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Abstract

Consider the semilinear Schrödinger equation (*) −∆u+ V (x)u = f(x, u), u ∈ H1(RN ). It is
shown that if f , V are periodic in the x-variables, f is superlinear at u = 0 and ±∞ and 0 lies
in a spectral gap of −∆ + V , then (*) has at least 1 nontrivial solution. If in addition f is odd
in u, then (*) has infinitely many (geometrically distinct) solutions. The proofs rely on a degree
theory and a linking-type argument developed in this paper.
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Introduction

In this paper we shall be concerned with the semilinear Schrödinger equation
{−∆u+ V (x)u = f(x, u),
u ∈ H1(RN ).

(0.1)

We assume that f and V are continuous functions, periodic with respect to the x-variables, f is

superlinear at u = 0, superlinear (but subcritical) at |u| =∞ and

F (x, u) :=

∫ u

0
f(x, ξ) dξ

is positive for u 6= 0. Under these hypotheses the functional

Φ(u) :=
1

2

∫

RN
(|∇u|2 + V (x)u2) dx−

∫

RN
F (x, u) dx(0.2)

is of class C1 on the (real) Sobolev space H1(RN ) and critical points of Φ correspond to weak

solutions of (0.1). Let L : H1(RN )→ H1(RN ) be the self-adjoint operator given by

(Lu, v) :=

∫

RN
(∇u · ∇v + V (x)uv) dx,(0.3)
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where here and below (·, ·) denotes the standard inner product in H 1(RN ). Assume that L has

bounded inverse. The operator −∆ + V (on L2(RN )) has purely continuous spectrum which

is bounded below and consists of closed disjoint intervals [15, Theorem XIII.100]. Hence either

σ(L) ⊂ (0,∞) and the quadratic form u 7→ (Lu, u) is positive definite, or 0 lies in a gap of the

spectrum of L andH1(RN ) = Y ⊕Z, where Y,Z are infinite-dimensional L-invariant subspaces such

that the above form is negative definite on Y and positive definite on Z. If σ(L) ⊂ (0,∞), then it is

known by a result of Coti Zelati and Rabinowitz [8] that (0.1) has infinitely many solutions. If 0 is

in a spectral gap of L, then the functional Φ has the so-called linking geometry. More precisely, if ρ

is sufficiently small and R sufficiently large, then Φ ≥ b > 0 on the sphere N := {u ∈ Z : ‖u‖ = ρ}
and Φ ≤ 0 on the boundary of the set M := {u = y + λz0 : ‖u‖ < R, λ > 0}, where y ∈ Y

and z0 is a fixed element of Z \ {0}. One can therefore expect that (0.1) has a solution u such

that Φ(u) ≥ b. However, since the spaces Y and Z are infinite-dimensional and the gradient of the

functional u 7→ ∫
RNF (x, u) dx is not compact, one cannot employ the usual argument based on

the Brouwer or the Leray-Schauder degree (cf. [13, Section 5]) in order to show that ∂M and N

actually link (in the sense that if η : M × [0, T ]→ E is in a suitably restricted class of deformations

of M and η(∂M, t) ∩ N = ∅ for t ∈ [0, T ], then η(M, t) ∩ N) 6= ∅ for such t). If the function F

is strictly convex in u, then it is sometimes possible to circumvent this difficulty. One can either

use the Legendre transform and look for critical points of a dual functional which has the simpler

mountain pass geometry [1, 2, 10]. Or one can take advantage of the fact that Φ is concave on

z+Y (for each fixed z ∈ Z) and reduce the problem to that of finding critical points of a functional

which is defined on Z and also has the mountain pass geometry [6]. In a recent paper [16] Troestler

and Willem have proved that (0.1) possesses a solution u 6= 0 under some additional hypotheses on

f which imply that the functional Φ is of class C 2. However, they made no convexity assumption

on F . In order to show that the sets ∂M and N link they used an extension of Smale’s degree for

proper Fredholm mappings. The fact that Φ ∈ C2 played an important role.

In the present paper we shall show that (0.1) (with 0 in a spectral gap of L) has a solution u 6= 0

under weaker hypotheses which only imply that Φ ∈ C 1. For this purpose we shall introduce a new

degree of Leray-Schauder type, and the degree construction is in fact one of the main goals of our

paper. Let U be a bounded subset of a Hilbert space E0. The admissible mappings will be of the

form I − h, where I denotes the identity and for each u ∈ U there exists a weak neighbourhood W

such that h(U ∩W ) is contained in a finite-dimensional space. The fact that I − h is proper with

respect to the weak topology of U will then lead to a correct definition of degree. To show that ∂M

and N link we construct deformations by using the flow of a certain pseudogradient vector field V .

It turns out that in order to have some control on the level sets of Φ and at the same time obtain

the above finite-dimensional property one needs to construct V in such a way that it is continuous

with respect to the weak topology of Y and the strong topology of Z. We also formulate our linking

result in an abstract form that extends the linking theorem of Benci and Rabinowitz [5, 13].

In the second part of the paper we shall show that (0.1) has infinitely many solutions under

the additional assumption that the function f is odd in u. The proof will use a variant of Benci’s

pseudoindex [4] and the above degree (which will be needed in order to find sets of arbitrarily large

pseudoindex). Since oddness is not necessary if σ(L) ⊂ (0,∞) (see [8]), it would be interesting to

know if our result on the existence of infinitely many solutions remains valid also for non-odd f .

Observe that the assumption that 0 lies in a gap of the spectrum of L excludes the possibility
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of having constant V (because then σ(−∆ + V ) = [V,∞) in L2(RN ) and there are no gaps).

The paper is organized as follows: In Section 1 we study the properties of the functional Φ. In

Section 2 we introduce the weak-strong topology mentioned above and construct the degree. In

Section 3 we show that (0.1) has at least one solution u 6= 0 and state an abstract version of our

linking theorem. In Section 4 we prove the existence of infinitely many solutions for odd f , and in

Section 5 we briefly consider homoclinic solutions for a second order system of ordinary differential

equations.

Notation. B(a, ρ) and S(a, ρ) denote respectively the open ball and the sphere centered at a and

having radius ρ. Furthermore, Bρ := B(0, ρ) and Sρ := S(0, ρ). The closure of a set A is denoted by

A. For p ≥ 1, | · |p is the usual norm in Lp(RN ). By → we denote the strong and by ⇀ the weak

convergence. ‖u−A‖ is the distance from the point u to the set A (in the topology induced by the

norm ‖ · ‖). By K we denote the set of critical points of Φ, i.e. K := {u ∈ H 1(RN ) : Φ′(u) = 0},
and Φβ := {u ∈ H1(RN ) : Φ(u) ≤ β}, Φα := {u ∈ H1(RN ) : Φ(u) ≥ α} are the sub- and superlevel

sets of Φ; moreover, Φβ
α := Φα ∩Φβ.

Acknowledgement. The authors would like to thank Michel Willem for helpful discussions and

various suggestions.

1 Properties of the functional

Let E := H1(RN ) and assume that the following conditions are satisfied:

(A1) The function f : RN ×R → R is continuous and 1-periodic with respect to each variable

xj , j = 1, . . . , N .

(A2) There is a constant c > 0 such that

|f(x, u)| ≤ c(1 + |u|p−1)

for all x ∈ RN and u ∈ R, where p > 2 if N = 1, 2 and 2 < p < 2∗ := 2N
N−2 if N ≥ 3.

(A3) f(x, u) = o(|u|) uniformly with respect to x as |u| → 0.

(A4) There is γ > 2 such that for all x ∈ RN and u ∈ R \ {0},

0 < γF (x, u) ≤ uf(x, u).

(A5) The function V : RN → R is continuous and 1-periodic with respect to each variable xj,

j = 1, . . . , N .

(A6) 0 lies in a gap of the spectrum of L (where L is given by (0.3)).

Let us now make some remarks.
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Remark 1.1

(i) It is clear that instead of 1-periodicity of f and V in xj , j = 1, . . . , N , we may assume that

these functions are Tj-periodic, where Tj > 0 for j = 1, . . . , N .

(ii) Assumptions (A1), (A2) and (A3) imply that Φ ∈ C 1(E,R). Indeed, for any ε > 0 there is

a constant cε > 0 such that

|f(x, u)| ≤ ε|u|+ cε|u|p−1(1.1)

and the conclusion follows from [8, Proposition 2.1] or [17, Lemma 3.10].

Assumptions (A1), (A5) imply that Φ is invariant with respect to the ZN -action on E given by

the formula

(g ∗ u)(x) := u(g + x),(1.2)

where g ∈ ZN , u ∈ E and x ∈ RN . Moreover (see (0.2), (0.3)),

Φ(u) =
1

2
(Lu, u)−

∫

RN
F (x, u) dx, u ∈ E,(1.3)

Φ′(u)v = (Lu, v)−
∫

RN
f(x, u)v dx, u, v ∈ E,(1.4)

and clearly, Φ is bounded on bounded sets.

(iii) According to (A6), 0 lies in a gap of the spectrum of L. Spectral theory asserts that the

space E decomposes as a direct sum of two infinite-dimensional L-invariant orthogonal subspaces

Y and Z on which L is respectively negative and positive definite. Let P : E → Y and Q : E → Z

be the orthogonal projections. We may introduce a new inner product in E by the formula

〈u, v〉 := (L(Q− P )u, v), u, v ∈ E

and the corresponding norm

‖u‖ :=
√
〈u, u〉, u ∈ E.

Clearly, the inner products 〈·, ·〉 and (·, ·) are equivalent and the spaces Y , Z are orthogonal with

respect to 〈·, ·〉. Moreover, by (1.3) and (1.4) we easily see that

Φ(u) =
1

2
(‖Qu‖2 − ‖Pu‖2)−

∫

RN
F (x, u) dx,(1.5)

〈∇Φ(u), v〉 = 〈Qu, v〉 − 〈Pu, v〉 −
∫

RN
f(x, u)v dx,(1.6)

where as usual the gradient ∇Φ(u) is given by the formula 〈∇Φ(u), v〉 = Φ′(u)v for all v ∈ E.

