spectrum if
En = ΩEn+1 for every n : Z. For such a family, we can define homotopy groups πn(E) for all n : Z
by taking πn(E) :≡ πn+k(Ek), choosing k sufficiently large.

For any pointed types X and Y , we write ToΩGroup(X,Y) for the group on ‖X ·→ ΩY ‖0 given by
pointwise composition, which is to say

|f |0 ⊗ |g|0 :≡ |conc� ◦ 〈f, g〉|0

Given a spectrum E : Z→ U∗, we define a contravariant functor H by

Hn(X) :≡ ToΩGroup(X,En+1) (≡ ‖X ·→ ΩEn+1‖0)

f∗(|g|0) :≡ |g ◦ f |0

Note that Hn(X) is equivalent as a type to ‖X ·→ En‖0. Composition in Hn(X) is abelian: we
have ΩEn+1 = Ω2En+2, and composition is commutative in higher loop spaces by the Eckmann-
Hilton argument (see [8, Theorem 2.1.6]). Thus H is a contravariant functor from pointed types
to abelian groups. We claim that H is a cohomology theory.

3.2.1 Suspension Axiom

It suffices to show that for any X,Y : U∗ there is an group isomorphism ToΩGroup(ΣX,Y) '
ToΩGroup(X,ΩY) and that this isomorphism is natural in X. To accomplish this, we first prove a
counit-unit adjunction Σ a Ω, where we consider the two as functors U∗ → U∗.

Theorem 3.1 (Σ a Ω, Counit-Unit Adjunction). There exist natural transformations η : 1U∗ → ΩΣ
and ε : ΣΩ→ 1U∗ such that

1. for X : U∗, εΣX ◦ ΣηX = id�ΣX , and

2. for X : U∗, ap�εX ◦ ηΩX = id�ΩX .

Proof. For X : U∗, we define ηXx = merid x · (merid x0)−1, taking ·-inv-r (merid x0) as the proof
that it preserves basepoint. We define εX by recursion on the suspension type:

εX : ΣΩX → X

εXnorth :≡ x0

εXsouth :≡ x0

apεX (merid p) := p

and take refl as the proof that it preserves basepoint. We confirm naturality, omitting for brevity
the (straightforward) proofs that basepoint-preservation paths agree:

18

• For all (f, p) : X ·→ Y and x : X, ηY (fx) = apΣf (ηXx):
For any x : X, we have

ηY (fx) ≡ merid (fx) ·merid (fx0)−1

= apΣf (merid x · (merid x0)−1)

≡ apΣf (ηXx)

• For all (f, p) : X ·→ Y and σ : ΣΩX, εy(Σ(apf)σ) = f(εXσ):
We may assume by path induction that p ≡ refl, so that fx0 ≡ y0. We go by induction on
σ : ΣΩX. We have definitionally that

εY ((Σapf)north) ≡ εY north ≡ y0 ≡ fx0 ≡ f(εXnorth)

εY ((Σapf)south) ≡ εY south ≡ y0 ≡ fx0 ≡ f(εXsouth)

For the merid case, we must show for q : ΩX that refl =
σ.εy(Σ(apf)σ)=f(εXσ)

merid q refl. By Lemma
2.4, it suffices to give a square

y0 y0

y0 y0

apεY ◦Σapf
(merid q)

refl

refl

apf◦εX (merid q)

Since apεY ◦Σapf
(merid q) = apεY (merid (apfq)) = apfq and apf◦εX (merid q) = apfq, we see

that the square is satisfied.

Now we show that the counit-unit laws hold, again omitting basepoint-preservation computations.

• for X : U∗ and σ : ΣX, εΣX((ΣηX)σ) = σ:
We go by induction on σ : ΣX. We have

εΣX((ΣηX)north) ≡ εΣXnorth ≡ north

εΣX((ΣηX)south) ≡ εΣXsouth ≡ north

so we can take refl as our proof in the north case and merid x0 in the south case. For the

merid case we must show then show that for x : X we have refl =
σ.εΣX((ΣηX)σ)=σ
merid x merid x0. By

Lemma 2.4 this reduces to showing a square

north north

north south

apεΣX◦ΣηX (merid x)

refl

m
erid

x
0

merid x

19

We have apεΣX◦ΣηX (merid x) = apεΣX (merid (ηXx)) = ηXx ≡ merid x · (merid x0)−1, and so
we see that the square commutes.

• for X : U∗ and p : ΩX, apεX (ηΩXp) = p:

We have apεX (ηΩXp) ≡ apεX (merid p · (merid refl)−1) = p · refl−1 = p.

We now take advantage of two category-theoretic results. Since their proofs are no different here
than in the standard setting, we leave them to the reader; one may refer to e.g. [2, p.235-236] for
more detail.

Assertion 3.2. Let F,G : U∗ → U∗ be functors and η : 1U∗ → GF and ε : FG → 1U∗ be natural
transformations such that, for X : U∗, εFX ◦FηX = id�FX and GεX ◦ηGX = id�GX . Then for X,Y : U∗
we have an equivalence e : (FX ·→ Y) ' (X ·→GY), natural in both X and Y .

Assertion 3.3. Given the hypotheses of Assertion 3.2 and X,Y : U∗, the map 〈Gfst�, Gsnd�〉 :
G(X×Y)·→GX×GY is an equivalence. For any f : X×Y ·→Z, we have a map G2f : GX×GY ·→
GZ defined by G2f = Gf ◦ 〈Gfst�, Gsnd�〉−1. This map is natural with respect to e in the sense
that, for r1 : FX ·→Y , r2 : FX ·→Z, and f : Y ×Z ·→W , we have e(f ◦〈r1, r2〉) = G2f ◦〈er1, er2〉.

Observe that for G = Ω, we have G2f = ap2�f , since ap2�f ◦ 〈ap�
fst�

, ap�
snd�
〉 = ap�f . Using these

two assertions, we can finish our proof of the Suspension Axiom. Let X,Y : U∗ be given. By
Assertion 3.2 we have an equivalence e : (ΣX ·→ΩY) ' (X ·→Ω2Y) which is natural in X and Y .
To show that this gives rise to an group isomorphism ToΩGroup(ΣX,Y) ' ToΩGroup(X,ΩY), it
remains to show that this equivalence preserves composition, that is, for f, g : ΣX ·→ΩY we have
e(conc�◦〈f, g〉) = conc�◦〈ef, eg〉. From Assertion 3.3 we have e(conc�◦〈f, g〉) = ap2�

conc� ◦〈ef, eg〉,
and the Eckmann-Hilton argument gives ap2�

conc� = conc�, thus completing the proof.

3.2.2 Exactness Axiom

Let n : Z, X,Y : U∗, and (f, p) : X ·→ Y be given. We must show that the sequence of homomor-
phisms

‖Cof(f, p) ·→ ΩEn+1‖0
(−)◦cfcod�−→ ‖Y ·→ ΩEn+1‖0

(−)◦(f,p)−→ ‖X ·→ ΩEn+1‖0

is exact. Intuitively, this is true because a map Y ·→ ΩEn+1 factors as a map Cof(f, p) ·→ ΩEn+1

composed with cfcod� precisely when it takes all elements of X to the basepoint of ΩEn+1.

First we show that any element of the image of (−)◦cfcod� is in the kernel of (−)◦(f, p). Since we are
trying to inhabit path types in the set ‖X ·→ ΩEn+1‖0, our goal is a mere proposition, and we may
therefore eliminate from 0- and (−1)-truncations in our proof. Let |(g, q)|0 : ‖Y ·→ ΩEn+1‖0, and
assume it is in the image of (−) ◦ cfcod�. We thus have a pair ||(h, r)|0, α|−1 where (h, r) : Coff ·→

20

ΩEn+1, and α is a path (h, r) ◦ cfcod� = (g, q). We want to show that (g, q) ◦ (f, p) = (λx.refl, refl).
We have

(g, q) ◦ (f, p) = (h, r) ◦ cfcod� ◦ (f, p) (by α)

= (g, q) ◦ (λx.cfbase, refl) (by cfglue)

= (λx.refl, refl)

Second, we must show that any element of the kernel of (−) ◦ (f, p) is in the image of (−)cfcod�.
Our goal is a (−1)-truncated type, so we may eliminate from 0- and (−1)-truncations in our proof.
Let |(g, q)|0 : ‖Y ·→ ΩEn+1‖0, |(h, r)|0 : ‖Coff ·→ ΩEn+1‖0 be given, and assume that we have
|(g, q) ◦ (f, p)|0 = |(λx.refl, refl)|0. By Assertion 1.15, this path gives rise to a truncated path of type
‖(g, q) ◦ (f, p) = (λx.refl, refl)‖−1, from which we can extract a path β : (g, q)◦(f, p) = (λx.refl, refl).
We can define a map k : Coff ·→ ΩEn+1 by recursion on the cofiber type:

k : Coff → ΩEn+1

k cfbase :≡ refl

k (cfcod y) :≡ g y
apk(cfglue x) := apλr.(fst r)x(β−1)

We have k ◦ cfcod = g definitionally. By Assertion 1.10, to complete the proof we must choose for
k’s basepoint-preservation proof a path s such that apk(apcfcod(p−1) · cfglue x0) · s = q. Thus we

define s :≡ apk(apcfcod(p−1) · cfglue x0)
−1 · q.

3.2.3 Additivity Axiom

As noted in §3.1, we will not have the additivity axiom in general. For I : Set and X : I → U∗, we
have Hn(

∨
i:I(Xi)) ≡ ‖(

∨
i:I Xi) ·→ ΩEn+1‖0 = ‖

∏
i:I(Xi ·→ ΩEn+1)‖0, while

∏
i:I H

n(
∨
i:I Xi) ≡∏

i:I ‖Xi ·→ ΩEn+1‖0. In general, the existence of an equivalence∥∥∥∏
i:I

(Xi ·→ ΩEn+1)
∥∥∥

0
'
∏
i:I

‖Xi ·→ ΩEn+1‖0

requires some sort of choice axiom. While it is always true for finite I, it may fail even for I = N
(see [22]). In [8, Exercise 7.8] is defined a family of choice axioms

ACk,m :≡
∏
I:Set

∏
A:I→k-Type

(∏
i:I

‖A(i)‖m →
∥∥∥∏
i:I

A(i)
∥∥∥
m

)

The useful axioms in this case are strengthened versions of the axioms ACk,0, requiring the existence
not only of a function but an equivalence (a natural formulation would require that the existing
function from ‖

∏
i:I A(i)‖m to

∏
i:I ‖A(i)‖m is an equivalence). Depending on the spectrum E, we

may also need to break the requirement that A(i) is truncated; Xi ·→ΩEn+1 is a k-type if and only
if En is, and there are spectra for which En is not a k-type for any k (see §3.3).

21

3.2.4 Dimension Axiom

To see when the dimension axiom will hold, observe that

Hn(Sm) = ‖Sm ·→ ΩEn+1‖0 = ‖Sm ·→ En‖0 = πm(En) = πm−n(E)

Thus, the cohomology groups of the spheres are determined by the homotopy groups of the spec-
trum. The cohomology theory satisfies the dimension axiom if and only if πn(E) = 1 for all n 6= 0.

3.3 Constructing Spectra

Now that have a means of building cohomology theories from spectra, we turn to constructing
spectra themselves. The simplest class of spectra, which gives rise to ordinary cohomology theories,
are the Eilenberg-MacLane spectra. For any abelian group G and n : N, the Eilenberg-MacLane
space K(G,n) is an n-type which satisfies

πk(K(G,n)) =

{
G, if k = n
1, otherwise

(This is an equality of groups for k > 0, but of pointed sets for k = 0.) In addition, we have that
ΩK(G,n+ 1) = K(G,n), thus giving rise to a spectrum E defined by

En :≡
{
K(G,n), if n ≥ 0
1, if n < 0

A construction of these types in homotopy type theory and verification of their properties, developed
by Licata and Finster, is presented in detail in [15]; we only sketch it. The zeroth EM-space,
K(G, 0), is defined to be G’s underlying pointed set. The first, K(G, 1), is defined as the 1-
truncation of a higher inductive type: it is generated by a single basepoint base, a loop loop g for
every g : G, and paths enforcing that loop e = refl and loop (gh) = loop g · loop h. The higher
EM-spaces are defined by K(G,n) :≡ ‖Σn−1K(G, 1)‖n for n ≥ 2.