In view of assumption (A2), ∇Φ : E → E is weakly sequentially continuous (i.e. if un⇀u, then

∇Φ(un)⇀∇Φ(u)). Indeed, let un⇀u. Then un → u in Lploc(R
N ); therefore f(x, un) → f(x, u) in

L
p/(p−1)
loc (RN ) and 〈∇Φ(un), v〉 → 〈∇Φ(u), v〉 for each v ∈ E.

(iv) Since the spaces Y and Z are L-invariant, they are ZN -invariant. Indeed, spectral theory

asserts that the projectors P,Q commute with any operator which commutes with L; in particular,

they commute with the ZN -action described in (1.2).
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(v) Assumption (A4) implies that given δ > 0, there exists c1 = c1(δ) > 0 such that

F (x, u) ≥ c1|u|γ − δ|u|2(1.7)

for any u ∈ R and x ∈ RN .

Indeed, by (A4), if 0 < c1 ≤ minRN F (x,±1), then for any δ > 0 and |u| ≥ 1,

F (x, u) ≥ c1|u|γ ≥ c1|u|γ − δ|u|2.

We may assume that c1 ≤ δ. Since F ≥ 0, it follows that for |u| < 1,

F (x, u) ≥ c1|u|γ − δ|u|2.

Lemma 1.2
∫
RNF (x, u) dx = o(‖u‖2) as ‖u‖ → 0.

Proof By (1.1), for any ε > 0 there is c̃ε > 0 such that

F (x, u) ≤ ε

2
|u|2 + c̃ε|u|p.

Hence ∫

RN
F (x, u) dx ≤ ε

2
|u|22 + c̃ε|u|pp

and by the Sobolev embedding theorem there is a constant C > 0 such that

∫

RN
F (x, u) dx ≤ C(ε‖u‖2 + ‖u‖p).

Since ε was chosen arbitrarily, the conclusion follows. 2

Lemma 1.3 [16, 17] There is ρ > 0 such that

b := inf
Sρ∩Z

Φ > 0.(1.8)

Proof By (1.5), for any u ∈ Z,

Φ(u) =
1

2
‖u‖2 −

∫

RN
F (x, u) dx.

In view of Lemma 1.2, there is ρ > 0 such that
∫
RNF (x, u) dx ≤ 1

4‖u‖2 for ‖u‖ ≤ ρ; hence the

assertion. 2

Lemma 1.4 [16, 17] Let z0 ∈ Z, ‖z0‖ = 1. There exists R > ρ such that

(i) max∂M Φ = 0;

(ii) S := supM Φ <∞,

where

M := {u = y + λz0 : y ∈ Y, ‖u‖ < R, λ > 0},

∂M := M \M = {u = y + λz0 : (‖u‖ = R and λ ≥ 0) or (‖u‖ ≤ R and λ = 0)}.
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Proof By (1.7) and the Sobolev embedding theorem, for any δ > 0,

Φ(y + λz0) ≤ −1

2
‖y‖2 +

1

2
λ2 + δ|y + λz0|22 − c1|y + λz0|γγ

≤
(
−1

2
+ c2δ

)
‖y‖2 +

(
1

2
+ c2δ

)
λ2 − c1|y + λz0|γγ ,

where c2 is independent of δ. We may assume c2δ = 1
4 , so

Φ(y + λz0) ≤ −1

4
‖y‖2 +

3

4
λ2 − c1|y + λz0|γγ .

There exists a continuous projection from the closure of Y ⊕ Rz0 in Lγ to Rz0; thus |λz0|γ ≤
c3|y + λz0|γ for some c3 > 0. Hence

Φ(y + λz0) ≤ −1

4
‖y‖2 +

3

4
λ2 − c4λγ ,

where c4 > 0. It follows that Φ(y+λz0)→ −∞ as ‖y+λz0‖ → ∞. Since Φ ≤ 0 on Y and Φ(0) = 0,

(i) is satisfied for each R large enough. The boundedness of M implies that supM Φ <∞. 2

Recall that by a (PS)β-sequence – a Palais-Smale sequence at the level β – we mean a sequence

(um)∞m=1 ⊂ E such that Φ(um)→ β and ∇Φ(um)→ 0 as m→∞.

Lemma 1.5 Let (um) ⊂ E be a (PS)β-sequence. Then (um) is bounded and β ≥ 0.

Proof For sufficiently large m ∈ N we have ‖∇Φ(um)‖ ≤ 1 and Φ(um) ≤ β + 1. Hence by (A4),

for such m,

β + 1 + ‖um‖ ≥ Φ(um)− 1

2
〈∇Φ(um), um〉 ≥

(
1

2
− 1

γ

)∫

RN
f(x, um)um dx ≥ 0.(1.9)

Let q := p
p−1 be the conjugate exponent to p. Assumptions (A2), (A3) and (A4) imply that

there is a constant c̃ > 0 such that

|f(x, u)|2 ≤ c̃|u||f(x, u)| = c̃uf(x, u)(1.10)

for |u| ≤ 1 and

|f(x, u)|q ≤ c̃|u|(p−1)(q−1)|f(x, u)| = c̃uf(x, u)(1.11)

for |u| ≥ 1. Fix m and let Γ := {x ∈ RN : |um(x)| ≤ 1}. By (1.9), (1.10) and (1.11), for some

constant d we have

β + 1 + ‖um‖ ≥ d
(∫

Γ
|f(x, um)|2 dx+

∫

RN\Γ
|f(x, um)|q dx

)
.

Therefore

a1 :=

(∫

Γ
|f(x, um)|2 dx

) 1
2 ≤

[
β + 1 + ‖um‖

d

] 1
2

(1.12)

and

a2 :=

(∫

RN\Γ
|f(x, um)|q dx

) 1
q

≤
[
β + 1 + ‖um‖

d

] 1
q

.(1.13)
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Let ym := Pum, zm := Qum. By the Hölder inequality,

‖ym‖2 = −〈∇Φ(um), ym〉 −
∫

RN
f(x, um)ym dx ≤ ‖ym‖+ a1|ym|2 + a2|ym|p.

Hence, in view of (1.12), (1.13) and by the Sobolev embedding theorem,

‖ym‖ ≤ 1 +D[(β + 1 + ‖um‖)
1
2 + (β + 1 + ‖um‖)

1
q ](1.14)

for some D > 0. Similarly we obtain

‖zm‖ ≤ 1 +D[(β + 1 + ‖um‖)
1
2 + (β + 1 + ‖um‖)

1
q ].(1.15)

Inequalities (1.14) and (1.15) imply that ‖um‖2 = ‖ym‖2 + ‖zm‖2 is bounded.

By (1.9), we have

0 ≤
(

1

2
− 1

γ

)∫

RN
f(x, um)um dx ≤ Φ(um)− 1

2
〈∇Φ(um), um〉 → β,

so β ≥ 0. 2

We shall need the following result due to P.L. Lions [8, Lemma 2.18], [11, Lemma I.1], [17,

Lemma 1.21]:

Lemma 1.6 Let (um) ⊂ E be a bounded sequence. If there is r > 0 such that

lim
m→∞ sup

a∈RN

∫

B(a,r)
|um|2 dx = 0,

then um → 0 in Ls(RN ) for all 2 < s < 2∗. 2

As a corollary we obtain

Lemma 1.7 (comp. [8, Lemma 2.25]) Let (um) ⊂ E be a (PS)β-sequence for Φ. Then either

(i) lim infm→∞ ‖um‖ = 0, or

(ii) there is a sequence (am) ⊂ RN and r, η > 0 such that

lim inf
m→∞

∫

B(am ,r)
|um|2 dx ≥ η.

Proof In view of Lemma 1.5, the sequence (um) is bounded and β ≥ 0. Suppose that condition (ii)

is not satisfied. By Lemma 1.6, um → 0 in Lp(RN ) after passing to a subsequence. Let ym = Pum,

zm = Qum and take ε > 0. By (1.1) there exists cε > 0 such that

|f(x, u)| ≤ ε|u|+ cε|u|p−1

for all x ∈ RN , u ∈ R. Hence by the Hölder inequality,

∫

RN
|f(x, um)zm|dx ≤ ε|um|2|zm|2 + cε|um|p−1

p |zm|p.
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Since ε was chosen arbitrarily, it follows readily from the Sobolev embedding theorem that

∫

RN
f(x, um)zm dx→ 0,

and by a similar argument,

∫

RN
f(x, um)ym dx→ 0 and

∫

RN
F (x, um) dx→ 0.

Therefore

Φ(um)− 1

2
〈∇Φ(um), um〉 =

∫

RN
(
1

2
f(x, um)um − F (x, um)) dx→ 0.

Since the left-hand side above tends to β, β = 0. Furthermore,

‖zm‖2 = 〈∇Φ(um), zm〉+

∫

RN
f(x, um)zm dx→ 0.

Hence zm → 0 and similarly, ym → 0. 2

In Section 4 we shall study further properties of (PS)-sequences.

2 τ - topology and degree theory

In order to prove the main results of the next sections we shall introduce a new topology τ in the

space E. In this topology it will be possible to construct a degree theory for a class of maps which

are not necessarily of Leray-Schauder type. The present section consists of three short parts. In

the first of them we define this new topology on E, in the second part we introduce the notion

of admissible map, and in the third one a version of topological degree theory for such maps is

constructed.

I. Let us consider a function

||| · ||| : E → [0,∞)

given by the formula

|||u||| := max{‖Qu‖,
∞∑

j=1

1

2j
|〈ej, Pu〉|},

where {ej}∞j=1 is a complete orthonormal system in Y . It is easy to see that ||| · ||| is a norm in E.

The topology on E generated by ||| · ||| will be denoted by τ and all topological notions related to it

will include this symbol.