The cohomology theory generated by the Eilenberg-MacLane spectrum K(G,−) is an ordinary
theory satisfying

Hn(S0) '
{
G, if n = 0
1, otherwise

Beyond the Eilenberg-MacLane spectra, we would like to construct for any family of abelian groups
G : Z→ Ab a spectrum E such that πn(E) = Gn. Näıvely, we might think to set

En :≡
∏
k:N

K(Gk−n, k)

Indeed, function extensionality guarantees that ΩEn+1 ' En, so we have a spectrum. However, we
are unable to compute its homotopy groups in general: πn(E) is the 0-truncation of a dependent

22

product over N, which we cannot simplify further without a choice axiom (as discussed in §3.2.3).
We hope to sidestep the issue by using a different definition.

For any family of types D : N→ U and maps d :
∏
n:NDn → Dn+1, we define the sequential colimit

colimn:NDn as an inductive type generated by

• for n : N and x : Dn, a point ncinnx : colimn:NDn,

• for n : N and x : Dn, a path ncgluenx : ncinnx = ncinn+1(dnx).

We now instead define

En :≡ colim
m:N

∏
k≤m

K(G−n+k, k)

where the maps of the colimit are the obvious inclusions. We can think of this as the “subtype”
of our earlier definition consisting of tuples with finitely many “non-base” entries. To see that this
construction has the desired homotopy groups, consider the following:

Lemma 3.4. For any A : N→ U , we have colimn:N
∏
k≤nAk ' A0 × colimn:N

∏
k≤nAk+1.

Proof. Straightforward equivalence proof.

Lemma 3.5. We say that a type A is m-connected if ‖A‖m is contractible. Let D : N → U ,
d :
∏
n:NDn → Dn+1, and m : N−2 be given. If Dn is m-connected for all n : N, then colimn:NDn

is m-connected.

Proof. Let xn : ‖Dn‖m and fn :
∏
v:‖Dn‖m xn = y witness the connectedness of the individual Dn.

We have an element u : ‖colimn:NDn‖m defined by applying ncin0 to x0 under the the truncation.
We must show for any v : ‖colimn:NDn‖m we have u = v. Since our goal is an equality in an
m-type, it is itself an m-type, and we may therefore assume x0 ≡ |x′0|m and v ≡ |v′|m (in which
case u ≡ |ncin0 x

′
0|m).

We go by induction on v′ : colimn:NDn, with the goal |ncin0 x
′
0|m = |v′|m. First, given n : N and

z : Dn, we must show |ncin0 x
′
0|m = |ncinn z|m. We write dn0 : D0 → Dn for dn ◦ · · · ◦ d0 and

ncgluen0 : ncin0 ∼ ncinn ◦ dn0 for the n-fold concatenation of the path constructors. We take

ap|−|m(ncgluen0x
′
0) · aptrunc-mapm(ncinn)(fn|dn0x′0|m

−1 · fn|z|m)

as our proof. Now, for n : N and z : Dn, we must construct per Lemma 2.4 a square

|ncin0 x
′
0|m |ncinn z|m

|ncin0 x
′
0|m |ncinn+1(dn+1z)|m

refl

ap|−|m (ncgluen0 x
′
0)·aptrunc-mapm(ncinn)(fn|dn0 x′0|m

−1·fn|z|m)

a
p
|−
|m

(n
cg

lu
e
n
z
)

ap|−|m (ncgluen+1
0 x′0)·aptrunc-mapm(ncinn+1)(fn+1|dn+1

0 x′0|m
−1·fn+1|z|m)

23

(In the interest of saving space, we have flipped the axes from our usual layout.) Observe that
ap|−|m(ncgluen+1

0 x′0) = ap|−|m(ncgluen0x
′
0) ·ap|−|m(ncgluen(dn0x

′
0)), so we may ap|−|m(ncgluen0x

′
0) from

the left of the top and bottom faces. If we additionally shift ap|−|m(ncgluen(dn0x
′
0)) from the bottom

to the left face, we are left to prove

|ncin0 x
′
0|m |ncinn z|m

|ncin0 x
′
0|m |ncinn+1(dn+1z)|m

a
p
|−
|m

(n
cg

lu
e
n

(d
n0
x
′0
))

aptrunc-mapm(ncinn)(fn|dn0 x′0|m
−1·fn|z|m)

a
p
|−
|m

(n
cg

lu
e
n
z
)

aptrunc-mapm(ncinn+1)(fn+1|dn+1
0 x′0|m

−1·fn+1|z|m)

Consider the homotopy h :
∏
t:|Dn|m trunc-mapm ncinn t = trunc-mapm ncinn+1 (trunc-mapm dn t)

defined by taking h|w|m :≡ ap|−|m(ncgluenw). We see that the left and right faces above match

h|dn0x′0|m and h|z|m respectively, leading us to consider the square natural-sq h (fn|dn0x′0|m
−1·fn|z|m).

This square almost fulfills our requirements, but its bottom face is

aptrunc-mapm(ncinn+1)◦trunc-mapmdn
((fn|dn0x′0|m)

−1 · fn|z|m)

However, since ‖Dn‖m is contractible, its path spaces are contractible, and so we have

aptrunc-mapmdn
((fn|dn0x′0|m)

−1 · fn|z|m) = (fn+1|dn+1
0 x′0|m)

−1 · fn+1|z|m

as needed.

Theorem 3.6. For any family G : N→ Ab and m : N, there is an equivalence
‖colimn:N

∏
k≤nK(Gk, k)‖m '

∏
k≤mK(Gk, k).

Proof. By applying Lemma 3.4 and using the fact that ‖·‖m commutes with ×, we have∥∥∥colim
n:N

∏
k≤n

K(Gk, k)
∥∥∥
m

=
∥∥∥∏
i≤m

K(Gi, i)
∥∥∥
m
×
∥∥∥colim

n:N

∏
k≤n

K(Gk+m+1, k +m+ 1)
∥∥∥
m

=
∏
i≤m

K(Gi, i)×
∥∥∥colim

n:N

∏
k≤n

K(Gk+m, k +m)
∥∥∥
m

Since K(Gk+m+1, k +m+ 1) is m-connected for any k : N, we have by the previous lemma that
colimn:N

∏
k≤nK(Gk+m+1, k +m+ 1) is m-connected and therefore that∥∥∥colim

n:N

∏
k≤n

K(Gk+m+1, k +m+ 1)
∥∥∥
m

= 1

as needed.

24

If we trace the group structure through this argument and use the properties of EM-spaces, we
obtain:

Corollary 3.7. For any family G : N→ Ab and m : N, πm(colimn:N
∏
k≤nK(Gk, k)) ' Gm.

Thus our construction has the desired homotopy groups. It remains to show that it forms a
spectrum, for which we must essentially show that

Ω

colim
n:N

∏
k≤n

K(Gk, k)

 ' colim
n:N

∏
k≤n

ΩK(Gk, k)

Unfortunately, we have no proof of this fact. We leave as conjecture the following:

Conjecture 3.8. For any family of types X : N→ U∗, there is an equivalence

Ω

(
colim
m:N

∏
k≤m

Xk

)
' colim

m:N

∏
k≤m

ΩXk

where the maps of the second colimit are those induced by Ω’s functorial action ap�.

Attempts to formally prove this conjecture, or to prove more generally that colimit commutes with
loop space, have suffered from an overabundance of complexity. This is partly due to iterated in-
duction on colimits, which is presumably unavoidable. Also significant, however, is the accumulated
cruft of transporting along arithmetic lemmas. Specifically, given a diagram

D0
d0−→ D1

d1−→ D2
d2−→ · · ·

computing its loop space by the standard encode-decode method (as elaborated in [8, §8.9]) requires
computing more generally the path space ncin0x0 = c for c : colimn:NDn, where x0 is the specified
basepoint. For this we define a family Codes : colimn:NDn → U by induction on the colimit, with
the aim of proving (ncin0x0 = c) ' Codes c. We want to set

Codes (ncinnx) :≡ colim
m:N

(dn+m
0 x0 = dmn x)

where dmn : Dn → Dn+m is defined by induction with d0
n :≡ id and dm+1

n :≡ dn+m ◦ dmn . Completing
this definition requires showing that Codes (ncinnx) ' Codes (ncinn+1(dnx)). Expanding, this is

colim
m:N

(dn+m
0 x0 = dmn x) ' colim

m:N
(d

(n+1)+m
0 x0 = dmn+1(dnx))

It is easy to show that for any diagram A0 −→ A1 −→ A2 −→ · · · there is an equivalence
colimm:NAm ' colimm:NAm+1. This leaves demonstrating that

colim
m:N

(d
n+(m+1)
0 x0 = dm+1

n x) ' colim
m:N

(d
(n+1)+m
0 x0 = dmn+1(dnx))

Herein lies the source of the arithmetical difficulties. While it is straightforward to give a proof
p :
∏
n,m:N n + (m + 1) = (n + m) + 1 and show that dm+1

n =k.Dk
p(n,m) d

m
n+1 ◦ dn, the proof that the

25

equivalence above holds amounts to several lines of code, and reasoning about these paths in the
proof of the equivalence (ncin0x0 = c) ' Codes c quickly becomes involved. A potential solution,
which we have yet to explore, would be to work in a system such as Voevodsky’s Homotopy Type
System [25] which has an internal notion of strict equality. Since the strict equality is substitutional
(as is definitional equality) rather than transportational (as is propositional equality), one could
prove strict arithmetical identities and apply them without having to reason about that application
later on. Ideally, one could prove results in a system augmented with these identities and then
expand the arguments into traditional homotopy type theory, but no such algorithm is known at
present.

26

Chapter 4

Results in Eilenberg-Steenrod
Cohomology

Having exhibited a class of models, we move on to prove results in the axiomatic framework. In
§4.1 and §4.5 we develop two standard cohomological tools, the long exact cofiber sequence and
Mayer-Vietoris sequence. The second of these takes advantage of a simplifying lemma developed in
§4.3, which we can use to automatically handle three-dimensional coherence proofs in certain cases.
Other applications of this lemma as well as a more complex variant are explored in §4.4. Finally,
we compute in §4.6 the cohomology of finite products of spheres. The dominating computation
is the construction of an equivalence witnessing associativity of the join (defined in §1.3). This is
the first and only proof involving three-dimensional paths we give in which §4.3 does not apply,
and serves as a somewhat disheartening demonstration of the state of cubical reasoning in vanilla
homotopy type theory.

Before beginning the chapter proper, we observe a handy lemma:

Lemma 4.1 (Basepoint Independence). Let n : Z be given. For any A : U and basepoints
a1, a2 : A, we have Hn(A, a1) = Hn(A, a2). In addition, for any X,Y : U∗, f : X → Y , and paths
p, q : fx0 = y0, we have (f, p)∗ = (f, q)∗.

Proof. For the first claim, we observe that by the Suspension Axiom we have

Hn(A, a1) = Hn(Σ(A, a1)) ≡ Hn(ΣA, north) ≡ Hn(Σ(A, a2)) = Hn(A, a2)

For the second, we use naturality of the same. We have

(f, p)∗ = susp-isonX ◦ (Σ(f, p))∗ ◦ (susp-isonY)−1

≡ susp-isonX ◦ (Σf, refl)∗ ◦ (susp-isonY)−1

≡ susp-isonX ◦ Σ(f, q)∗ ◦ (susp-isonY)−1

= (f, q)∗

27

In light of this, we will henceforth omit basepoint path information when considering the action of
the cohomology functor on maps.

4.1 Extending the Exactness Axiom

The Exactness Axiom tells us that each function (f, p) : X ·→ Y gives rise to an exact sequence

Hn(Cof(f, p))
cfcod∗−→ Hn(Y)

f∗−→ Hn(X). In fact, we have a long exact sequence

· · · f∗−→ Hn−1(X)
∂−→ Hn(Cof f)

cfcod∗−→ Hn(Y)
f∗−→ Hn(X)

∂−→ · · ·

which extends infinitely in both directions. The homomorphisms ∂ are constructed using a map

ext-glue which we define for any span U
g
←·W h·→ V as

ext-glue : U tW V → ΣW

ext-glue (left u) :≡ north

ext-glue (right v) :≡ south

apext-glue(glue w) := merid w

This map definitionally preserves basepoint. Here, we use ext-glue : Cof f → ΣX to define ∂ :≡
susp-isonX ◦ ext-glue∗.

We can obtain the long exact cofiber sequence by iterating the cofiber type construction. Starting
with the function (f, p) : X ·→ Y , we can construct first the cofiber type Cof f , then the type
Cof cfcodf , and so on. We thus assemble a diagram of pushouts:

X Y ·

· Cof f Cof cfcodf · · ·

· Cof cfcodcfcodf · · ·

f

cfcodf

cfcodcfcodf

cfcodcfcodcfcodf

cfcod(···)

Let us write Cofnf for the nth iterated cofiber type and cfcodnf for the accompanying map Cofn−1f →
Cofnf . Courtesy of the two pushouts lemma, we observe that Cof2f is the pushout of the span
· ← X → ·; in other words, it is the suspension of X. Similarly, we will have Cof3f ' ΣY , and
Cof4f ' Σ(Cof f). To show this in detail, we first prove the following:

Lemma 4.2 (Symmetry of Pushouts). Let a span X
(f,p)← Z

(g,q)→ Y be given. There is a equivalence
flip : X tZ Y ' Y tZ X which preserves basepoint (we write flip� for the pointed equivalence).
Moreover, we have left =W.X→W

flip�
right and right =W.Y→W

flip�
left.

28

Proof. One can easily confirm that the map flip : XtZ Y → Y tZX sending left x to right x, right y
to left y, and glue z to (glue z)−1 is an equivalence. The path

apright(p
−1) · glue z0

−1 · apleft(q) : right x0 = left y0

proves that flip preserves basepoint. The action of the equivalence on left and right follows straight-
forwardly from Assertion 1.8.

Theorem 4.3 (Twice-Iterated Cofiber Type). Let X,Y : U∗ and (f, p) : X ·→ Y be given. There

is an equivalence cof2-equiv : Cof2f ' ΣX which preserves basepoint (with cof2-equiv
�

denoting

the pointed equivalence). Additionally, we have paths (1) cfcod2
f =

V.Cof(f,p)→V
cof2-equiv�

ext-glue and (2)

ext-glue =U.U→ΣY
cof2-equiv�

flip ◦ Σf .

Proof.

Defining the Equivalence

For the equivalence maps we set

into : Cof2f → ΣX

into cfbase :≡ south

into (cfcod c) :≡ ext-glue c

apinto(cfglue y) := refl

out : ΣX → Cof2f

out north :≡ cfcod cfbase

out south :≡ cfbase

apout(merid x) := apcfcod(cfglue x) · (cfglue (fx))−1

We take (merid x0)−1 as the proof that into preserves basepoint, and write into� for the pointed
function. Let us first show that for every σ : ΣX we have into (out σ) = σ. In the north case, we
have refl : into (out north) = north, and in the south case refl : into (out south) = south. For the

merid case, we must show for all x : X that refl =
σ.into(outσ)=σ
merid x refl. By Lemma 2.4, it suffices to give

a square

north south

north south

apinto◦out(merid x)

refl

refl

merid x

We have

apinto◦out(merid x) = apinto(apcfcod(cfglue x) · (cfglue f(x))−1)

= apinto◦cfcod(cfglue x) · (apinto(cfglue f(x)))−1

= apinto◦cfcod(cfglue x)

= apext-glue(cfglue x)

= merid x

29

and so the square commutes.

Now we show that for κ : Cof2f we have out (into κ) = κ. For the cfbase case, we have refl :
out (into cfbase) = cfbase. For the cfcod case, we define out-into-cod :

∏
c:Coff : out (into (cfcod c)) =

cfcod c by induction on the cofiber type. For the point cases, we set

out-into-cod cfbase :≡ refl

out-into-cod (cfcod y) :≡ cfglue y

For the cfglue case we need for x : X a path refl =
c.out (into (cfcod c))=cfcod c
cfglue x cfglue (fx); by Lemma

2.4 it suffices to give a square

north south

north south

apout◦into◦cfcod(cfglue x)

refl

cfg
lu

e
(f
x

)

apcfcod(cfglue x)

We compute

apout◦into◦cfcod(cfglue x) = apout◦ext-glue(cfglue x)

= apout(merid x)

= apcfcod(cfglue x) · (cfglue (fx))−1

and see that the square commutes. This completes the definition of out-into-cod. To finish we
must prove the cfglue case of the outer induction, which requires we construct for every y : Y a

path refl =
κ.into (out κ)=κ
cfglue y out-into-cod (cfcod y). By Lemma 2.4, and since out-into-cod (cfcod y) ≡

cfglue y, it suffices to give a square

cfbase cfbase

cfbase cfcod (cfcod y)

apinto◦out(cfglue y)

refl

cfg
lu

e
y

cfglue y

We have apout◦into(cfglue y) = apout(refl) ≡ refl, so the square commutes.

Constructing the Paths (1) and (2)

By Assertion 1.8, we have cfcod2
f =

V.Cof(f,p)→V
cof2-equiv�

into ◦ cfcodf , and into◦cfcod ≡ ext-glue by definition,

so we have (1). For (2), Assertion 1.9 gives flip ◦ Σf ◦ into =U.U→ΣY
cof2-equiv�

flip ◦ Σf , so with function

30

extensionality it suffices to show
∏
κ:Cof2(f,p) ext-glue κ = flip (Σf (into κ)). This is a straightforward

proof by induction, which we leave to the reader.

Now we can establish the existence of the long exact sequence. We have the following equalities at
the type

∑
(U,V):U∗×U∗(Cof f → U)× (U → V):

(Cof2f,Cof3f, cfcod2
f , cfcod3

f) = (Cof2f,ΣY, cfcod2
f , ext-glue) (by 4.3 with cfcodf)

= (ΣX,ΣY, ext-glue, flip ◦ Σf) (by 4.3 with f)

= (ΣX,ΣY, ext-glue,Σf) (by 4.2 with ΣY)

Diagrammatically, this amounts to the following:

X Y Cof f Cof2f Cof3f

ΣX ΣY

ΣY

f cfcodf cfcod2
f

ext-glue

cfcod3
f

ext-glue

co
f

2-eq
u

iv
f

co
f

2-eq
u

iv
cfco

d
f

flip◦Σf

Σf fl
ip

Using this equality, we can transport the proof that

Hn(Cof3f)
cfcod3

f
∗

−→ Hn(Cof2f)
cfcod2

f
∗

−→ Hn(Cof f)
cfcodf

∗

−→ Hn(Y)
f∗−→ Hn(X)

is exact, given by the Exactness Axiom, to a proof that

Hn(ΣY)
Σf∗−→ Hn(ΣX)

ext-glue∗−→ Hn(Cof(f, p))
cfcodf∗−→ Hn(Y)

f∗−→ Hn(X)

is exact. Finally, applying the Suspension Axiom gives the desired result.

4.2 Cohomology of a Binary Wedge

In classical cohomology, we have that Hn(X ∨ Y) ' Hn(X) × Hn(Y) by the Additivity Axiom.
Although we do not assume general Additivity, we can prove the finite case using only the Exactness
Axiom. This proof is adapted from [6, p.32-33]. We first have an algebraic lemma:

Lemma 4.4. Let groups G,H1, H2 be given. Given maps

31

H1 G H2

i1

j1 j2

i2

such that j1 ◦ i1 ∼ idH1 , j2 ◦ i2 ∼ idH2 , and the sequences H1
i1→ G

j2→ H2 and H2
i2→ G

j1→ H1 are
exact, then 〈j1, j2〉 : G → H1 × H2 is an isomorphism. Moreover, ik corresponds to the injection
Hk → H1 ×H2 and jk to the projection H1 ×H2 → Hk.

Proof. Let ϕ = 〈j1, j2〉. By Lemma 1.17, we can show ϕ is an isomorphism by showing it is injective
and surjective.

To show ϕ is injective we must that for any g : G, if ϕ(g) = e, then g = e. Let g : G be given

such that ϕ(g) = e, that is, such that j1g = e and j2g = e. Since H1
i1→ G

j2→ H2 is exact, we have
an element of ‖

∑
h1:H1

i1h1 = g‖−1. As our goal, g = e, is a (−1)-type, we can extract h1 and the
proof i1h1 = g. Then g = i1h1 = i1(j1i1h1) = i1j1g = i1e = e.

To show it is surjective, it suffices to give for h1 : H1 and h2 : H2 some g : G such that j1g = h1 and
j2g = h2. Take g = i1h1 · i2h2. Then j1g = j1(i1h1 · i2h2) = j1i1h1 · j1i2h2 = h1 · e = h1. Likewise
j2g = h2.

We have (i1 ◦ ϕ)(h1) = 〈i1j1h1, i1j2h1〉 = 〈h1, e〉 and analogously (i2 ◦ ϕ)(h2) = 〈h2, e〉; thus i1 and
i2 correspond to the injections over ϕ. We have π1 ◦ϕ = j1 and π2 ◦ϕ = j2 by definition, so j1 and
j2 correspond to the projections.

We combine this with a topological lemma:

Lemma 4.5. Let X,Y : U∗. Then where winl denotes the map X → X ∨ Y , we have a pointed
equivalence (e, p) : Cof(winl) ' Y . Moreover, if we define

projl : X ∨ Y → X

projl (winl x) :≡ x
projl (winr y) :≡ x0

approjlwglue := refl

we have cfcodwinl =U.X∨Y→U
ua�(e,p) projl. The corresponding result holds for winr and the analogously-

defined projr.

Proof. Define f : Cof(winl)→ Y by

f cfbase :≡ y0

f (cfcod w) :≡ projr w

apf (cfglue x) := refl

and g : Y → Cof(winl) by g(y) = cfcod (winr y). We have f ◦ g ≡ idY definitionally. For
the other inverse, we go by induction on the cofiber space. For cfbase, we have g(f cfbase) :≡

32

cfcod (winr y0), so (cfglue x0 · apcfcodwglue)−1 is a proof g(f cfbase) = cfbase. For cfcod, we define
q :
∏
w:X∨Y g(f(cfcod w)) = cfcod w by induction on the wedge, giving the point cases as follows:

q (winl x) :≡ (cfglue x0 · apcfcodwglue)−1 · cfglue x

q (winr y) :≡ refl

For the wglue case we must give a proof q (winl x0) =
w.g(f(cfcod w))=cfcod w
wglue q (winr y0); by Lemma

2.4 it suffices to give a square

cfbase cfcod (winr y)

cfcod (winl x) cfcod (winr y)

apg◦projlwglue

(cfg
lu

e
x

0 ·a
p

cfco
d w

g
lu

e) −
1·cfg

lu
e
x

0

refl

apcfcodwglue

As apg◦projlwglue = apg(approjlwglue) = apgrefl ≡ refl, we see this square can be satisfied. This
completes the cfcod case. For the cfglue case, we must give for x : X a path

(cfglue x0 · apcfcodwglue)−1 =
c.g(fc)=c
cfglue x q (winl x)

Again by Lemma 2.4, it suffices to give a square

cfcod (winr y0) cfcod (winr y0)

cfbase cfcod(winl x)

apg◦f (cfglue x)

(cfg
lu

e
x

0 ·a
p

cfco
d w

g
lu

e) −
1

(cfg
lu

e
x

0 ·a
p

cfco
d w

g
lu

e) −
1·cfg

lu
e
x

cfglue x

Since apg◦fcfglue = apgrefl ≡ refl, this square commutes.

33

By combining these two results, we obtain the following theorem:

Theorem 4.6. There is an isomorphism Hn(X ∨ Y) ' Hn(X)×Hn(Y). Over this isomorphism,
winl∗ and winr∗ correspond to the two projections and projl∗ and projr∗ to the two injections.