Remark 2.1

(i) Observe that for each u ∈ E,

‖Qu‖ ≤ |||u||| ≤ ‖u‖.

Therefore the topology τ is weaker than the original one: any sequence (um) ⊂ E such that um → u

(in E) converges to u in the τ -topology (um
τ→u).
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(ii) The space (E, ||| · |||) is not complete. For instance, we have a Cauchy sequence (um), where

um =
∑m
j=1 jej ∈ Y , which does not τ -converge to any element of Y .

(iii) The topology τ is closely related to the topology on E which is weak on Y and strong on

Z. More precisely, if a sequence (um) is bounded, then

um
τ→u ⇐⇒ Pum⇀Pu and Qum → Qu.

In particular, for any sequence (um) ⊂ Φr, where r ∈ R, the τ -convergence of (um) is equivalent

to the weak convergence of (Pum) and the strong convergence of (Qum). Indeed, if Φ(um) ≥ r

and um
τ→u, then (‖Qum‖) is bounded; since ‖Pum‖2 ≤ ‖Qum‖2 − 2r, also (‖um‖) is bounded.

Conversely, if (Pum) converges weakly and (Qum) strongly, then again (‖um‖) is bounded.

(iv) The functional Φ is τ -upper semicontinuous, i.e. for any r ∈ R, Φr is τ -closed. Indeed,

let um ∈ Φr and um
τ→u. Then r ≤ Φ(um) = 1

2‖zm‖2 − 1
2‖ym‖2 −

∫
RNF (x, um) dx. Since um⇀u,

um → u in L2
loc; hence – passing to a subsequence if necessary – um(x)→ u(x) almost everywhere

on RN . By the Fatou lemma and the weak lower semicontinuity of ‖ · ‖, we obtain

r ≤ 1

2
‖z‖2 − 1

2
‖y‖2 −

∫

RN
F (x, u) dx = Φ(u).

(v) The set of critical points K is τ -closed. For if (um) ⊂ K and um
τ→u, then, by (1.9),

Φ(um) ≥ 0 and by (iii), um⇀u. So in view of the weak continuity of ∇Φ we get that ∇Φ(u) = 0.

II. Let A be a closed subset of E. A map h : A→ E will be called τ -locally finite-dimensional if

each point u ∈ A has a τ -neighborhood Wu such that h(Wu∩A) is contained in a finite-dimensional

subspace of E. We say that a map g : A → E is admissible if it is τ -continuous (i.e. g(um)
τ→g(u)

provided um, u ∈ A and um
τ→u) and the map h = I − g, where I stands for the identity map, is

τ -locally finite-dimensional.

We say that a map G : A×[0, 1] is an admissible homotopy if it is τ -continuous (i.e. G(um, tm)
τ→

G(u, t) provided um
τ→u in A and tm → t in [0, 1]) and for each (u, t) ∈ A × [0, 1] there is a

neighborhood W(u,t) (in the product topology of (E, τ) and [0, 1]) such that the set {v −G(v, s) :

(v, s) ∈W(u,t) ∩ (A× [0, 1])} is contained in a finite-dimensional subspace of E.

Observe that an admissible map is continuous. Indeed, if um → u, um, u ∈ A, then um
τ→u and

h(um)
τ→h(u). This implies that h(um) → h(u) because, for all large m, h(um), h(u) are contained

in a finite-dimensional subspace of E on which both topologies – the original one and τ – agree.

Below we are going to give a useful example of admissible homotopy. Suppose that we are given

a vector field V : N → E, where N is τ -open, such that

• V is τ -locally τ -Lipschitzian (i.e. any u ∈ N has a τ -neighborhood U such that |||V (u ′) −
V (u′′)||| ≤ Lu|||u′ − u′′||| for all u′, u′′ ∈ U and some Lu ≥ 0) and locally Lipschitzian;

• each point u ∈ N has a τ -neighborhood Wu which is mapped by V into a finite-dimensional

subspace of E.

Let A ⊂ N be closed and consider the Cauchy problem

dη

dt
= V (η), η(u, 0) = u ∈ A.
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For any u ∈ A, this problem admits a continuous solution η(u, ·). Suppose that this solution exists

on [0, 1]. Since the space (E, τ) is not complete, it is not immediately clear that η is τ -continuous.

Proposition 2.2 The map η : A× [0, 1]→ E is an admissible homotopy.

Proof Take any u0 ∈ A, t0 ∈ [0, 1]. The set Γ := η({u0} × [0, 1]) is compact, hence τ -compact

as well. Since V is τ -locally τ -Lipschtzian and τ -locally finite-dimensional, there are numbers

r, L > 0 such that U := {u ∈ E : |||u − Γ||| < r} ⊂ N and if u, v ∈ U , then |||V (u)||| ≤ L,

|||V (u)−V (v)||| ≤ L|||u− v|||. Moreover, V (U) is contained in a finite-dimensional subspace E1 of E.

We shall show that η is τ -continuous at (u0, t0). Given δ > 0, let t ∈ [0, 1] and u ∈ A,

|||u− u0||| < δ. Suppose that η(u, s) ∈ U for 0 ≤ s ≤ t. Then

|||η(u, t) − η(u0, t)||| ≤ |||u− u0|||+
∫ t

0
|||V (η(u, s)) − V (η(u0, s))||| ds

≤ |||u− u0|||+ L

∫ t

0
|||η(u, s)− η(u0, s)||| ds.

Hence by the Gronwall inequality,

|||η(u, t) − η(u0, t)||| ≤ |||u− u0|||eLt ≤ |||u− u0|||eL.

If δ < re−L, we obtain

|||η(u, t)− η(u0, t)||| < r.(2.1)

So η(u, t) ∈ U for each t ∈ [0, 1]. Hence, if |t− t0| < δ, then

|||η(u, t)− η(u0, t0)||| ≤ |||η(u, t) − η(u0, t)|||+ |||
∫ t

t0
V (η(u0, s)) ds||| < (eL + L)δ.

Since δ may be chosen arbitrarily small, η is τ -continuous.

Clearly, for any t ∈ [0, 1] and |||u− u0||| < δ, u− η(u, t) = − ∫ t0 V (η(u, s)) ds ∈ E1. 2

III. Let now Z0 be a finite-dimensional subspace of Z and U an open subset of the space

E0 := Y ⊕ Z0. Suppose

(a) g : U → E0 is an admissible map;

(b) g−1(0)∩ ∂U = ∅ (U and ∂U denote the closure and the boundary of U in the original topology

of E0);

(c) g−1(0) is τ -compact.

Remark 2.3 If (a) holds, then assumption (c) is verified whenever g−1(0) is bounded and there is

a τ -continuous extension g∗ : B → E0 of g to a τ -closed set B such that g∗(u) 6= 0 for u ∈ B \ U .

For in this case any sequence (um) ⊂ g−1(0) has a subsequence (denoted by the same symbol) such

that Pum⇀y ∈ Y and Qum → z ∈ Z0. Thus um
τ→u = y + z ∈ B and g∗(u) = 0. Hence u ∈ U and

0 = g∗(u) = g(u), so u ∈ g−1(0). In particular, g−1(0) is τ -compact if U is τ -closed and bounded.

This holds for instance whenever U is bounded and convex.
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Clearly, g−1(0) ⊂ ⋃u∈g−1(0) Wu, where Wu is a τ -neighborhood of u ∈ g−1(0) which is mapped

by h = I − g into a finite-dimensional subspace of E0 . Thus there are points u1, . . . , um ∈ g−1(0)

such that g−1(0) ⊂ W :=
⋃m
i=1 Wui ∩ U . The set W is open and there is a finite-dimensional

subspace L ⊂ E0 such that h(W ) ⊂ L. Let WL := W ∩ L.

Let us consider the map gL := g|WL : WL → L. It is clear that g−1
L (0) = g−1(0); hence g−1

L (0)

is compact (in L). Therefore we are in a position to define

deg(g, U, 0) := degB(gL,WL, 0),(2.2)

where degB stands for the ordinary Brouwer degree (see e.g. [12]).

We shall show that definition (2.2) is correct, i.e. it does not depend on the choice of W and L.

If L̃ is another finite-dimensional subspace of E0 such that h(W ) ⊂ L̃, then we may assume

that L ⊂ L̃, and the equality

degB(gL,WL, 0) = degB(g
L̃
,W

L̃
, 0)

follows from the contraction property of the Brouwer degree [12, Lemma 4.2.3] since obviously,

W
L̃
∩ L = WL and h(W

L̃
) ⊂ h(W ) ⊂ L.

On the other hand, if W̃ is a neighborhood of g−1(0) such that h(W̃ ) ⊂ L, then assuming

without loss of generality that W ⊂ W̃ , we see that

degB(gL, W̃ ∩ L, 0) = degB(gL,WL, 0)

in view of the excision property of the Brouwer degree.

Let us enumerate some useful properties of our degree. A set U ⊂ E will be called symmetric

(with respect to the origin) if U = −U .

Theorem 2.4

(i) If deg(g, U, 0) 6= 0, then g−1(0) 6= ∅.
(ii) If g(u) = u− u0, where u0 ∈ U , then deg(g, U, 0) = 1.

(iii) Suppose that G : U × [0, 1] → E0 is an admissible homotopy such that G−1(0) ∩ (∂U ×
[0, 1]) = ∅ and G−1(0) is τ -compact (in the product topology). Then the degree deg(G(·, t), U, 0) is

independent of t ∈ [0, 1].

(iv) Suppose that U is a symmetric neighborhood of the origin and let g : U → E0 be an

admissible odd map such that g−1(0) is τ -compact. If for each u ∈ U , g(u) ∈ E1, where E1 = Y ⊕Z1

and Z1 is a proper subspace of Z0, then g−1(0) ∩ ∂U 6= ∅.

Proof (i) follows from the existence property of the Brouwer degree.

(ii) This is trivial in view of definition (2.2).

(iii) Clearly, for any t ∈ [0, 1], the map G(·, t) satisfies assumptions (a), (b) and (c) above which

shows that deg(G(·, t), U, 0) is well-defined.

Let H(u, t) := u − G(u, t). Since G−1(0) is τ -compact, the set K0 × [0, 1], where K0 is the

projection of G−1(0) onto U , is also τ -compact. Hence there exists an open set W̃ , K0 × [0, 1] ⊂
W̃ ⊂ U , such that H(W̃ ) is contained in a finite-dimensional subspace L of E0. Since K0 ⊂ L, K0
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is compact. One can therefore choose an open set W ⊂ U such that K0 ⊂W and W × [0, 1] ⊂ W̃ .

By the definition, deg(G(·, t), U, 0) = degB(G(·, t)|W ∩ L,W ∩ L, 0) and the assertion follows from

the homotopy invariance of the Brouwer degree.

(iv) Suppose g−1(0)∩∂U = ∅. Then we may assume that W is a symmetric neighborhood of 0,

so by the classical Borsuk theorem, deg(g, U, 0) 6= 0 (more precisely it is an odd integer). Take an

arbitrary point z ∈ Z0 \ Z1 and consider a map G : U × [0, 1] → E0 given by G(u, t) := g(u) − tz.
Observe that G satisfies the assumptions of (iii); thus deg(G(·, 1), U, 0) 6= 0, so z = g(u0) for some

u0 ∈ U , a contradiction. 2

3 Existence of nontrivial solution and abstract linking theorem

We are now going to prove that equation (0.1) has a solution u 6= 0 (in addition to the trivial one

u ≡ 0).

For a number ε > 0, let

Tε := {u ∈ E : ‖∇Φ(u)‖ ≤ ε}.
Then either

(A) there is ε > 0 such that Tε ∩Φ−1[b− ε, S + ε] = ∅,
or

(B) there is a (PS)c-sequence (un) with c ∈ [b, S]

(the numbers b, S were defined in Lemmas 1.3 and 1.4 respectively).

In a moment we shall show that condition (A) leads to a contradiction – see Proposition 3.2.

Hence (B) is satisfied. By Lemma 1.5, the (PS)c-sequence (un) is bounded and clearly no subse-

quence of (un) converges to 0. Thus, by Lemma 1.7, there is a sequence (an) ⊂ RN and numbers

r, η > 0 such that

lim inf
n→∞

∫

B(an ,r)
|un|2 dx ≥ η.

Taking a subsequence if necessary we may suppose that

‖un‖L2(B(an ,r)) ≥
η

2
(3.1)

for all n ∈ N. Choose gn ∈ ZN such that |gn−an| = min{|g−an| : g ∈ ZN}. Thus |gn−an| ≤ 1
2

√
N .

Let

vn := gn ∗ un ≡ un(·+ gn)

(cf. (1.2)). In view of (3.1),

‖vn‖L2(B(0,r+ 1
2

√
N)) ≥

η

2
.(3.2)

Observe that Φ(vn) = Φ(un) and ‖∇Φ(vn)‖ = ‖∇Φ(un)‖. Hence (vn) is a (PS)c-sequence, and

by Lemma 1.5, (vn) is bounded. Therefore a subsequence of (vn) (again denoted by the same

symbol) converges to some v ∈ E weakly in E and strongly in L2
loc(R

N ). In view of (3.2),

‖v‖L2(B(0,r+ 1
2

√
N)) ≥

η
2 , so v 6= 0.

In view of the weak continuity of ∇Φ we get that ∇Φ(v) = 0.

Assuming (B), we have proved the following result:
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Theorem 3.1 If assumptions (A1) – (A6) are satisfied, then (0.1) has a nontrivial solution. 2

Now it remains to show

Proposition 3.2 Condition (A) does not hold.

Proof Assume to the contrary that (A) holds.

I. First we shall construct a certain vector field V : N → E, where N is a τ -open neighborhood

of the set ΦS. Denote α := b− ε.
Let u ∈ ΦS

α and put

w(u) :=
2∇Φ(u)

‖∇Φ(u)‖2 .

Since ∇Φ is weakly sequentially continuous, the function

ΦS
α 3 v 7→ 〈∇Φ(v), w(u)〉 ∈ R

is τ -continuous, i.e. if vn
τ→v (in ΦS

α), then 〈∇Φ(vn), w(u)〉 → 〈∇Φ(v), w(u)〉 (cf. Remark 2.1 (iii)).

Therefore u has a τ -open neighborhood Uu ⊂ E such that

〈∇Φ(v), w(u)〉 > 1(3.3)

for all v ∈ Uu ∩ ΦS
α. Additionally we let U0 := Φ−1(−∞, α). The set U0 is τ -open in view of the

τ -upper semicontinuity of Φ.

The family {Uu}u∈ΦSα
∪ {U0} is a τ -open covering of the (metric) space (ΦS , τ). Therefore it

has a τ -locally finite τ -open refinement {Nj}j∈J . Clearly, ΦS ⊂ N =:
⋃
j∈J Nj and N is τ -open.

Next let {λj}j∈J be a τ -Lipschitzian partition of unity subordinated to the cover {Nj}j∈J . For

each j ∈ J there are two possibilities: either Nj is contained in some Uuj , where uj ∈ ΦS
α, and in

this case we put wj := w(uj); or Nj ⊂ U0 and then we put wj := 0. Define

V (u) :=
∑

j∈J
λj(u)wj(3.4)

for any u ∈ N .

Let us collect some properties of V .

1. Since ‖∇Φ(uj)‖ ≥ ε in view of (A) and hence ‖wj‖ ≤ 2
ε for all j ∈ J , it follows that

|||V (u)||| ≤ ‖V (u)‖ ≤ 2
ε for all u ∈ N .

2. The field V is τ -locally τ -Lipschitzian and locally Lipschitzian. Moreover, each point u ∈ N
has a τ -neighborhood which is mapped by V into a finite-dimensional subspace.

Indeed, by the construction we see that any point u ∈ N has a τ -open neighborhood Wu ⊂ N

such that the set Ju := {j ∈ J : Nj ∩ Wu 6= ∅} is finite. Hence V (Wu) is contained in a

finite-dimensional subspace. Since for each j there is a constant Lj such that |λj(u′) − λj(u′′)| ≤
Lj|||u′−u′′||| ≤ Lj‖u′−u′′‖, it is easy to see that V is τ -locally τ -Lipschitzian and locally Lipschitzian.

3. By (3.3), 〈∇Φ(u), V (u)〉 ≥ 0 for all u ∈ N and

〈∇Φ(u), V (u)〉 > 1
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for all u ∈ ΦS
α.

II. Consider the Cauchy problem

dη

dt
= −V (η), η(u, 0) = u ∈ ΦS .(3.5)

The classical theory of ordinary differential equations asserts that (3.5) has a unique solution η(u, ·)
which exists for all t ≥ 0 because, by Property 1 above, V is bounded.

Let T := S − b + 2ε and consider η : ΦS × [0, T ] → ΦS. In view of Proposition 2.2, η is an

admissible homotopy. Observe that M ⊂ ΦS.

Lemma 3.3 supu∈M Φ(η(u, T )) < b.

Proof Suppose u ∈M and Φ(η(u, t)) ≥ b− ε. We shall show that t < T . By Property 3 of V ,

Φ(η(u, t)) − Φ(u) =

∫ t

0

d

ds
Φ(η(u, s)) ds = −

∫ t

0
〈∇Φ(η(u, s)), V (η(u, s))〉 ds ≤ −t.

Hence

S ≥ Φ(u) ≥ t+ Φ(η(u, t)) ≥ t+ b− ε
and t ≤ S − b+ ε < T . 2

III. Now we shall prove that

sup
u∈M

Φ(η(u, T )) ≥ b.(3.6)

The achieved contradiction to Lemma 3.3 will complete the proof of Proposition 3.2.

Consider a map G : M × [0, T ]→ Y ⊕Rz0 given by

G(u, t) := Pη(u, t) + (‖Qη(u, t)‖ − ρ)z0.

Clearly, G is an admissible homotopy since η is. Next observe that G(u, t) = 0 if and only if

η(u, t) ∈ Sρ ∩ Z. Then, by Lemma 1.3,

Φ(u) ≥ Φ(η(u, t)) ≥ b.(3.7)

This implies that u 6∈ ∂M , i.e. G−1(0) ∩ (∂M × [0, T ]) = ∅. Since M is convex and bounded, we

infer that G−1(0) is τ -compact (see Remark 2.3). Hence we may employ here the degree theory

developed in Section 2. Since G(u, 0) = u− ρz0 and ρz0 ∈M , we see that

deg(G(·, T ),M, 0) = deg(G(·, 0),M, 0) = 1

in view of Theorem 2.4 (ii), (iii). Therefore, by Theorem 2.4 (i), there exists u ∈ M such that

G(u) = 0 and, by (3.7), Φ(η(u, T )) ≥ b.
So we have (3.6) and this completes the proof of Proposition 3.2. 2

Below we state two generalized linking theorems which extend a result by Benci and Rabinowitz

[5, Theorem 0.1], [13, Section 5]. The proofs follow by inspection of the argument employed in

Proposition 3.2.
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Theorem 3.4 Let E be a real Hilbert space and suppose that Φ ∈ C 1(E,R) satisfies the following

hypotheses:

(i) Φ(u) = 1
2〈Lu, u〉 − ψ(u), where L is a bounded selfadjoint linear operator, ψ is bounded

below, weakly sequentially lower semicontinuous and ∇ψ is weakly sequentially continuous;

(ii) there exists a closed separable L-invariant subspace Y such that the quadratic form u 7→
〈Lu, u〉 is negative definite on Y and positive semidefinite on Y ⊥;

(iii) there are constants b, ρ > 0 such that Φ|Sρ ∩ Y ⊥ ≥ b;
(iv) there is z0 ∈ S1 ∩ Y ⊥ and R > ρ such that Φ|∂M ≤ 0, where M := {u = y + λz0 : y ∈

Y, ‖u‖ < R, λ > 0}.
Then there exists a sequence (un) such that ∇Φ(un)→ 0 and Φ(un)→ c for some c ∈ [b, supM Φ].