Proof. By applying the Exactness Axiom together with Lemma 4.5 (and using Lemma 4.1 to handle
basepoint paths), we have exact sequences

Hn(Y)
projr∗→ Hn(X ∨ Y)

winl∗→ Hn(X)

Hn(X)
projl∗→ Hn(X ∨ Y)

winr∗→ Hn(Y)

Since winl∗ ◦ projl∗ = (projl ◦ winl)∗ = id∗ and likewise for winr and projr, we can apply Lemma 4.4
to obtain the desired result.

4.3 A Coherence Lemma

From this point forward, the results we prove become more complex. Since cohomology deals
naturally in suspensions and cofiber types, we are often interested in iterated pushout types, as
pictured:

C B

A A tC B E

D D tAtCB E

Proving that such a type is equivalent to something else presents a significant challenge, because it
requires satisfying three-dimensional coherences: when we eliminate into a path type (as is required
for an equivalence proof), the path cases of the outer pushout require squares, and the path cases of
the inner pushout require cubes. Luckily, we will rarely need to work with cubes explicitly, because
our pushouts will come in certain forms which satisfy the coherence conditions automatically. The
only result we prove which cannot be simplified in this way is Theorem 4.21, the associativity of
the join, which is far and away the most technically involved result we present.

Most cases will fall under the umbrella of the following lemma:

Theorem 4.7. Let a span A
f← C

g→ B and a map h : A tC B → D be given such that f is a
section, which is to say there is a map r : C → B such that

∏
c:C r(fc) = c. For any P : Cof h→ U ,

in order to construct a term of type
∏
κ:Cofh P (κ), it suffices to give:

34

• an element cfbase : P cfbase,

• for d : D, an element cfcod d : P (cfcod d),

• for a : A, a path cfglue-left a : cfbase =P
cfglue (left a) cfcod (h (left a)),

• for b : B, a path cfglue-right b : cfbase =P
cfglue (right b) cfcod (h (right b)).

No relationship between cfglue-left and cfglue-right is required. The k :
∏
κ:Cof h P (κ) we construct

in the proof satisfies k cfbase ≡ cfbase, k (cfcod d) ≡ cfcod d, and apdk(cfglue (left a)) = cfglue-left a.

Proof. Let the above be given. We show
∏
κ:Cof h P (κ) by induction on κ. For the cfbase and cfcod

cases we take the given cfbase and cfcod. For the cfglue case, we must give for γ : A tC B a path
cfbase =P

cfglue γ cfcod (hγ). We proceed by induction on γ : A tC B. For the left case, we take

for a : A the given cfglue-left a. In the right case, however, we make an adjustment, defining an
alternate cfglue-right

′
. Recall that for the glue case we must give for c : C a term of type

cfglue-left(fc) =
γ.cfbase=Pcfglue γcfcod (hγ)

glue c cfglue-right
′
(gc)

By Lemma 2.7 it suffices to inhabit the following dependent square over natural-sq cfglue (glue c),

with cfglue-right
′
(gc) substituted for α:

cfbase cfbase

cfbase cfbase

natural-sq cfglue (glue c)

cfcod (h (left (fc))) cfcod (h (right (g)))

cfcod (h (left (fc))) cfcod (h (right (gc)))

cfg
lu

e-left
(f
c)

over-ap-inλ .cfbase(apdλ .cfbase(glue c))

α

apλ .cfbase(glue c)

cfg
lu

e
(left

(f
c))

cfg
lu

e
(rig

h
t

(g
c))

apcfcod◦h(glue c)

over-ap-incfcod◦h(apdcfcod◦h(glue c))

Our plan, drawing on the existence of cube fillers, is to choose for c : C a path pc : cfbase = cfbase
so that the above cube is satisfied when we substitute pcC cfglue-right(gc) for α. If we have such a

p, we can complete the theorem by defining cfglue-right
′
(b) :≡ p(rb)C cfglue-right b; since r(gc) = c,

we would have cfglue-right
′
(gc) = pc C cfglue-right(gc) and therefore satisfy the cube. To define

such a p, we go by the following lemma:

35

Lemma 4.8. Let the following collection of paths be given, depicting a partial frame for a depen-
dent square in some fibration P :

b00 b10

a00 a10 b′10

s

a01 a11

b01 b11

q
0
-

q-0

p-0

p
0
-

p
1
-

q
1
-

p-1

q-1

Here b10 and b′10 both lie in the fiber Pa10. Then there exists a propositionally unique path
r : b10 = b′10 such that the completed dependent square, taking rCq1- as the right side, is inhabited.

Proof. By square induction, we may assume s ≡ srefl. In this case, the dependent square reduces
to a simple square. We may then also assume the three paths q0-, q-0, and q-1 are definitionally refl.
In this case, we need a propositionally unique path r such that the square

b00 b00

b00 b10

refl

refl

r·refl

refl

Clearly setting r :≡ refl inhabits the square, and it follows easily from uniqueness of square fillers
(Theorem 2.6) that this choice is propositionally unique.

With this lemma in hand we can, as desired, pick for c : C a path pc : cfbase = cfbase such that the
cube is satisfied when we substitute pcC cfglue-right c for α. As described earlier, this is enough to
complete the theorem.

This is certainly not the most general theorem of this sort we can prove, and our choice of statement
is somewhat arbitrary – one could, for example, extend from cofiber types to some more general
class of pushout. However, the case we have proved is simple and general enough for our purposes,
so we leave such generalizations to the reader.

4.4 Sections

Following the investigations of the previous section, we now consider the cohomology of types Y
for which we are given a section f : X → Y . Ultimately, our result is the following:

36

Theorem 4.9. Let a section f : X → Y be given. Then Hn(Y) = Hn(X)×Hn(Coff).

We will prove this theorem in two ways. First, we will give a simple proof using the Exactness Axiom
and a bit of homological algebra. Second, we will prove it through Suspension and Additivity,
by proving that ΣY ' ΣX ∨ Σ(Coff). The second of these, while more involved, has a more
concrete feel: whereas passing to cohomology leaves only the information left after any number of
suspensions, we only need to suspend once for something which looks like Theorem 4.9 to appear.

For the first proof, we will need a few simple lemmas.

Lemma 4.10 (Cohomology of Unit). For any n : Z, Hn(1) = 1.

Proof. We can easily check that the cofiber type of the identity map 1→ 1 is itself 1. Across this
equivalence cfcod : 1→ Cof id must of course correspond to id1. By the Exactness Axiom we have

an exact sequence Hn(1)
id∗→ Hn(1)

id∗→ Hn(1). Since id1
∗ = idHn(1), we see that the image of idHn(1)

is equal to its kernel, which can only be true if Hn(1) = 1.

Lemma 4.11 (Action on Constant Maps). The action cstX,Y
∗ of a cohomology functor on the

constant map cstX,Y : X ·→ Y is the constant homomorphism.

Proof. The constant map cstX,Y factors as the composition cst1,Y ◦cstX,1. By functoriality, cstX,Y
∗ =

cstX,1
∗ ◦ cst1,Y

∗. Since Hn(1) = 1, cstX,Y
∗ factors through the trivial group and must be con-

stant.

We also need a case of the splitting lemma, which is a standard result in homological algebra. The
statement and proof is no different from the classical version, so we refer the reader to e.g. [9,
p.147].

Assertion 4.12 (Right Splitting Lemma). Let a short exact sequence of abelian groups

1→ G
ϕ→ H

ψ→ K → 1

be given. If ψ has a right inverse χ, then H ' G ×K. Over this isomorphism, ϕ corresponds to
the natural injection and ψ to the natural projection.

This is enough to prove the following:

Theorem 4.9 (First Proof). Let a section f : X ·→Y be given. Then Hn(Y) ' Hn(X)×Hn(Coff).

Proof. Let r : Y → X be f ’s left inverse. Per §4.1, we have an exact sequence

Hn(ΣX)
ext-glue∗−→ Hn(Cof f)

cfcod∗−→ Hn(Y)
f∗−→ Hn(X)

First, we show that ext-glue : Cof f → ΣX is constant, which by Lemma 4.11 implies that ext-glue∗

is constant as well. We define p :
∏
κ:Cof f north = ext-glue κ by induction; any basepoint consider-

ations can be handled by Lemma 4.1. For the point cases we set p cfbase :≡ refl and p (cfcod y) =

merid (ry). For the cfglue case we must give for x : X a path refl =κ.north=ext-glue κ
cfglue x merid (ry),

equivalent by Lemma 2.4 to giving a square

37

north north

north south

refl

refl

m
erid

(r
(f
x

))

apext-glue(cfglue x)

Since apext-glue(cfglue x) = merid x and r(fx) = x, this square commutes.

Thus ext-glue∗ is constant, which by exactness implies cfcod∗ is injective. Since f has a left inverse,
f∗ has a right inverse and is therefore surjective. Hence we have an improved exact sequence:

1 −→ Hn(Cof f)
cfcod∗−→ Hn(Y)

f∗−→ Hn(X) −→ 1

and can apply the splitting lemma to conclude that Hn(Y) ' Hn(X)×Hn(Cof f).

We proceed to the second proof. The main content is the following, from which we derive our result
by the Suspension Axiom and Additivity.

Theorem 4.13. Let a section f : X ·→ Y be given. Then there is a pointed equivalence ΣY '
ΣX ∨ Σ(Cof f).

Proof. Let r be f ’s left inverse. First we define into : ΣY → ΣX∨Σ(Cof f). Given the proliferation
of suspensions, we will leave the reader to infer values on points, and give the merid case:

apinto(merid y) = (apwinl(merid (ry)))−1 · wglue · apwinr(merid (cfcod y))

This map is evidently basepoint-preserving.

For the inverse, we define out : ΣX ∨ Σ(Cof f) → ΣY , by defining out-winl : ΣX → ΣY and
out-winr : ΣCof f → ΣY and showing they agree on basepoint. For out-winl we set

apout-winl(merid x) = (merid (fx))−1 ·merid y0

For out-winr we define its action on merid κ by induction. For the point cases we set

apout-winr(merid cfbase) = refl

apout-winr(merid (cfcod y)) = (merid (f(ry)))−1 ·merid y

Since r(fx) = x, we see that out-winr’s action on merid cfbase agrees with its action on on
merid (cfcod (fx)) as needed. Finally, we take refl as the path out-winl north = out-winr north
required for the wglue case. The intuition behind the definition of out as an inverse is that out-winr
recovers y modulo an adjustment f(ry) necessary to satisfy the cfglue coherence, and out-winl serves
to correct for that adjustment.

38

Following this logic we show that out ◦ into ∼ id, by induction on ΣY . For the point cases we give

out-into north :≡ (merid y0)−1

out-into south :≡ refl

By Lemma 2.4 it suffices for the merid case to give for y : Y a square

south south

north south

apout◦into(merid y)

(m
erid

y
0
) −

1

refl

merid y

Since

apout◦into(merid y) = apout((apwinl(merid (ry)))−1 · wglue · apwinr(merid (cfcod y)))

= apout◦winl(merid (ry))−1 · apoutwglue · apout◦winr(merid (cfcod y))

= (merid (f(ry))−1 ·merid y0)
−1 · refl · ((merid (f(ry)))−1 ·merid y)

= (merid y0)−1 ·merid y

the square commutes.