Note that hypothesis (ii) can be slightly weakened: we may assume Y = Y0 ⊕ Y1, where Y0 is a

finite-dimensional subspace of the nullspace of L and u 7→ 〈Lu, u〉 is negative definite on Y1.

In [5, 13] Y is not assumed to be separable, there are no conditions on the (semi)definiteness of

the quadratic form and ψ is not necessarily bounded below. On the other hand, the assumptions

made there imply that ∇ψ is a compact map and Φ satisfies the Palais–Smale condition.

Theorem 3.5 Let E be a real Hilbert space and suppose that Φ ∈ C 1(E,R) satisfies the following

hypotheses:

(i) ∇Φ is weakly sequentially continuous and there exists a closed separable subspace Y such that

Φ is τ -upper semicontinuous (where τ is the topology on E = Y ⊕ Y ⊥ introduced in the preceding

section);

(ii) conditions (iii) and (iv) of Theorem 3.4 are satisfied.

Then the same conclusion remains valid.

Observe that it follows from the hypotheses of Theorems 3.4 and 3.5 that supM Φ < ∞. Let

us also remark that it is possible to replace conditions (iii), (iv) of Theorem 3.4 by a more general

linking condition of a similar type as in [5, Theorem 1.4], [13, Theorem 5.29].

4 Infinite number of solutions

If u is a solution of (0.1), then so is g ∗u for each g ∈ ZN . Let O(u) := {g ∗u : g ∈ ZN} denote the

orbit of u with respect to the ZN -action ∗. Clearly, O(u) is an infinite set if u 6= 0. Two solutions

u1, u2 of (0.1) will be called geometrically distinct if O(u1) 6= O(u2).

In this section we are going to show that if the functional Φ given by (1.5) is even, then (0.1) has

infinitely many geometrically distinct solutions. More precisely, let us suppose that the following

two additional assumptions are satisfied:

(A7) For all x ∈ RN and u ∈ R, f(x,−u) = −f(x, u).

(A8) There are c and ε0 > 0 such that

|f(x, u+ v)− f(x, u)| ≤ c|v|(1 + |u|p−1)

for all x ∈ RN and u, v ∈ R such that |v| ≤ ε0.
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(A8) implies that f is locally Lipschitzian with respect to u; consequently, f(x, u) = f(x, 0) +∫ u
0 f
′
u(x, ξ) dξ for each x ∈ RN . It is therefore easy to see that (A8) is equivalent to f being locally

Lipschitzian in u and satisfying

|f ′u(x, u)| ≤ c(1 + |u|p−1)

for some c and all x ∈ RN , u ∈ R for which the derivative f ′u(x, u) exists. Note that the exponent

above is p− 1 and not p− 2, so Φ may not be of class C 2 even if f is differentiable.

Theorem 4.1 If assumptions (A1) – (A8) are satisfied, then (0.1) has infinitely many geometri-

cally distinct nontrivial solutions.

Proof The proof will contain several steps. We shall proceed by contradiction. Namely let us

suppose (to the contrary) that K/ZN is a finite set, i.e. K contains finitely many orbits.

Let F be a set consisting of arbitrarily chosen representatives of the (finitely many) orbits of

K. In view of (A7) we may assume that F = −F .

Since

Φ(v) = Φ(v)− 1

2
〈∇Φ(v), v〉 ≥ (

1

2
− 1

γ
)

∫

RN
f(x, v)v dx > 0(4.1)

if v ∈ F \ {0} and F is a finite set, there are numbers α, β > 0 such that

α < min
F\{0}

Φ = min
K\{0}

Φ ≤ max
K\{0}

Φ = max
F\{0}

Φ < β.(4.2)

Clearly, we may assume that

α < b ≤ β(4.3)

(b was defined in Lemma 1.3).

In order to continue the proof of Theorem 4.1, we shall need a number of prerequisites. First

we study Palais-Smale sequences more carefully.

Denote the integer part of r ∈ R by [r].

Proposition 4.2 Let (um)∞m=1 be a (PS)c-sequence. Then either

(i) lim infm→∞ ‖um‖ = 0 (and then c = 0)

or

(ii) c ≥ α and there exist a positive integer l ≤ [ cα ], points u1, . . . , ul ∈ F \ {0} (not necessarily

distinct), a subsequence of (um) (still denoted by the same symbol) and sequences (gim)∞m=1 ⊂ ZN ,

i = 1, . . . , l, such that ∥∥∥∥∥um −
l∑

i=1

(gim ∗ ui)
∥∥∥∥∥→ 0

and
l∑

i=1

Φ(ui) = c.
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Proof Our argument is modelled on [8]. By Lemma 1.5, the sequence (um) is bounded and c ≥ 0.

Suppose that (i) is not satisfied. As before, by Lemma 1.7 (ii), there is a sequence (am) ⊂ RN and

constants r, η > 0 such that

‖um‖L2(B(am ,r)) ≥
η

2
(4.4)

for almost all m ∈ N. We may choose gm ∈ ZN such that setting vm := (gm ∗ um) and passing to

a subsequence,

‖vm‖L2(B(0,r+ 1
2

√
N)) ≥

η

2
(4.5)

for all m (cf. (3.1), (3.2)). Moreover, Φ(vm) = Φ(um), ‖∇Φ(vm)‖ = ‖∇Φ(um)‖ and ‖vm‖ = ‖um‖.
Hence (vm) is bounded, so a subsequence of (vm) – still denoted by the same symbol – converges

to some v ∈ E both weakly in E and strongly in Lsloc(R
N ) for all s ∈ [2, 2∗). Therefore

v ∈ K \ {0}(4.6)

by the argument following (3.2). We shall show that

Φ(v) ≤ c.(4.7)

Let wm := vm − v. We claim that

Φ(wm)→ c− Φ(v)(4.8)

and

∇Φ(wm)→ 0.(4.9)

If (4.8), (4.9) hold, then also (4.7) does because (wm) is a (PS)-sequence and, by Lemma 1.5,

c− Φ(v) ≥ 0.

Observe that

Φ(vm) = Φ(wm + v) = Φ(wm) + Φ(v) + 〈Qwm − Pwm, v〉
−
∫

RN
[F (x,wm + v)− F (x,wm)− F (x, v)] dx.

(4.10)

As 〈(Q− P )wm, v〉 → 0 (because wm⇀0) and Φ(vm)→ c, we shall obtain (4.8) provided we prove

that ∫

RN
[F (x,wm + v)− F (x,wm)− F (x, v)] dx→ 0.(4.11)

Since v is a solution of (0.1), we have −∆v + q(x)v = 0, where q(x) = V (x)− f(x, v)/v. By (1.1),

q ∈ Ltloc(RN ) for some t > N
2 . Hence v(x) → 0 as |x| → ∞ [9, 14]. Now take any ε > 0 and a

bounded domain Ω ⊂ RN such that

‖v‖H1(RN\Ω) ≤ ε,
∫

RN\Ω
F (x, v) dx ≤ ε,(4.12)

and

‖v‖L∞(RN\Ω) ≤ ε.(4.13)

Since wm → 0 in Lp(Ω), we get

∣∣∣∣
∫

Ω
[F (x,wm + v)− F (x,wm)− F (x, v)] dx

∣∣∣∣ < ε(4.14)
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for sufficiently large m. By the mean value theorem, (1.1), the Hölder and the Sobolev inequalities

and (4.12),
∫

RN\Ω
|F (x,wm + v)− F (x,wm)|dx ≤

∫

RN\Ω
[(|wm|+ |v|) + c1(|wm|+ |v|)p−1]|v|dx

≤ c2(‖wm‖+ ‖v‖)‖v‖H1(RN\Ω) + c3(‖wm‖p−1 + ‖v‖p−1)‖v‖H1(RN\Ω) ≤ c4ε.
(4.15)

Since c4 is independent of ε, (4.12), (4.14) and (4.15) show that (4.11), and hence also (4.8), is

satisfied.

Now we shall verify (4.9). For any ϕ ∈ E,

〈∇Φ(wm), ϕ〉 = 〈∇Φ(vm), ϕ〉 −
∫

RN
[f(x,wm)− f(x, vm) + f(x, v)]ϕdx.

Therefore, since ∇Φ(vm)→ 0, it suffices to show that

sup
‖ϕ‖≤1

∣∣∣∣
∫

RN
[f(x,wm)− f(x, vm) + f(x, v)]ϕdx

∣∣∣∣→ 0.(4.16)

Again, let ε > 0 be given and let Ω be such that (4.12), (4.13) hold. Since wm → 0 and vm → v in

Lp(Ω), we have ∣∣∣∣
∫

Ω
[f(x,wm)− f(x, vm) + f(x, v)]ϕdx

∣∣∣∣ ≤ ε(4.17)

for large m ∈N. Next by (1.1) and (4.12), if ‖ϕ‖ ≤ 1, then
∣∣∣∣∣

∫

RN\Ω
f(x, v)ϕdx

∣∣∣∣∣ ≤ c5(‖v‖H1(RN\Ω) + ‖v‖p−1
H1(RN\Ω)

)‖ϕ‖ ≤ c6ε.(4.18)

Hence it remains to show that

sup
‖ϕ‖≤1

∣∣∣∣∣

∫

RN\Ω
[f(x,wm)− f(x,wm + v)]ϕdx

∣∣∣∣∣→ 0.(4.19)

By (4.12), (4.13), (A8) and the Hölder inequality, if ‖ϕ‖ ≤ 1, then
∫

RN\Ω
|f(x,wm)− f(x,wm + v)||ϕ|dx ≤

∫

RN\Ω
c(1 + |wm|p−1)|v||ϕ|dx

≤ c7‖ϕ‖(‖v‖H1(RN\Ω) + ‖wm‖p−1
H1(RN\Ω)

‖v‖L∞(RN\Ω)) ≤ c8ε.
(4.20)

In view of (4.20), (4.19) is satisfied. This, together with (4.18) and (4.17), shows that (4.16), and

therefore also (4.9) and (4.7), are satisfied.