We now show that into ◦ out ∼ id, by induction on ΣX ∨ Σ(Cof f). We define auxiliary functions
into-out-winl and into-out-winr. For the first we give as point cases

into-out-winl : into ◦ out ◦ winl ∼ winl

into-out-winl north :≡ (apwinr(merid cfbase))−1 · wglue−1

into-out-winl south :≡ (apwinr(merid cfbase))−1 · wglue−1 · apwinl(merid (ry0))

For the merid case we must give for x : X a square

winr south winr south

winl north winl south

apinto◦out◦winl(merid x)

in
to

-o
u

t-w
in

l
n

orth

in
to

-o
u

t-w
in

l
so

u
th

apwinl(merid x)

39

We have

apinto◦out◦winl(merid x) = apinto((merid (fx))−1 ·merid y0)

= apinto(merid (fx))−1 · apinto(merid y0)

= (apwinl(merid (r(fx)))−1 · wglue · apwinr(merid (cfcod (fx))))
−1

= (apwinl(merid (r(fx)))−1 · wglue · apwinr(merid (cfcod (fx))))
−1

· ((apwinl(merid (ry0)))−1 · wglue · apwinr(merid (cfcod y0)))

We leave the reader to check that this makes the square commute. We proceed to into-out-winr.
For this we take advantage of Theorem 4.7, which allows us to skip the cfglue case. For the point
cases, we set

into-out-winr : into ◦ out ◦ winr ∼ winr

into-out-winr north :≡ (apwinr(merid cfbase))−1

into-out-winr south :≡ refl

For the merid ◦ cfcod case, we must give for y : Y a square

winr south winr south

winr north winr south

apinto◦out◦winr(merid (cfcod y))

(a
p

w
in

r (m
erid

cfb
a

se)) −
1

refl

apwinr(merid (cfcod y))

We have

apinto◦out◦winr(merid (cfcod y)) = apinto((merid (f(ry)))−1 ·merid y)

= apinto(merid (f(ry)))−1 · apinto(merid y)

= (apwinl(merid (r(f(ry))))−1 · wglue · apwinr(merid (cfcod (f(ry)))))
−1

· (apwinl(merid (ry)))−1 · wglue · apwinr(merid (cfcod y))

Again, we leave the reader to check this is as needed. We can then give the merid cfbase case by
transporting our merid (cfcod (fx0)) proof along cfglue x0.

As an easy corollary, we have

Corollary 4.14. For any X : U∗ and Y : X → U∗, Σ(
∑

x:X Y (x)) ' ΣX ∨ Σ(
∨
x:X Y (x)), and

therefore Hn(
∑

x:X Y (x)) ' Hn(X)×Hn(
∨
x:X Y (x)).

40

In particular, for X,Y : U∗, Hn(X + Y) ' Hn(X)×Hn(Y)×Hn(S0).

With a bit more work, we can also show that Σ(X × Y) ' ΣX ∨ ΣY ∨ Σ(X ∧ Y), where ∧ is the
smash product definited in §1.3. It follows that Hn(X × Y) ' Hn(X) × Hn(Y) × Hn(X ∧ Y),
which we will use in §4.6. We achieve this by applying Theorem 4.9 twice, once to extract X and
once to extract Y . We only need the following lemma:

Lemma 4.15. Let (f, p) : X ·→ Z and (g, q) : Y ·→ Z be given. There is a pointed equivalence
Cof (cfcodf ◦ g) ' Cof [f, g], where [f, g] : X ∨ Y → Z is defined by

[f, g](winl x) :≡ fx
[f, g](winr y) :≡ gy
ap[f,g]wglue := p · q−1

Proof. We first define a map into : Cof (cfcodf ◦ g)→ Cof [f, g] by

into cfbase :≡ cfbase

into (cfcod cfbase) :≡ cfbase

into (cfcod (cfcod z)) = cfcod z

apinto◦cfcod(cfglue x) = cfglue (winl x)

apinto(cfglue y) = cfglue (winr y)

The point and one-dimensional cases for the inverse out are given by

out cfbase :≡ cfbase

out (cfcod z) :≡ cfcod (cfcod z)

apout(cfglue (winl x)) := cfglue y0 · (apcfcod◦cfcod(p · q−1))
−1 · (apcfcod(cfglue x0))−1 · apcfcod(cfglue x)

apout(cfglue (winr y)) := cfglue y

For the wglue case, it suffices by Lemma 2.4 to show

cfbase cfbase

cfcod (cfcod (winl x0)) cfcod (cfcod (winr y0))

refl

a
p

o
u

t (cfg
lu

e
(w

in
l
x

0
))

a
p

o
u

t (cfg
lu

e
(w

in
r
y
0
))

apcfcod◦cfcod◦[f,g]wglue

This follows by inspection once we observe that apcfcod◦cfcod◦[f,g]wglue = apcfcod◦cfcod(p · q−1).

41

We show that out ◦ into ∼ id by induction on Cof(cfcodf ◦ g). First we define out-into-cod :
out ◦ into ◦ cfcod ∼ cfcod by induction on Cof f , setting for point cases

out-into-cod cfbase :≡ cfglue y0 · (apcfcod◦cfcod(p · q−1))
−1 · (apcfcod(cfglue x0))−1

out-into-cod (cfcod z) :≡ refl

For the cfglue case, we must give for x : X a square

cfbase cfcod (cfcod (fx))

cfcod cfbase cfcod (cfcod (fx))

apout◦into◦cfcod(cfglue x)

o
u

t-in
to

-co
d

cfb
a

se

o
u

t-in
to

-co
d

(cfco
d
z
)

apcfcod(cfglue x)

Given that

apout◦into◦cfcod(cfglue x) = apout(cfglue (winl x))

= cfglue y0 · (apcfcod◦cfcod(p · q−1))
−1 · (apcfcod(cfglue x0))−1 · apcfcod(cfglue x)

we see the square commutes.

To show into ◦ out ∼ id, we go by induction on Cof [f, g]. First, observe that [f, g] : X ∨ Y → Z
is a map out of a pushout, and the left map of that pushout has a left inverse. We may therefore
apply Theorem 4.7 and skip the highest coherence. The point cases are simple:

into-out : into ◦ out ∼ id

into-out cfbase :≡ refl

into-out (cfcod z) :≡ refl

Within the cfglue case, we must show the winl and winr cases, that is, inhabit two squares. Per the
above definition, each of these squares has refl on both vertical sides, so in truth we simply need to
give paths apinto◦out(cfglue (winl x)) = cfglue (winl x) and apinto◦out(cfglue (winr y)) = cfglue (winr y).
We leave the reader to check these, which are straightforward if tedious computations.

We may now conclude:

Corollary 4.16. For any X,Y : U∗, there is a pointed equivalence Σ(X × Y) ' ΣX ∨ ΣY ∨
Σ(X ∧ Y), and thus an isomorphism Hn(X × Y) ' Hn(X)×Hn(Y)×Hn(X ∧ Y).

Proof. By the previous lemma, X ∧ Y ≡ Cof [λx.(x, y0), λy.(x0, y)] ' Cof(λy.cfcodλx.(x,y0)(x0, y)).
Since x 7→ (x, y0) and y 7→ (x0, y) each have obvious left inverses, we can apply Theorem 4.13 twice
to achieve the desired result.

42

4.5 The Mayer-Vietoris Sequence

Given a span X
(f,p)
←· Z

(g,q)
·→ Y , the Mayer-Vietoris sequence is a long exact sequence of the form

· · · −→ Hn−1(Z)
ext-glue∗−→ Hn(X tZ Y)

〈left∗,right∗〉−→ Hn(X)×Hn(Y)
f∗−g∗−→ Hn(Z) −→ · · ·

The formulation as an exact sequence originates in [6, p.37]. Using this sequence we can, at least
in some cases, determine the cohomology groups of X tZ Y in terms of those of X,Y , and Z.
We can also think of this as a generalization of the long exact cofiber sequence, which we obtain
(modulo some equivalences) as the special case where Y = 1. It is, however, derivable from the
cofiber sequence. The result is typically proven algebraically, as in [6] or more recently in [19,
p.110]. Though in principle we could repeat that proof in this setting, we instead show that a
particular sequence of maps is equivalent to a cofiber sequence, as is suggested in [5], and apply
the cohomology functor to derive the result.

Theorem 4.17 (Mayer-Vietoris). For any span X
(f,p)
←· Z

(g,q)
·→ Y , define the map

reglue : X ∨ Y → X tZ Y
reglue (winl x) :≡ left x

reglue (winr y) :≡ right y

apregluewglue := apleft(p
−1) · glue z0 · apright(q

−1)

There is a pointed equivalence mv-equiv� : Cof reglue ' ΣZ. We have (1) cfcod =V.XtZY→V
ua�mv-equiv�

ext-glue and (2) ext-glue =
U.U→Σ(X∨Y)

ua�mv-equiv�
diff, where diff : ΣZ → Σ(X ∨ Y) is defined by

diff north :≡ north

diff south :≡ north

apdiff(merid z) := merid (fz) · (merid (gz))−1

Proof. For the proof, we assume by path induction that p ≡ refl and q ≡ refl (and thus that
fz0 ≡ x0 and fz0 ≡ y0).

Defining the Equivalence Maps

As an intuitive argument we consider a visualization of the pushout X tZ Y , with the image of
X ∨ Y shaded:

43

Yg[Z]

Z

X f [Z]x0

z0

y0

To construct the cofiber type Cof reglue is essentially to contract this shaded part to a point. With
X and Y contracted to poles (and leaving the already contractible path connecting them intact),
the resulting space is seen to be ΣZ.

We define a map into : Cof reglue→ ΣZ as suggested by the picture. For the point cases, we set

into cfbase :≡ north

into (cfcod γ) :≡ ext-glue γ

For the coherence we will define into-glue :
∏
w:X∨Y cfbase = ext-glue (reglue w), setting apinto(cfglue w) :=

into-glue w. For the point cases,

into-glue (winl x) :≡ refl

into-glue (winr y) :≡ merid z0

To complete this definition, we need to give a path refl =
w.north=ext-glue (reglue w)
wglue merid z0. By Lemma

2.4 this is equivalent to giving a square

north north

north south

refl

refl

m
erid

z
0

apext-glue◦regluewglue

We have apext-glue◦regluewglue = apext-glue(glue z0) = merid z0 and so the square commutes.

We define out : ΣZ → Cof reglue by suspension recursion. We want apout(merid z) to correspond
to glue z in the pushout, but we need a path with constant endpoints, so we take apout(merid z) =
out-glue as given by the following square filler (per Theorem 2.6):

44

cfbase cfbase

cfcod (left (fz)) cfcod (right (gz))

out-glue z

cfg
lu

e
(w

in
l

(f
z
))

out-square z

cfg
lu

e
(w

in
r

(g
z
))

apcfcod(glue z)

This forces out north :≡ out south :≡ cfbase.

Right Inverse

We show into ◦ out ∼ idΣZ by induction on the suspension. For the point cases we have refl :
into (out north) = north and merid z0 : into (out south) = south. For the merid case we need to give

for z : Z a path refl =
σ.into (out σ)=σ
merid z merid z0. By Lemma 2.4 it suffices to give a square

north north

north south

refl

apinto◦out(merid z)

m
erid

z
0

merid z

Note that apinto◦out(merid z) = apinto(out-glue z). We observe that ap-square into (out-square z) has
type

north north

north south

apinto(out-glue z)

a
p

in
to (cfg

lu
e

(w
in

l
(f
z
)))

a
p

in
to (cfg

lu
e

(w
in

r
(g
z
)))

apinto◦cfcod(glue z)

Since apinto(cfglue (winl (fz))) = refl, apinto(cfglue (winr (gz))) = merid z0, and apinto◦cfcod(glue z) =
merid z, this square serves to satisfy our requirement.

Left Inverse

45

We show out◦ into ∼ idCof reglue by induction on the cofiber type. Observe that X∨Y is the pushout
of the span X ← 1 → Y , and that the right map of this span has a left inverse. Thus Cof reglue
satisfies the conditions of Theorem 4.7, and we may omit the highest coherence.

For the cfbase case we have refl : out (into cfbase) = cfbase. For the cfcod case we will define
out-into-cod :

∏
γ:XtZY out (into (cfcod γ)) = cfcod γ by induction on X tZ Y , with the point cases

defined as follows:

out-into-cod (left x) :≡ cfglue (winl x)

out-into-cod (right y) :≡ cfglue (winr y)

For the path case we must show for every z : Z that

cfglue (winl (fz)) =
γ.out (into (cfcod γ))=cfcod γ
glue z cfglue (winr (gz))

By Lemma 2.4 we need a square

cfbase cfbase

cfcod (left (fz)) cfcod (right (fz))
cfg

lu
e

(w
in

l
(f
z
))

apout◦into◦cfcod(glue z)

cfg
lu

e
(w

in
r

(g
z
))

apcfcod(glue z)

Since out-square z has the same left, bottom, and right sides as this square, it suffices to show that
apout◦into◦cfcod(glue z) = out-glue z. For this we have apout◦into◦cfcod(glue z) :≡ apout◦ext-glue(glue z) =
apout(merid z) = out-glue z.