By (4.2), (4.6) and (4.7), α < Φ(v) ≤ c. There are now two possibilities to consider:

– If c = Φ(v), then wm → 0. Indeed, if wm 6→ 0, then arguing as in (4.4)-(4.7) but replacing (um)

and c by (wm) and c′ = c− Φ(v) = 0, we obtain v ∈ K \ {0} such that Φ(v) ≤ 0 – a contradiction

to (4.1). Hence our proposition holds with l = 1, u1 = (g ∗ v) (where g ∈ ZN is chosen to ensure

that u1 ∈ F) and g1
m = (ggm)−1.

– If c > Φ(v), then we argue as in (4.4)-(4.7) again, with (um) and c replaced by (wm) and

c′ = c− Φ(v) respectively, and we obtain v ′ ∈ K with α < Φ(v′) ≤ c− α. After at most [ cα ] steps,

we obtain the conclusion. 2
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Given l ∈ N and a finite set A ⊂ E, let

[A, l] :=





j∑

i=1

gi ∗ ai : 1 ≤ j ≤ l, gi ∈ ZN , ai ∈ A


 .

Proposition 4.3 [7, Proposition 1.55] For any l ∈ N,

inf{‖a − a′‖ : a, a′ ∈ [A, l], a 6= a′} > 0. 2

In view of Proposition 4.2 we have:

Corollary 4.4 If (um) is a (PS)c-sequence, c ≥ α, then

0 ≤ |||um − [F , l]||| ≤ ‖um − [F , l]‖ → 0

provided that l ≥ [ cα ]. 2

Note that K ⊂ [F , l] and both sets are symmetric with respect to the origin.

Let Σ := {A ⊂ E : A is closed and A = −A}. For each A ∈ Σ we define a class H(A) of all

maps g : A→ E such that:

(a) g(A) is closed and g is a homeomorphism of A onto g(A) (in the original topology of E);

(b) g is an odd admissible map;

(c) for any u ∈ A, Φ(g(u)) ≤ Φ(u).

Remark 4.5

(i) Clearly, H(A) is nonempty: it contains the identity I : A→ A ⊂ E.

(ii) Observe that H(A) is closed under composition. More precisely, let gi ∈ H(Ai), where

Ai ∈ Σ, i = 1, 2, and suppose that g1(A1) ⊂ A2. Then g = g2 ◦ g1 ∈ H(A1). In particular, if

A ⊂ B ∈ Σ, then for any g ∈ H(B), g|A ∈ H(A).

For B ∈ Σ, denote by γ(B) the Krasnoselskii genus of B [13, Section 7], i.e.

γ(B) := min{k ∈ N : ∃ odd continuous ϕ : B → Rk \ {0}}; γ(∅) := 0.

In our minimax argument we shall need the following deformation lemma:

Lemma 4.6 Let ξ > β + 2. There exist ε > 0, a symmetric τ -open set N with γ(N ) = 1 and a

map g ∈ H(Φξ) such that:

(i) for any d ∈ [b, ξ − 1], g(Φd+ε \ N ) ⊂ Φd−ε;
(ii) if moreover d ≥ β + 1, then g(Φd+ε) ⊂ Φd−ε.

Proof Let

l :=

[
ξ + 1

α

]

and

0 < µ < inf{‖z − z′‖ : z, z′ ∈ [QF , l], z 6= z′}.
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By Proposition 4.3 (which also holds in the space Z), such µ exists. For any z ∈ [QF , l] \ {0}, let

Az := Y ⊕ BZ(z, µ4 ) (where BZ(z, µ4 ) := B(z, µ4 ) ∩ Z). It is clear that 0 6∈ Az. If z 6= z′, z, z′ 6= 0,

then Az ∩Az′ = ∅; in particular, Az ∩A−z = ∅.
Let

N :=
⋃

z∈[QF ,l]\{0}
Az ≡ Y ⊕

⋃

z∈[QF ,l]\{0}
BZ

(
z,
µ

4

)
.(4.21)

Since [QF , l] = Q[F , l], N is a τ -open symmetric neighborhood of [F , l] \ {0}. Since for z ∈
[QF , l] \ {0}, Az = Y ⊕BZ(z, µ4 ) is contractible and N =

⋃
z∈[QF ,l]\{0}Az, γ(N ) = 1.

Let

N0 := Y ⊕
⋃

z∈[QF ,l]
BZ

(
z,

1

8
µ

)
.

We easily see that N0 is a τ -neighborhood of [F , l], hence by Corollary 4.4, there is δ > 0 such that

if u ∈ Φξ+1
α \ N0, then ‖∇Φ(u)‖ ≥ δ.

Take ε > 0 such that

ε < min

{
1

2
, b− α, 1

32
δµ

}
.(4.22)

Now we shall define a vector field V by slightly modifying the construction in Section 3. For any

u ∈ Φξ+1
α \K (note that K is τ -closed), let

w(u) :=
2∇Φ(u)

‖∇Φ(u)‖2 .

In view of the τ -continuity of the function Φξ+1
α 3 v 7→ 〈∇Φ(v), w(u)〉 ∈ R, there is a τ -open

neighborhood Uu of u (in E) such that for any v ∈ Φξ+1
α ∩ Uu,

〈∇Φ(v), w(u)〉 > 1(4.23)

and

|||v − u||| < 1

16
µ.(4.24)

Additionally let U0 := Φ−1(−∞, α). Take a τ -locally finite τ -open refinement {Nj}j∈J of the τ -

open covering {Uu}u∈Φξ+1
α
∪ {U0} of Φξ+1 and a τ -locally τ -Lipschitzian partition of unity {λj}j∈J

subordinated to {Nj}j∈J . Put wj := w(uj) if Nj ⊂ Uuj for some uj ∈ Φξ+1
α and wj := 0 if Nj ⊂ U0.

Let N be a symmetric τ -open set such that Φξ+1 ⊂ N ⊂ ⋃j∈J Nj and set

Ṽ (u) :=
∑

j∈J
λj(u)wj ,(4.25)

V (u) :=
1

2
[Ṽ (u)− Ṽ (−u)](4.26)

for u ∈ N . Below we collect some properties of V .

1. V is odd; it is τ -locally τ -Lipschitzian and thus locally Lipschitzian.

2. By (4.23) and since∇Φ is an odd map, for all u ∈ N , 〈∇Φ(u), V (u)〉 ≥ 0 and 〈∇Φ(u), V (u)〉 >
1 when u ∈ Φξ+1

α .

3. Each point u ∈ Φξ+1 has a τ -neighborhood Wu on which V is τ -Lipschitzian and such that

V (Wu) is contained in a finite-dimensional subspace of E.
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Finally, let ψ : E → [0, 1] be an even τ -locally τ -Lipschitzian function such that ψ(u) = 0 if

|||u − K||| ≤ 1
10µ and ψ(u) = 1 if |||u − K||| ≥ 1

8µ. Note in particular that ψ(u) = 1 if u /∈ N0.

Diminishing µ if necessary we may assume that

ψ(u) = 1 if u ∈ Φβ.(4.27)

Consider the Cauchy problem

dη

dt
= −ψ(η)V (η), η(u, 0) = u ∈ Φξ+1.(4.28)

Since ψV is locally Lipschitzian, (4.28) has a unique continuous solution η(u, ·) defined on a right

maximal neighborhood Iu := [0, ω+(u)) of t = 0. Since the field ψV is odd, we have that ω+(u) =

ω+(−u) and η(−u, t) = −η(u, t) for all u ∈ Φξ+1, t ∈ Iu.

Claim.

(a) For any u ∈ Φξ+1, ω+(u) =∞;

(b) η : Φξ+1 × [0, 1] → Φξ+1 is an admissible homotopy and g := η(·, 1)|Φξ is an admissible odd

map;

(c) g(Φd+ε \ N ) ⊂ Φd−ε; moreover, g(Φd+ε) ⊂ Φd−ε if d ≥ β + 1.

Proof of Claim.

(a) Assume that ω+(u) = ω+(−u) < ∞ for some u ∈ Φξ+1. If there is a constant C > 0 such

that ‖V (η(u, tm))‖ ≤ C as tm ↗ ω+(u), then

‖η(u, tn)− η(u, tm)‖ =

∥∥∥∥
∫ tn

tm
ψ(η(u, t))V (η(u, t)) dt

∥∥∥∥ ≤ C|tn − tm|.

Thus (η(u, tm))∞m=1 is a Cauchy sequence and it is easy to see that η(u, ·) may be extended be-

yond ω+(u). Therefore there must exist a sequence tm ↗ ω+(u) such that ψ(η(u, tm)) > 0 and

‖V (η(u, tm))‖ → ∞. Set vm := η(u, tm). Since V (vm) = 1
2 [Ṽ (vm) − Ṽ (−vm)] and Ṽ (vm) =∑

j∈J λj(vm)wj , we get that for all m there is an element j(m) ∈ J such that ‖wj(m)‖ = 2
‖∇Φ(um)‖ →

∞ as m → ∞, where um := uj(m), and λj(m)(vm) 6= 0 or λj(m)(−vm) 6= 0. So ∇Φ(um) → 0 (and

um ∈ Φξ+1
α ).