We have completed the cfbase and cfcod cases; we must now show that for any w : X ∨ Y , we have

refl =
κ.out (into κ)=κ
cfglue w out-into-cod (reglue w). By Lemma 2.4, it is equivalent to show that we have a

square

cfbase out (into (cfcod (reglue w)))

cfbase cfcod (reglue w)

apout◦into(cfglue w)

refl

o
u

t-in
to

-co
d

(reg
lu

e
w

)

cfglue w

46

Note that apout◦into(cfglue w) = apout(into-glue w). After making this simplification we proceed
by induction on w : W ∨ Y . Per our application of Theorem 4.7, we may ignore the wglue case.
Thus we need only prove the winl and winr cases, which after reductions amount to inhabiting the
following two squares:

cfbase cfbase

cfbase cfcod (left x)

lsquare x

refl

refl

cfg
lu

e
(w

in
l
x

)

cfglue (winl x)

and

cfbase cfbase

cfbase cfcod (right y)

rsquare y

apout(merid z0)

refl

cfg
lu

e
(w

in
r
y
)

cfglue (winr y)

The first of these clearly commutes. To show the second commutes, we must show that apout(merid z0) =
refl. We have apout(merid z0) = out-glue z0, so by uniqueness of square fillers (Theorem 2.6) it suf-
fices to demonstrate that the square

cfbase cfbase

cfcod (left (fz0)) cfcod (right (gz))

refl

cfg
lu

e
(w

in
l

(f
z
0
))

cfg
lu

e
(w

in
r

(g
z
0
))

apcfcod(glue z0)

is inhabited. Since natural-sq cfglue wglue gives us a square

cfbase cfbase

cfcod (left (fz0)) cfcod (right (gz))

apλ .cfbase(glue z0)

cfg
lu

e
(w

in
l

(f
z
0
))

cfg
lu

e
(w

in
r

(g
z
0
))

apcfcod(glue z0)

and apλ .cfbase(glue z0) = refl, we are done.

This completes the definition of the equivalence, which is definitionally basepoint-preserving.

47

Constructing the Paths (1) and (2)

By Assertion 1.8, cfcod =V.XtZY→V
ua�mv-equiv�

into ◦ cfcod, and into ◦ cfcod ≡ ext-glue, so we have the

path (1). For (2), Assertion 1.9 gives a path diff ◦ into =
U.U→Σ(X∨Y)

ua�mv-equiv�
diff, so it suffices to show∏

κ:Cof reglue diff (into κ) = ext-glue κ. With the help of Theorem 4.7, this is a straightforward proof
by induction, which we leave as an exercise for the reader.

Combining this result with Theorem 4.3 gives us an exact sequence

· · · −→ Hn-1(X ∨ Y)
susp-ison-1

X∨Y ◦diff∗

−→ Hn(ΣZ)
ext-glue∗−→ Hn(X tZ Y)

reglue∗−→ Hn(X ∨ Y) −→ · · ·

We want to extract from this a sequence

· · · −→ Hn-1(X)×Hn-1(Y)
f∗−g∗−→ Hn-1(Z)

∂−→ Hn-1(X tZ Y)
〈left∗,right∗〉−→ Hn-1(X)×Hn-1(Y) −→ · · ·

As before we have ∂ :≡ susp-ison-1
Z ◦ ext-glue∗, now mapping out of a pushout rather than cofiber

type. The main work here is in showing that susp-ison-1
X∨Y ◦ diff∗ corresponds to f∗ − g∗. In

the codomain we have the equivalence susp-ison-1
Z : Hn(ΣZ) ' Hn-1(Z), over which the former

map corresponds to susp-ison-1
X∨Y ◦ diff∗ ◦ (susp-ison-1

Z)−1. In the domain we take the equivalence
Hn-1(X ∨ Y) ' Hn(X)×Hn(Y) given in Theorem 4.6. Over this equivalence, we have that projl∗

and projr∗ correspond over the equivalence to the injections into Hn-1(X)×Hn-1(Y). It therefore
suffices to show that

susp-ison-1
X∨Y ◦ diff∗ ◦ (susp-ison-1

Z)−1 ◦ projl∗ = f∗,

susp-ison-1
X∨Y ◦ diff∗ ◦ (susp-ison-1

Z)−1 ◦ projr∗ = −g∗

We can compute the first easily:

susp-ison-1
X∨Y ◦ diff∗ ◦ (susp-ison-1

Z)−1 ◦ projl∗ = susp-ison-1
X∨Y ◦ diff∗ ◦ (Σprojl)∗ ◦ (susp-ison-1

X)−1

= susp-ison-1
X∨Y ◦ (Σprojl ◦ diff)∗ ◦ (susp-ison-1

X)−1

= susp-ison-1
X∨Y ◦ (Σf)∗ ◦ (susp-ison-1

X)−1

= f∗

Here we use that Σprojl ◦ diff = Σf , which is easily evident. With the right projection, we instead
have Σprojr ◦ diff = Σf ◦ flip; thus what remains is to show that flip∗ is the group inverse. Hence:

Lemma 4.18. Let X : U∗. The map flip∗ : Hn(ΣX)→ Hn(ΣX) is the group inverse for Hn(ΣX).

Proof. Define a map f : ΣX ·→ ΣX ∨ ΣX by

f north :≡ winl south

f south :≡ winr south

apf (merid x) = apwinl((merid x)−1) · wglue · apwinr(merid x)

Note that [idX , idX] ◦ f is equal to a constant function. If we transport these two functions across
the equivalence given by Theorem 4.6, we have

48

Hn(ΣX) Hn(ΣX ∨ ΣX) Hn(ΣX)

Hn(ΣX)×Hn(ΣX)

[idX ,idX]∗

〈idX ,idX 〉

f∗

f∗◦projl∗+f
∗◦projr

∗

Thus we have that f∗ ◦projl∗ = −(f∗ ◦projr∗). Finally, we observe that f∗ ◦projl∗ = projl ◦ f∗ = flip∗

and f∗ ◦ projr∗ = projr ◦ f∗ = id∗ = id, which gives the desired result.

4.6 Cohomology of Products of Spheres

We now compute the cohomology of arbitrary finite products of spheres in terms of the cohomology
of spheres. While the route we take may not be the most straightforward, it gives us the opportunity
to demonstrate some more involved equivalence proofs, in particular in Theorems 4.19 and 4.21. We
obtain the result by more generally computing Hn(Sk×X) in terms of Hn(X) and the cohomology
of spheres. For this, we first use Corollary 4.16 to obtain

Σ(Sk ×X) ' Sk+1 ∨ ΣX ∨ Σ(Sk ∧X)

We then show that the suspension of a smash product is equivalent to a join, so that Σ(Sk ∧X) '
Sk ∗ X. Finally, we show that S0 ∗ Z ' ΣZ and that the join commutes with suspension, in the
sense that (ΣY ∗ Z) ' Σ(Y ∗ Z). From these it follows that Sk ∗X ' Σk+1X. Hence,

Σ(Sk ×X) ' Sk+1 ∨ ΣX ∨ Σk+1X

and therefore Hn(Sk × X) ' Hn−k(S0) × Hn(X) × Hn−k(X). This is enough to compute the
cohomology of finite products of spheres in terms of the cohomology of spheres. Incidentally, it also
shows that the suspension of any product of spheres is equivalent to a wedge of spheres.

Theorem 4.19. For any X,Y : U∗, there is a pointed equivalence Σ(X ∧ Y) ' X ∗ Y .

In order to simplify this proof, we first prove a lemma in the vein of Theorem 4.7 which enables
automatic coherences for induction on Σ(X ∧ Y).

Lemma 4.20. Let P : Σ(X ∧ Y)→ U be given. In order to construct a term of type
∏
σ:Σ(X∧Y) P (σ),

it suffices to give

• an element north : P north,

• an element south : P south,

• for x : X, y : Y , a path cfcod : north =P
merid(cfcod(x,y)) south.

Proof. We prove
∏
σ:Σ(X∧Y) P (σ) by induction on σ. For the north and south cases we take north

and south as given. We must then give, for s : X ∧ Y , a path north =P
merid s south. Since X ∧ Y

49

is the cofiber type of a pushout satisfying the conditions of Theorem 4.7, we may ignore the
highest coherence (the wglue case). We define the cfbase case, cfbase : north =P

merid cfbase south,
by transporting cfcod(x0, y0) along the path cfglue(winl x0). Before giving the cfcod case (which

we will call cfcod
′
), we consider what is necessary for the cfglue ◦ winl and cfglue ◦ winr cases. For

w : X ∨ Y in general, Lemma 2.7 asks that we provide a dependent square function, where α is
cfcod

′
(x, y):

north north

north north

natural-sq merid (cfglue w)

south south

south south

cfb
a

se

over-ap-inλ .north(apdλ .north(cfglue w))

α

apλ .north(cfglue w)

m
erid

cfb
a

se

m
erid

(cfco
d

(∨
-in

-×
w

))

apλ .south(cfglue w)

over-ap-inλ .south(apdλ .south(cfglue w))

Let us refer to this square type as S(w,α). Note that we cannot go as in Theorem 4.7 directly,
because ∨-in-× : X ∨ Y → X × Y is not a section. However, within the cfcod case, we have
(x, y), so we can separately apply Lemma 4.8 and choose paths p(x), q(y) : north = north such
that S(winl x, p(x)C cfcod(x, y0)) and S(winr y, q(y)C cfcod(x0, y)) are satisfied. If we additionally

knew that p(x0) = q(y0) = refl, we could obtain our result by setting cfcod
′
(x, y) :≡ (p(x) ·

q(y))Ccfcod(x, y). While our current definition fails to ensure this, we can correct it with a further
adjustment. First, take r : north = south to be the path such that S(winl x0, rCcfcod(x0, y0)) holds.
We then choose p′(x) and q′(y) such that S(winl x, p′(x) C r C cfcod(x, y0)) and S(winr y, q′(y) C
r C cfcod(x0, y)) are satisfied. By the uniqueness condition of Lemma 4.8, we get that p′(x0) =
q′(y0) = refl, and therefore we may take

cfcod
′
(x, y) :≡ (p′(x) · q′(y))C r C cfcod(x, y)

to satisfy both the winl x and winr y square conditions.

50

Proof (of Theorem 4.19). We begin by defining a map out : X ∗ Y → Σ(X ∧ Y). We set

out (left x) :≡ north

out (right y) :≡ south

out (glue (x, y)) := merid (cfcod (x, y))

For the inverse into : Σ(X ∧ Y) → X ∗ Y , we set into north :≡ left x0 and into south :≡ right y0,
and take apinto(merid s) := into-glue s where into-glue : X ∧ Y → left x0 = right y0 is defined by

into-glue cfbase :≡ glue(x0, y0)

into-glue (cfcod (x, y)) :≡ glue(x0, y0) · glue(x, y0)−1 · glue(x, y) · glue(x0, y)−1 · glue(x0, y0)

We first prove into ◦ out ∼ id. We have glue (x0, y0) · glue(x, y0)−1 as a proof into (out (left x)) =
left x, and glue(x0, y0)−1 · glue(x0, y) as a proof into (out (right x)) = right x. For the glue case, we
must construct for x : X, y : Y a square

left x0 right y0

left x right y

g
lu

e
(x

0
,y

0
)·g

lu
e(x

,y
0
) −

1

apinto◦out(glue(x,y))

g
lu

e(x
0
,y

0
) −

1·g
lu

e(x
0
,y

)

glue(x,y)

By computing apinto◦out(glue(x, y)) we see that this commutes.

We now show out ◦ into ∼ id. Here we use Lemma 4.20. Since the north and south cases hold
definitionally, we only need to show that apout◦into(merid (cfcod (x, y))) = merid (cfcod (x, y)). We
have

apout◦into(merid (cfcod(x, y))) = apout(glue(x0, y0) · glue(x, y0)−1 · glue(x, y) · glue(x0, y)−1 · glue(x0, y0))

Now we simply use the fact that apout(glue (∨-in-× w)) = merid (cfcod (∨-in-× w)) = merid cfbase
to cancel the outer terms and reduce this to merid (cfcod (x, y)).

Now we have reduced the problem to computing the cohomology of Sn ∗X for X : U∗. For this it
suffices to show first that S0 ∗X ' ΣX for X : U∗ and then that join is associative. In that case,
we have for any X,Y : U∗ that

ΣX ∗ Y ' (S0 ∗X) ∗ Y ' S0 ∗ (X ∗ Y) ' Σ(X ∗ Y)

The first of these we leave as an exercise to the reader, as it is a straightforward equivalence proof.
The second is more complicated. We go by direct equivalence proof; there is a formal proof due to

51

Brunerie [11, homotopy.JoinAssoc3x3] which uses the 3×3 lemma, but our proof is simpler for its
specificity.

Theorem 4.21. For any X,Y, Z : U∗, there is a pointed equivalence (X ∗ Y) ∗ Z ' X ∗ (Y ∗ Z).

Proof. Since Lemma 4.2 tells us that join is commutative, it suffices to define for X,Y, Z : U∗ a
map switch : (X ∗ Y) ∗ Z → (Z ∗ Y) ∗X and then show that this map is involutive.

First we define a map switch-left : X ∗ Y → (Z ∗ Y) ∗X for the left case:

switch-left (left x) :≡ right x

switch-left (right y) :≡ left (right y)

apswitch-left(glue(x, y)) := glue(right y, x)−1

We thus take switch (left j) :≡ switch-left j and switch z :≡ left (left z). It remains to give for
(j, z) : (X ∗Y)×Z a path switch-glue(j, z) : switch-left j = left (left z). For this we go by induction
on j, first setting

switch-glue(left x, z) :≡ glue(left z, x)−1

switch-glue(right y, z) :≡ apleft(glue(z, y))−1

To define apj.switch-glue(j,z)(glue(x, y)) would require giving a square

right x left (right y)

left (left z) left (left z)

g
lu

e(x
,left

z
) −

1

switch-glue-glue(x, y, z)

apswitch-left(glue(x,y))

a
p

left (g
lu

e(z
,y

)) −
1

refl

We defer the definition of apj.switch-glue(j,z)(glue(x, y)) for now; the necessary choice will become
clear later.

We now show that for u : (X ∗ Y) ∗ Z we have switch (switch u) = u (where the two appli-
cations of switch are instantiated at the appropriate types). First, we need a proof inv-left :∏
j:X∗Y switch (switch-left j) = left j. The point cases hold definitionally, leaving us to give a

family of squares

left x right y

left x right y

refl

apswitch◦switch-left(glue(x,y))

inv-left-glue(x, y)

refl

glue(x,y)

52

Again, we defer this choice. For z : Z we have switch (switch (right z)) = right z definitionally. It

remains to give for (j, z) : (X ∗ Y)×Z a path inv-glue(j, z) : inv-left j =
u.switch (switch u)=u
glue(j,z) refl, that

is, a square

switch (switch-left j) right z

left j right z

in
v
-left

j

apswitch◦switch(glue(j,z))

refl

glue(j,z)

Fix z : Z. We first observe that apswitch◦switch(glue(j, z)) = apswitch(switch-glue(j, z)), then proceed
by induction on j : X ∗Y . For the left and right cases, this amounts to giving two families of squares

left (left x) right z

left (left x) right z

refl inv-glue-left(x, z)

apswitch(glue(x,left z)−1)

refl

glue(left x,z)

and

left (right y) right z

left (right y) right z

inv-glue-right(y, z)

refl

apswitch(apleft(glue(z,y)))

refl

glue(right y,z)

By Theorem 2.12, we may prove the glue case by giving for (x, y) : X × Y a cube of type

Cube (inv-glue-left(x, z)) (inv-glue-right(y, z))

(natural-sq inv-left (glue(x, y)))

(natural-sq (λj.apswitch(switch-glue(glue(j, z)))) (glue(x, y)))

(natural-sq (λj.glue(j, z)) (glue(x, y)))

(natural-sq (λ .refl) (glue(x, y)))

In this case, however, it is worthwhile to instead use a more restrictive, specialized construction.
The above suffers from a proliferation of terms of the form apλ(. . .), which are propositionally
but not definitionally equal to refl; these present substantial complications later on. For this reason,
we instead use the following constructions:

Lemma 4.22. Let f : A → B and b : B. For any x, y : A, p : x = y, u : fx = b, and v : fy = b,
the type u =z.fz=b

p v is equivalent to Square u (apfp) refl (hy).

Proof. By induction we may assume p ≡ refl, in which case the equivalence given in Lemma 2.4
serves.

53

Lemma 4.23. Let f : A → B and b : B be given along with h :
∏
a:A fa = b be given. For any

x, y : A and p : x = y there is a square app-cst-sq h p of type Square (hx) (apf (p)) refl (hy). In
particular, app-cst-sq h refl = srefl-h.

Proof. We take the square corresponding to apdhp over the previous lemma’s equivalence. The
latter requirement can be confirmed by inducting and tracing through definitions.

Lemma 4.24. Let f00, f01 : A → B and b : B be given along with p0- :
∏
a:A f00a = f01a,

p-0 :
∏
a:A f00a = b and p-1 :

∏
a:A f01a = b. For any x, y : A, q : x = y, and two squares

sx : Square (p0-x) (p-0x) (p-1x) refl and sy : Square (p0-x) (p-0x) (p-1x) refl, we can construct a term
of type

sx =z.Square (p0-z) (p-0z) (p-1z) refl
q sy

from a term of type

Cube sx sy (natural-sq p0- q) (app-cst-sq p-0 q) (app-cst-sq p-1 q) srefl

Proof. By induction we may assume q ≡ refl, in which case Lemma 2.11 applies.

By applying the previous lemma, our obligation is reduced to providing a cube of type

Cube (inv-glue-left(x, z)) (inv-glue-right(y, z))

(natural-sq inv-left (glue(x, y)))

(app-cst-sq (λj.apswitch(switch-glue(glue(j, z)))) (glue(x, y)))

(app-cst-sq (λj.glue(j, z)) (glue(x, y)))

srefl

Note that natural-sq inv-left (glue(x, y)) = inv-left-glue(x, y). To take inventory of the situa-
tion, the cube involves three squares each dependent on a pair of variables: inv-glue-left(x, z),
inv-glue-right(y, z), and inv-left-glue(x, y). These three serve to mediate the relationship between
the top and bottom squares. Thus our goal is to transform the top square, which is in some way
determined by the definition of switch-glue-glue(x, y, z), into the bottom square via some cube with
the right variable dependencies, at which point we will have in hand the necessary definitions for
the first three squares.

We begin reducing the top square with the following lemma:

Lemma 4.25. Let f : A → B, g : B → C, and b : B be given, along with h :
∏
a:A fa = b. For

any x, y : A and p : x = y, there is a cube of type

Cube (app-cst-sq (apg ◦ h) p) (ap-squareg(app-cst-sq h p))

srefl-h (hsquare ap-◦ g f p) srefl srefl-h

where ap-◦ g f p : apg◦fp = apg(apfp) is defined for p : x = y by ap-◦ g f refl :≡ refl.

54

Proof. By induction we may assume p ≡ refl, so that x ≡ y. We are then obligated to give a cube
Cube srefl-hapg(hx) (ap-squareg(srefl-hhx)) srefl-hapg(hx) srefl srefl srefl-hapg(hx). If we generalize from
hx to an arbitrary path and then induct on said path, we reach a case where crefl suffices.

We are actually interested in a rotated form of this lemma, where app-cst-sq (apg ◦ h) p is the top
face and ap-squareg(app-cst-sq h p) is the bottom face; for readability, we stick to using left and
right as primary faces henceforth. By instantiating with g :≡ switch, h :≡ λj.switch-glue(glue(j, z)),
and p :≡ glue(x, y), we obtain a cube of type

Cube (app-cst-sq (λj.apswitch(switch-glue(glue(j, z)))) (glue(x, y)))

(ap-squareswitch(app-cst-sq (λj.switch-glue(glue(j, z))) (glue(x, y))))

srefl-h (hsquare (ap-◦ switch switch-left (glue(x, y)))) srefl srefl-h

for the first step in our reduction. Assuming we define switch-glue such that

app-cst-sq (λj.switch-glue(glue(j, z))) (glue(x, y)) = switch-glue-glue(x, y, z)

we must choose a definition of switch-glue-glue to move forward. We would like it to reduce approx-
imately to app-cst-sq (λk.glue(k, x)) (glue(z, y)), modulo some involutive rearrangement, so that
two applications compose to give app-cst-sq (λj.glue(j, z)) (glue(x, y)). Compare the two square
types:

right x left (right y)

left (left z) left (left z)

g
lu

e(x
,left

z
) −

1

switch-glue-glue(x, y, z)

apswitch-left(glue(x,y))

a
p

left (g
lu

e(z
,y

)) −
1

refl

left(left z) left (right y)

right x right x

app-cst-sq (λk.glue(k, x)) (glue(z, y))

g
lu

e(left
z
,x

)

apleft(glue(z,y))

g
lu

e(rig
h

t
y
,x

)

refl

Note that apswitch-left(glue(x, y)) = glue(right y, x)−1. We see that the frame of switch-glue-glue(x, y, z),
modulo the previous equality, is a rearrangement of the frame of app-cst-sq (λk.glue(k, x)) (glue(z, y)).
We define a function extending this rearrangement from types to terms.

Lemma 4.26. For A : U , let points a, b, c : A and paths p : a = b, q : a = c, r : c = b be given.
There is a map massage : Square p q refl r → Square p−1 r−1 refl q−1.

Proof. By based square induction per Lemma 2.1, with the bottom (reflexive) face fixed. We define
massage srefl :≡ srefl.

This transformation has the following three properties, the first of which captures its “involutive”
nature.

55

Lemma 4.27. For A : U , points a, b, c : A, paths p : a = b, q : a = c, r : c = b, and square
s : Square p q refl r, there is a cube of type

Cube (massage (massage s)) s

((−1)-involutive p) ((−1)-involutive q) srefl ((−1)-involutive r)

where (−1)-involutive t : t−1−1
= t is defined by (−1)-involutive refl :≡ refl.

Proof. By based square induction on s.

Lemma 4.28. Let A,B : U and f : A → B be given. For any points a, b, c : A, paths p : a = b,
q : a = c, r : c = b, and square s : Square p q refl r, there is a cube of type

Cube (ap-squaref (massage s)) (massage (ap-squarefs))

(hsquare (ap-(−1) f p)) (hsquare (ap-(−1) f q)) srefl (hsquare (ap-(−1) f r))

where ap-(−1) g t : apg(t
−1) = (apgt)

−1 is defined by ap-(−1) g refl :≡ refl.

Proof. By based square induction on s.

Lemma 4.29. Let a cube c : Cube sleft sright sback stop srefl sfront be given, where the types of the
squares are constrained as necessary. Then there is a cube of type

Cube (massage sleft) (massage sright) (sback
−1v) (sfront

−1v) srefl (stop
−1v)

where −1v : Square p0- p-0 p-1 p1- → Square (p0-
−1) p-1 p-0 (p1-

−1) is the vertical inverse for squares
defined by srefl−1v :≡ srefl.

Proof. By based cube induction, with details left to the reader.

We now define switch-glue-glue(x, y, z) to be the filler which satisfies the cube

Cube (switch-glue-glue(x, y, z)) (massage (app-cst-sq (λk.glue(k, x)) (glue(z, y))))

srefl-h (hsquare (u(x, y))) srefl srefl-h

where u(x, y) is the path apswitch-left(glue(x, y)) = glue(right y, x)−1. We need one more lemma
concerning app-cst-sq to complete the proof.

Lemma 4.30. Let f : A→ B and b : B be given along with h1, h2 :
∏
a:A fa = b and a homotopy

α :
∏
a:A h1a = h2a. For any a1, a2 : A and p : a1 = a2, there is a cube of type

Cube (app-cst-sq h1 p) (app-cst-sq h2 p)

(hsquare (αa1)) srefl-h srefl-h (hsquare (αa2))

56

Proof. First by induction on p, which leaves

Cube srefl-hh1a1 srefl-hh2a1

(hsquare (αa1)) srefl srefl (hsquare (αa1))

We may then generalize and induct on αa1 and h1a1, after which crefl serves.