Taking a subsequence if necessary, we may assume that for all m, λj(m)(vm) 6= 0. Hence

vm ∈ Nj(m) ⊂ Uum and by (4.24), |||vm− um||| < µ
16 . By Corollary 4.4, |||um− [F , l]||| → 0. Therefore

either

(i) there is z ∈ [QF , l] such that, for almost all m, um ∈ Y ⊕BZ(z, µ16)

or

(ii) the sequence (um) enters infinitely many such sets and therefore (vm) enters infintely many

sets of the form Y ⊕BZ(z, µ8 ), where z ∈ [QF , l].
If (i) holds, then Qum → z. Since Φ(um) ≥ α, the sequence (Pum) is bounded and therefore

Pum⇀y ∈ Y (taking a subsequence if necessary). Consequently, um
τ→y+z. By the weak continuity

of ∇Φ, we get ∇Φ(y + z) = 0, so y + z ∈ K. Hence |||um −K||| → 0 and thus |||vm −K||| ≤ µ
10 for

almost all m. Therefore ψ(vm) = 0 for such m, a contradiction.

Suppose (ii) is satisfied. Outside V := Y ⊕ ⋃z∈[QF ,l]BZ(z, µ16 ), if u ∈ Φξ+1
α , then, again by

Corollary 4.4, ‖∇Φ(u)‖ ≥ δ0 for some δ0 > 0.
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Let t1 < t2 < ω+(u) be such that η(u, t) 6∈ V for t ∈ (t1, t2); moreover, η(u, ·) leaves Y ⊕
BZ(z1,

µ
8 ) for t = t1 and enters Y ⊕ BZ(z2,

µ
8 ) for t = t2, where z1, z2 ∈ [QF , l], z1 6= z2. Then

‖η(u, t1)− η(u, t2)‖ ≥ 3
4µ.

Now let v = η(u, t) for some t ∈ (t1, t2). For such v, Ṽ (v) =
∑
j∈J0

λj(v)wj , where J0 is a finite

set. By (4.24), for all j ∈ J0, |||uj − v||| < µ
16 . Hence uj 6∈ V and

‖Ṽ (v)‖ ≤ sup
j∈J0

‖wj‖ = sup
j∈J0

2

‖∇Φ(uj)‖
≤ 2

δ0
.

So
3

4
µ ≤ ‖η(u, t2)− η(u, t1)‖ ≤

∫ t2

t1
‖V (η(u, s)‖ds ≤ 2

δ0
(t2 − t1).(4.29)

Since t1, t2 may be chosen arbitrarily close to ω+(u), this is a contradiction. Hence ω+(u) =∞ for

all u ∈ Φξ+1.

(b) The admissibility of the homotopy η : Φξ+1 × [0, 1] → Φξ+1 follows from Proposition 2.2.

Thus g = η(·, 1)|Φξ is also admissible and it is clearly odd.

(c) Take any d ≤ ξ− 1 and let u ∈ Φd+ε \N . Suppose there is t ≥ 0 such that η(u, t) ∈ N 0 and

η(u, s) 6∈ N0 for s ∈ [0, t) (otherwise the argument is simpler). Then ψ(η(u, s)) = 1 and

‖Qη(u, t) − z‖ =
1

8
µ

for some z ∈ [QF , l]. Using an argument similar to (4.29), we obtain

1

8
µ ≤ ‖Qu−Qη(u, t)‖ ≤

∫ t

0
‖V (η(u, s)‖ds ≤ 2

δ
t.

Since ψ(η(u, s)) = 1,

d+ ε− Φ(η(u, t)) ≥ Φ(u)− Φ(η(u, t)) =

∫ t

0
〈∇Φ(η(u, s)), V (η(u, s))〉 ds ≥ t,(4.30)

and therefore Φ(η(u, t)) ≤ d+ ε− δµ
16 < d− ε (the last inequality follows from (4.22)). So if t ≤ 1,

then Φ(η(u, 1)) ≤ Φ(η(u, t)) ≤ c− ε. If t > 1, then (4.30) implies Φ(η(u, 1)) ≤ d− ε (since ε < 1
2).

If d ≥ β + 1, then clearly, for all u ∈ Φd+ε
d−ε and t ∈ [0, 1], ψ(η(u, t)) = 1 in view of (4.27).

Therefore it is easy to see using (4.30) again that Φ(η(u, 1)) ≤ d− ε and η(Φd+ε, 1) ⊂ Φd−ε.

So far we have proved that g : Φξ → Φξ is an odd admissible map satisfying (i) and (ii). Clearly,

Φ(g(u)) ≤ Φ(u) and g is a homeomorphism of Φξ into Φξ. It remains to show that g(Φξ) is a closed

set. To this end we introduce an even Lipschitzian function ϕ : E → [0, 1] such that ϕ|Φξ+1 ≡ 0

and ϕ|Φξ ≡ 1. Consider the Cauchy problem

dχ

dt
= −ϕ(χ)ψ(χ)V (χ), χ(u, 0) = u ∈ E.

Using a similar argument as above we show that χ(u, t) exists for all t ∈ R. Now assume vm :=

g(um) = η(um, 1) = χ(um, 1) → v, where um ∈ Φξ. Then um = χ(vm,−1) → χ(v,−1) = u ∈ Φξ.

Hence g(u) = v and v ∈ g(Φξ).

This completes the proof of Lemma 4.6. 2
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For each A ∈ Σ we define a pseudoindex γ∗(A) of A by setting

γ∗(A) := min
g∈H(A)

γ(g(A) ∩ Sρ ∩ Z)

(recall γ denotes the genus). Observe that since g(A) is closed, g(A) ∩ Sρ ∩ Z is an element of Σ

and the above definition is correct. Our pseudoindex is similar to that of Benci [4]; however, it

does not have all properties required in [4].

Lemma 4.7 Let A,B ∈ Σ.

(i) If γ∗(A) 6= 0, then A 6= ∅.
(ii) If A ⊂ B, then γ∗(A) ≤ γ∗(B).

(iii) If h ∈ H(A), then γ∗(h(A)) ≥ γ∗(A).

Proof Property (i) is obvious.

(ii) If A ⊂ B, then g(A) ⊂ g(B) for any g ∈ H(B). Hence, by the monotonicity of the genus,

γ(g(A) ∩ Sρ ∩ Z) ≤ γ(g(B) ∩ Sρ ∩ Z). By Remark 4.5 (ii),

γ∗(A) = min
g∈H(A)

γ(g(A) ∩ Sρ ∩ Z) ≤ min
g∈H(B)

γ(g(A) ∩ Sρ ∩ Z) ≤ min
g∈H(B)

γ(g(B) ∩ Sρ ∩ Z) = γ∗(B).

(iii) For any g ∈ H(h(A)), g ◦ h ∈ H(A) according to Remark 4.5 (ii). Hence

γ∗(A) = min
g∈H(A)

γ(g(A) ∩ Sρ ∩ Z) ≤ min
g∈H(h(A))

γ(g ◦ h(A) ∩ Sρ ∩ Z) = γ∗(h(A)). 2

Now we shall show that in Σ there are sets of arbitrarily large pseudoindex. To this end suppose

that Zk is a k-dimensional subspace of Z and let Ek := Y ⊕ Zk. Arguing as in Lemma 1.4, one

proves easily that

Φ(u)→ −∞ as u ∈ Ek and ‖u‖ → ∞.
Therefore there is a number Rk > ρ (ρ was determined in Lemma 1.3) such that for u ∈ Ek,

‖u‖ ≥ Rk,
Φ(u) < inf

‖u‖≤ρ
Φ(u).(4.31)

Let us put

A := B(0, Rk) ∩Ek = {u ∈ Ek : ‖u‖ ≤ Rk}.

Lemma 4.8 γ∗(A) ≥ k.

Proof Suppose to the contrary that γ∗(A) = l, 0 ≤ l < k. Hence there is g ∈ H(A) such that

γ(g(A) ∩ Sρ ∩ Z) = l.

Let U := g−1(Bρ) ∩ Ek and B := g−1(Bρ) ∩ Ek. Since g is odd, the sets U,B are symmetric

and 0 ∈ U . Since g is τ -continuous and Bρ is τ -closed, B is τ -closed. Moreover, U is open

in Ek because g is continuous and for all u ∈ U , ‖u‖ < Rk (for if ‖u‖ = Rk, then by (4.31),

Φ(g(u)) ≤ Φ(u) < infBρ Φ, and u /∈ g−1(Bρ)). Clearly, U ⊂ B ⊂ A and g(B \ U) ⊂ Sρ.
Assume that g(A)∩Sρ ∩Z 6= ∅. There is a continuous odd map ϕ : g(A)∩Sρ ∩Z → Rl \ {0} ⊂

Rk−1 \{0}. Since Rk−1 is isomorphic to a (k−1)-dimensional subspace Zk−1 of Zk, we may assume
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that ϕ : g(A) ∩ Sρ ∩ Z → Zk−1 \ {0}. Let ϕ∗ : Bρ → Zk−1 be an odd extension of ϕ to Bρ (take

any continuous extension ϕ̃ with values in Zk−1 and put ϕ∗(x) = 1
2 [ϕ̃(x)− ϕ̃(−x)], x ∈ Bρ).

If g(A) ∩ Sρ ∩ Z = ∅, we put ϕ∗ ≡ 0.

We now consider a map g : B → Ek given by

g(u) := Pg(u) + ϕ∗(Qg(u)).

It is clear that g is odd and admissible. If g(u) = 0, then g(u) ∈ Z, so Qg(u) = g(u) and ϕ∗(g(u)) =

0. Since for u ∈ B \ U , ϕ∗(g(u)) = ϕ(g(u)) 6= 0, we obtain g−1(0) ∩ (B \ U) = ∅. Moreover, g−1(0)

is τ -compact (recall B is τ -closed). Hence, in view of Theorem 2.4 (iv), g−1(0) ∩ ∂U 6= ∅, a

contradiction because ∂U ⊂ B \ U .

This proves that γ∗(A) ≥ k. 2

Now we can return to the proof of Theorem 4.1. Let

ck := inf
γ∗(A)≥k

sup
u∈A

Φ(u).

By Lemma 4.8, ck is a well-defined real number for each k ≥ 1.

Lemma 4.9 For any integer k ≥ 1, b ≤ ck ≤ ck+1.