We therefore have a tower of cubes as follows, omitting all but the left and right faces:

app-cst-sq (λj.apswitch(switch-glue(glue(j, z)))) (glue(x, y))

� (Lemma 4.25)

ap-squareswitch(app-cst-sq (λj.switch-glue(glue(j, z))) (glue(x, y)))

= (definition of switch-glue)

ap-squareswitch(switch-glue-glue(x, y, z))

� (action of switch on the cube defining switch-glue-glue)

ap-squareswitch(massage (app-cst-sq (λk.glue(k, x)) (glue(z, y))))

� (Lemma 4.28)

massage (ap-squareswitch(app-cst-sq (λk.glue(k, x)) (glue(z, y))))

� (Lemma 4.25, inverted)

massage (app-cst-sq (λk.apswitch(glue(k, x))) (glue(z, y)))

� (Lemma 4.29 on Lemma 4.30 on definition of switch)

massage (app-cst-sq (λk.switch-glue(k, x)) (glue(z, y)))

= (definition of switch-glue)

massage (switch-glue-glue(z, y, x))

� (Lemma 4.29 on the cube defining switch-glue-glue)

massage (massage (app-cst-sq (λj.glue(j, z)) (glue(x, y))))

� (Lemma 4.27)

app-cst-sq (λj.glue(j, z)) (glue(x, y))

In order for this to complete the proof, we must confirm that the back face is dependent only on
(x, z), the top face only on (x, y), and the front face only on (y, z), with the bottom face being srefl.
We leave this routine verification to the reader. Defining inv-glue-left(x, z), inv-left-glue(x, y), and
inv-glue-right(y, z) appropriately and applying the necessary rotation to the completed cube gives
the final result.

Per the reasoning described at this section’s introduction, we conclude with a theorem.

57

Theorem 4.31. For any X : U∗ and k : N, there is a pointed equivalence Σ(Sk ×X) ' Sk+1 ∨
ΣX ∨ Σk+1X. As such, Hn(X) ' Hn−k(S0)×Hn(X)×Hn−k(X).

Corollary 4.32. If X : U∗ is a finite product of spheres, then ΣX is homotopy equivalent to a
finite wedge of spheres. There is thus a finite set of indices m1, . . . ,mi : Z such that, for any n : Z,

Hn(X) '
∏

1≤j≤i
Hn+mj (S0)

Proof. By iterating the previous theorem, coupled with the fact that Σ(X ∨ Y) ' ΣX ∨ΣY , which
follows formally from the adjunction Σ a Ω proved in Theorem 3.1.

58

Chapter 5

Conclusions and Future Work

By now, we hope the reader has some understanding of the process of reasoning about higher
inductive types in homotopy type theory. We can see that basic homotopy theory is possible and
even accessible in HoTT, but there are practical limitations to its further development.

While cubical reasoning has proved valuable for simplifying previously infeasible proofs, standard
homotopy type theory is globular by default, taking the concept of path rather than cube as
primitive. While we were able to define 2- and 3-dimensional cube types within the theory, there
is no known uniform definition of n-dimensional cube types. Moreover, it can be clumsy to prove
results about cubes using only the standard eliminator which comes with an inductive definition.
There is current work by Coquand et al. [4], Brunerie and Licata [3], and Altenkirch and Kaposi [1]
on designing natively cubical type theories, which support various cubical operations as primitives
and for which the induction principles are derived theorems. These have (or are expected to have)
the additional benefit of computational interpretation, which, besides being a fundamental property
of a type theory, could validate additional definitional equalities which only hold propositionally
in standard HoTT. While many of these, such as the equality ap-◦ g f p : apg◦fp = apg(apfp)
which we defined in the join associativity proof, can be glossed over in paper proofs, they introduce
significant boilerplate to proof code, and in higher-dimensional proofs such as the aforementioned
we may be forced to reason about them explicitly. It is still unclear which of subset of the several
possible cubical operations is best suited for type theory, as well as which class of higher inductive
types can be supported. Of course, no consensus on the nature of higher inductive types exists
even for standard HoTT, and we may hope that the cubical work clarifies the issue in general.

The second issue, which we touched upon in our discussion of sequential colimits in §3.3, is the lack
of internal notion of definitional or exact equality in homotopy type theory. This is an old gripe with
intensional type theory: because the elimination rule for the identity type is transportational, rather
than substitutional, proofs become bogged down with transport operations. With homotopy type
theory we have seen a new benefit to this extra work, the ability to work with types with nontrivial
path structure. When it comes to “discrete” types, however, such as the natural numbers, we are
still left carrying through transport operations which are morally trivial. The HoTT community
has long been aware of this issue, as evidenced by a mention in [8, p.12]. There has been work
on systems [25, 20] which fix the issue by introducing an internal notion of exact, substitutional

59

equality. This work is motivated by a desire to give a uniform definition of semi-simplicial types
in HoTT. Much like the cube types above, we can define n-truncated semi-simplicial types for any
particular n, but defining them uniformly as a family parameterized by n seems to require infinite
coherence conditions which are inexpressible in HoTT. Our use case, on the other hand, only
involves finite but overwhelming transport requirements. We might hope to define an algorithm
which, by inserting appropriate transport operations, elaborates proofs from a theory where a
particular propositional identification is assumed to be exact into standard HoTT.

These questions aside, what directions are open to us for formalizing cohomology in HoTT? There is
the classical theorem that all Eilenberg-Steenrod cohomology theories arise from spectra; although
we cannot prove this generally in HoTT for lack of additivity, we could prove that it holds when
restricted to a smaller class of spaces. This would be the class of spaces whose cohomology is
determined by that of the spheres, and another goal could be to compute said cohomology. It could
be practically useful to give an algorithm for computing the cohomology of types presented as
higher inductives. An alternative direction is the construction of cohomological spectral sequences
as suggested by Shulman [23]. Finally, classical cohomology theories depend not only on homotopy
type but on differential, smooth, or some other structure. While standard HoTT is ignorant to
this structure, cohesive homotopy type theory can capture it by postulating axiomatic cohesion
operators in the style of Lawvere [12]. Schreiber and Shulman have used this system to define
differential cohomology as part of work on quantum field theory [21].

60

Appendix A

Formalization Reference

The Agda library in which this work was formalized is available at github.com/HoTT/HoTT-Agda.
This thesis is current to the library as of December 16, 2015. This index does not cover all
dependencies, but should be sufficient for the reader to trace them out.

Chapter Section Relevant Modules

1 1 lib.Basics, cohomology.FunctionOver
2 lib.Pointed, cohomology.FunctionOver, lib.types.LoopSpace
3 lib.types.Types

4 lib.NType, lib.types.Truncation
5 lib.types.Group, lib.groups.Groups

2 1 lib.cubical.Square, lib.cubical.SquareOver
2 lib.cubical.Cube

3 1 cohomology.Theory, cohomology.Exactness
2 cohomology.SpectrumModel, cohomology.SuspAdjointLoopIso,

cohomology.Choice

3 cohomology.EMModel, homotopy.EilenbergMacLane,
lib.types.EilenbergMacLane1, lib.types.NatColim,
homotopy.SpaceFromGroups

4 0 cohomology.BaseIndependence

1 cohomology.CofiberSequence, cohomology.LongExactSequence
2 cohomology.ProductRepr, cohomology.WedgeCofiber, cohomology.Wedge
3 homotopy.elims.CofPushoutSection

4 cohomology.Unit, cohomology.Functor, cohomology.SplitExactRight,
homotopy.SuspSectionDecomp homotopy.CofiberComp, homotopy.SuspProduct

5 cohomology.MayerVietoris, cohomology.MayerVietorisExact
6 homotopy.elims.SuspSmash, homotopy.SuspSmash,

homotopy.JoinAssocCubical, cohomology.SphereProduct

61

Bibliography

[1] Thorsten Altenkirch and Ambrus Kaposi. A syntax for cubical type theory. Available from
http://www.cs.nott.ac.uk/ txa/publ/ctt.pdf, 2014.

[2] Steve Awodey. Category Theory. Oxford Logic Guides, Oxford University Press, 2006.

[3] Guillaume Brunerie and Daniel R. Licata. Cubical infinite-dimensional type theory.
Talk at Oxford Workshop on Homotopy Type Theory, November 2014. Available from
https://youtube.com/user/OxfordQuantumVideo.

[4] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical. Programming
language implementation. Available from https://github.com/simhu/cubical.

[5] Eldon Dyer and Joseph Roitberg. Note on sequences of mayer-vietoris type. Proceedings of
the American Mathematical Society, 80(4):pp. 660–662, 1980.

[6] Samuel Eilenberg and Norman E. Steenrod. Foundations of Algebraic Topology. Princeton
University Press, 1952.

[7] Eric Finster. Cohomology in homotopy type theory. Video, March 2013. Available from
https://video.ias.edu/univalent/1213/0306-EricFinster.

[8] The Univalent Foundations Program; Institute for Advanced Study. Homotopy Type Theory:
Univalent Foundations of Mathematics. Available from homotopytypetheory.com/book, 2013.
References current as of December 16, 2015.

[9] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002.

[10] Martin Hofmann and Thomas Streicher. The groupoid interpretation of type theory. In
Twenty-five years of constructive type theory (Venice, 1995), volume 36 of Oxford Logic Guides,
pages 83–111. Oxford Univ. Press, New York, 1998.

[11] HoTT-agda. Agda library. Available from https://github.com/HoTT/HoTT-Agda.

[12] F. William Lawvere. Axiomatic cohesion. Theory and Applications of Categories, 19(3):41–49,
2007.

[13] Daniel R. Licata. hott-agda. Agda library. Available from https://github.com/dlicata335/hott-
agda.

62

[14] Daniel R. Licata and Guillaume Brunerie. A cubical approach
to synthetic homotopy theory, January 2015. Available from
http://dlicata.web.wesleyan.edu/pubs/lb15cubicalsynth/lb15cubicalsynth.pdf.

[15] Daniel R. Licata and Eric Finster. Eilenberg-MacLane spaces in homotopy type theory. IEEE
Symposium on Logic in Computer Science, 2013.

[16] Peter LeFanu Lumsdaine. Weak ω-categories from intensional type theory. In Pierre-Louis
Curien, editor, Typed Lambda Calculi and Applications, volume 5608 of Lecture Notes in Com-
puter Science, pages 172–187. Springer Berlin Heidelberg, 2009.

[17] Per Martin-Löf. An intuitionistic theory of types: predicative part. In H.E. Rose and J.C.
Shepherdson, editors, Logic Colloquium ’73, Proceedings of the Logic Colloquium, volume 80
of Studies in Logic and the Foundations of Mathematics, pages 73–118. North-Holland, 1975.

[18] Per Martin-Löf. Constructive mathematics and computer programming. In L. Jonathan Cohen,
Jerzy o, Helmut Pfeiffer, and Klaus-Peter Podewski, editors, Logic, Methodology and Philoso-
phy of Science VI, Proceedings of the Sixth International Congress of Logic, Methodology and
Philosophy of Science, Hannover 1979, volume 104 of Studies in Logic and the Foundations of
Mathematics, pages 153–175. North-Holland, 1982.

[19] J.P. May. A Concise Course in Algebraic Topology. University of Chicago Press, 1999.

[20] Fedor Part and Zhaohui Luo. Semi-simplicial types in logic-enriched homotopy type theory.
CoRR, abs/1506.04998, 2015.

[21] Urs Schreiber and Michael Shulman. Quantum gauge field theory in cohesive homotopy type
theory, July 2014. arXiv:1408.0054.

[22] Michael Shulman. Cohomology, July 2013. Available from
http://homotopytypetheory.org/2013/07/24/cohomology/.

[23] Michael Shulman. Spectral sequences, August 2013. Available from
http://homotopytypetheory.org/2013/08/08/spectral-sequences.

[24] Benno van den Berg and Richard Garner. Types are weak ω-groupoids. Proceedings of the
London Mathematical Society, 102(2):370–394, 2011.

[25] Vladimir Voevodsky. A simple type system with two identity types, 2013. Available from
http://ncatlab.org/homotopytypetheory/files/HTS.pdf.

63