Proof The second inequality is obvious since {A ∈ Σ : γ∗(A) ≥ k + 1} ⊂ {A ∈ Σ : γ∗(A) ≥ k}.
If γ∗(A) ≥ k, then γ(g(A) ∩ Sρ ∩ Z) ≥ k and g(A) ∩ Sρ ∩ Z 6= ∅ for any g ∈ H(A). Hence there is

u ∈ A such that g(u) ∈ Sρ ∩ Z; so Φ(u) ≥ Φ(g(u)) ≥ b. 2

There are two possibilities:

(j) There is an integer k ≥ 1 such that c := ck ≥ β + 1.

(jj) For all k ≥ 1, α < b ≤ ck ≤ β + 1.

We are now going to show that both conditions (j) and (jj) lead to a contradiction. This will

complete the proof of Theorem 4.1.

(A) Suppose that condition (j) is satisfied. Let ξ > c + 1. Then ξ > β + 2. For each ε > 0

there is A ⊂ Φc+ε such that γ∗(A) ≥ k. By Lemma 4.7 (ii),

γ∗(Φc+ε) ≥ γ∗(A) ≥ k.

Further, by Lemma 4.6 (ii) (with d = c), there exist ε > 0 and g ∈ H(Φξ) such that g(Φc+ε) ⊂ Φc−ε.
So by Lemma 4.7 (iii),

k ≤ γ∗(Φc+ε) ≤ γ∗(g(Φc+ε)) ≤ γ∗(Φc−ε)

and thus c ≡ ck ≤ c− ε, a contradiction.

(B) Suppose that (jj) is satisfied. Now in order to proceed further we need to introduce another

pseudoindex.

Let X be an arbitrary but fixed member of Σ and let

ΣX := {A ∈ Σ : A ⊂ X}.

We define

γ∗X(A) := min
g∈H(X)

γ(g(A) ∩ Sρ ∩ Z).
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Lemma 4.10 Let A,B ∈ ΣX .

(i) γ∗X(A) ≥ γ∗(A).

(ii) If A ⊂ B, then γ∗X(A) ≤ γ∗X(B).

(iii) If h ∈ H(X) and h(X) ⊂ X, then γ∗X(h(A)) ≥ γ∗X(A).

(iv) γ∗X(A ∪B) ≤ γ∗X(A) + γ(B).

Proof (i) For any g ∈ H(X), g|A ∈ H(A). Hence γ∗(A) ≤ γ∗X(A).

(ii) γ(g(A) ∩ Sρ ∩ Z) ≤ γ(g(B) ∩ Sρ ∩ Z) for each g ∈ H(X). Hence γ∗X(A) ≤ γ∗X(B).

(iii) For any g ∈ H(X), g ◦ h ∈ H(X). Thus

γ∗X(A) ≤ min
g∈H(X)

γ(g ◦ h(A) ∩ Sρ ∩ Z) = γ∗X(h(A)).

(iv) Take any g ∈ H(X). Then

γ∗X(A ∪B) ≤ γ(g(A ∪B) ∩ Sρ ∩ Z) ≤ γ(g(A) ∩ Sρ ∩ Z) + γ(g(B))

in view of the subadditivity and monotonicity of the genus. Since g(B) is closed and homeomorphic

to B, γ(B) = γ(g(B)). Therefore γ∗X(A ∪ B) ≤ γ(g(A) ∩ Sρ ∩ Z) + γ(B). This implies that

γ∗X(A ∪B) ≤ γ∗X(A) + γ(B). 2

The sequence (ck) being nondecreasing and bounded is convergent, say b ≤ c := limk→∞ ck ≤
β + 1. It follows from the definition of ck and Lemma 4.7 (ii) that γ∗(Φc+ν) ≥ k for all ν > 0 and

k ≥ 1. Take any ξ > β + 2 and let

X := Φβ+2 ⊂ Φξ.

Since

γ∗X(Φc+ν) ≥ γ∗(Φc+ν) =∞(4.32)

for each 0 < ν < 1, we may define a new sequence of real numbers (dk)∞k=1 by the formula

dk := inf
γ∗X(A)≥k

sup
u∈A

Φ(u).

Lemma 4.11 For any k ≥ 1, b ≤ dk ≤ dk+1 ≤ c.

Proof The first two inequalities are established similarly as in Lemma 4.9. The last one follows

from (4.32) and the definition of dk. 2

The sequence (dk) is nondecreasing and bounded, so b ≤ d := limk→∞ dk ≤ c < ξ − 1. For all

ε > 0 sufficiently small, X ≡ Φβ+2 ⊃ Φd+ε ⊃ Φdk+ε and thus γ∗X(Φd+ε) =∞.

By Lemma 4.6, there are ε > 0 and g ∈ H(X) such that g(Φd+ε \ N ) ⊂ Φc−ε and g(X) ⊂ X.

Since Φd+ε = (Φd+ε \ N ) ∪ (N ∩ Φd+ε), we get by Lemma 4.10 (iv), (iii) and (ii) that

∞ = γ∗X(Φd+ε) ≤ γ∗X(Φd+ε \ N ) + γ(N ∩ Φd+ε) ≤ γ∗X(g(Φd+ε \ N )) + 1 ≤ γ∗X(Φd−ε) + 1,

so γ∗X(Φd−ε) =∞. Therefore dk ≤ d− ε for all k, contradicting the fact that dk → d.

The proof of Theorem 4.1 is complete. 2
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5 Existence of homoclinic solutions

In this final section we indicate how our results can be carried over to the problem of existence of

homoclinic solutions for the second order system of differential equations

−q̈ +A(t)q = Fq(t, q), t ∈ R, q ∈ RN .(5.1)

Let E := H1(R,RN ) and suppose that A and F satisfy the following conditions:

(B1) The functions F : R×RN → R and Fq : R×RN → RN are continuous and 1-periodic in t.

(B2) lim infq→0 q ·Fq(t, q)/|Fq(t, q)|2 > 0 and lim inf |q|→∞ q ·Fq(t, q)/|Fq(t, q)| > 0, uniformly with

respect to t.

(B3) Fq(t, q) = o(|q|) uniformly with respect to t as |q| → 0.

(B4) There is γ > 2 such that for all t ∈ R and q ∈ RN \ {0},

0 < γF (t, q) ≤ q · Fq(t, q).

(B5) A : R→ RN2
is a symmetric N ×N matrix with continuous 1-periodic entries.

(B6) 0 lies in a gap of the spectrum of the operator L : E → E given by

(Lq, v) :=

∫

R
(q̇ · v̇ +A(t)q · v) dt.

(B7) For all t ∈ R and q ∈ RN , F (t,−q) = F (t, q).

(B8) Fq is locally Lipschitzian with respect to q.

Note that (B2) follows from (B3) and (B4) if N = 1 (a single equation).

Let

Φ(q) :=
1

2

∫

R
(|q̇|2 +A(t)q · q) dt−

∫

R
F (t, q) dt.

It is well-known [7] that Φ ∈ C1(E,R) and nontrivial critical points of Φ correspond to homoclinic

solutions of (5.1) whenever (B1), (B3), (B5) are satisfied.

Theorem 5.1 If assumptions (B1)–(B6) are satisfied, then (5.1) has a homoclinic solution.

Theorem 5.2 If assumptions (B1)–(B8) are satisfied, then (5.1) has infinitely many homoclinic

solutions.

The proofs use the same arguments as for the Schrödinger equation. Note that since the space

E is continuously embedded in L∞(R,RN ), it is not necessary to have a growth restriction like

(A2) here. By the same reason no growth condition in (B8) is needed (cf. [7, Proposition 1.24]).

Hypothesis (B2) (which replaces (A2)) is used in order to show that (PS)β-sequences are bounded.

More precisely, in the proof of Lemma 1.5 we replace (1.9) by

β + 1 + εm‖qm‖ ≥ Φ(qm)− 1

2
〈∇Φ(qm), qm〉 ≥

(
1

2
− 1

γ

)∫

RN
qm · Fq(t, qm) dt ≥ 0,
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where εm → 0 as m→∞. It follows from (B2), (B4) that there is a constant c̃ > 0 such that

|Fq(t, q)|2 ≤ c̃ q · Fq(t, q) if |q| ≤ 1

and

|Fq(t, q)| ≤ c̃ q · Fq(t, q) if |q| ≥ 1.

The remaining part of the proof is similar to that of Lemma 1.5 (with obvious changes).

A homoclinic solution for (5.1) has also been found in [3] by a different argument (constructing

subharmonics and passing to the limit) and under somewhat more restrictive conditions than in

Theorem 5.1.

References

[1] S. Alama and Y.Y. Li, Existence of solutions for semilinear elliptic equations with indefinite

linear part, J. Diff. Eq. 96 (1992), 89-115.

[2] S. Alama and Y.Y. Li, On “Multibump” bound states for certain semilinear elliptic equations,

Indiana J. Math. 41 (1992), 983-1026.

[3] G. Arioli and A. Szulkin, Homoclinic solutions for a class of systems of second order differential

equations, Topol. Meth. Nonl. Anal. 6 (1995), 189-197.

[4] V. Benci, On critical point theory for indefinite functionals in the presence of symmetries,

Trans. Amer. Math. Soc. 274 (1982), 533-572.

[5] V. Benci and P.H. Rabinowitz, Critical point theorems for indefinite functionals, Invent. Math.

52 (1979), 241-273.

[6] B. Buffoni, L. Jeanjean and C.A. Stuart, Existence of nontrivial solutions to a strongly indef-

inite semilinear equation, Proc. Amer. Math. Soc. 119 (1993), 179-186.

[7] V. Coti Zelati and P.H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems

possessing superquadratic potentials, J. Amer. Math. Soc. 4 (1991), 693-727.

[8] V. Coti Zelati and P.H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE

on Rn, Comm. Pure Appl. Math. 45 (1992), 1217-1269.
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