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Abstract

Using an argument of concentration-compactness type we study the problem −∆u+ λV (x)u =
|u|p−2u, x ∈ RN , where 2 < p < 2∗ and the set {x ∈ RN : V (x) < b} is nonempty and has
finite measure for some b > 0. In particular, we show that if V −1(0) has nonempty interior,
then the number of solutions increases with λ. We also study concentration of solutions on the
set V −1(0) as λ→∞.

1 Introduction

The purpose of this paper is to present simple proofs of some results concerning the existence and

the number of decaying solutions for the Schrödinger equation

(1.1) −∆u+ V (x)u = |u|p−2u, x ∈ RN ,

and for the related equations

(1.2) −∆u+ λV (x)u = |u|p−2u, x ∈ RN

and

(1.3) −ε2∆u+ V (x)u = |u|p−2u, x ∈ RN ,

respectively as λ → ∞ and ε → 0. In a concluding section we shall also consider concentration

of solutions as λ → ∞ or ε → 0. We shall assume throughout that V and p satisfy the following

assumptions:

(V1) V ∈ C(RN ) and V is bounded below.

(V2) There exists b > 0 such that the set {x ∈ RN : V (x) < b} is nonempty and has finite measure.

(P ) p ∈ (2, 2∗), where 2∗ := 2N/(N − 2) if N ≥ 3 and 2∗ := +∞ if N = 1 or 2.
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Assumption (V1) is only for simplicity. In Sections 2 and 3 it can be replaced by

(V ′1) V ∈ L1
loc(RN ) and V − := max{−V, 0} ∈ Lq(RN ), where q = N/2 if N ≥ 3, q > 1 if N = 2

and q = 1 if N = 1

while in Section 4 we also need V ∈ Lqloc(RN ). Such an extension requires nothing more than a

simple modification of our arguments.

Note that if ε2 = λ−1, then u is a solution of (1.2) if and only if v = λ−1/(p−2)u is a solution of

(1.3), hence as far as the existence and the number of solutions are concerned, these two problems

are equivalent.

Problem (1.3) with V ≥ 0 and a more general right-hand side has been studied extensively by

several authors, see e.g. [5, 10, 11] and the references therein. For a problem similar to (1.2), again

with V ≥ 0 and a more general right-hand side, see [2]. In a recent work [6] it has been shown

that for a certain class of functions V which may change sign, (1.1) has infinitely many solutions,

see Remark 3.6 below. The results of the present paper extend and complement those mentioned

above. In particular, our assumptions on V are rather weak, but perhaps more important, our

proofs seem to be new and simpler. On the other hand, contrary to [5, 10, 11], we do not study

single- or multispike solutions of (1.3) as ε → 0. In a forthcoming paper we shall consider (1.2)

for a much more general class of nonlinearities. However, this will be done at the expense of the

simplicity of arguments.

Below ‖u‖p will denote the usual Lp(RN )-norm and V ±(x) := max{±V (x), 0}. Bρ and Sρ will

respectively denote the open ball and the sphere of radius ρ and center at the origin.

It is well known that the functional

Φ(u) :=
1

2

∫
�N

(|∇u|2 + V (x)u2) dx− 1

p

∫
�N

|u|p dx

is of class C1 in the Sobolev space

(1.4) E = {u ∈ H1(RN ) : ‖u‖2 :=

∫

�N

(|∇u|2 + V +(x)u2) dx <∞}

and critical points of Φ correspond to solutions u of (1.1). Moreover, u(x) → 0 as |x| → ∞. It is

easy to see that if

(1.5) M := inf
u∈E\{0}

∫

�N
(|∇u|2 + V (x)u2) dx

‖u‖2p

is attained at some ū and M is positive, then u = M 1/(p−2)ū/‖ū‖p is a solution of (1.1) and

u(x)→ 0 as |x| → ∞. Such u is called a ground state. We note for further reference that (V1), (V2)

and the Poincaré inequality imply E is continuously embedded in H 1(RN ). For basic critical point

theory in a setting suitable for our purposes the reader is referred e.g. to [7, 14]. That u(x) → 0

as |x| → ∞ can be seen as follows. If N = 1 and u ∈ H1(R), then u(x)→ 0 as |x| → ∞. Suppose

N ≥ 2, let u be a solution of (1.1) and set W (x) = V (x)−|u(x)|p−2. Since V is continuous, bounded

below and |u|p−2 ∈ Lr(RN ) for some r > N/2, it is easy to verify that W+ ∈ K loc
N and W− ∈ KN ,

where KN and K loc
N are the Kato classes as defined in Section A2 of [13]. Since −∆u+W (x)u = 0,

u(x)→ 0 according to Theorem C.3.1 in [13]. An alternative proof, for a much more general class

of Schrödinger equations including those with V satisfying (V ′1) instead of (V1), may be found in [8].
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2 Compactness

In this section we study the compactness of minimizing sequences and of Palais-Smale sequences.

We adapt well known arguments (see e.g. [7, 14]) to our situation.

Let

Vb(x) := max{V (x), b},
and

(2.1) Mb := inf
u∈E\{0}

∫

�N
(|∇u|2 + Vb(x)u2) dx

‖u‖2p
.

Denote the spectrum of −∆ + V in L2(RN ) by σ(−∆ + V ) and recall the definition (1.5) of M .

Theorem 2.1 Suppose (V1), (V2), (P ) are satisfied and σ(−∆ + V ) ⊂ (0,∞). If M < Mb, then

each minimizing sequence for M has a convergent subsequence. So in particular, M is attained at

some u ∈ E \ {0}.

Proof Let (um) be a minimizing sequence. We may assume ‖um‖p = 1. Since V < 0 on a set of

finite measure, (um) is bounded in the norm of E given by (1.4). Passing to a subsequence we may

assume um ⇀ u in E and by the continuity of the embedding E ↪→ H 1(RN ), um → u in L2
loc(R

N ),

Lploc(R
N ) and a.e. in RN . Let um = vm + u. Then

(2.2)

∫

�N

(|∇um|2 + V (x)u2
m) dx =

∫

�N

(|∇vm|2 + V (x)v2
m) dx+

∫

�N

(|∇u|2 + V (x)u2) dx+ o(1)

and by the Brézis-Lieb lemma [4], [14, Lemma 1.32],

(2.3)

∫

�N

|um|p dx =

∫

�N

|vm|p dx+

∫

�N

|u|p dx+ o(1).

Moreover, by (V2) and since vm ⇀ 0,

(2.4)

∫

�N

(V (x)− Vb(x))v2
m dx→ 0.

Using (2.2)-(2.4) and the definitions of M,Mb we obtain
∫

�N

(|∇u|2 + V (x)u2) dx+

∫

�N

(|∇vm|2 + V (x)v2
m) dx+ o(1) = M

= M‖um‖2p = M(‖u‖pp + ‖vm‖pp)2/p + o(1) ≤M(‖u‖2p + ‖vm‖2p) + o(1)

≤
∫

�N

(|∇u|2 + V (x)u2) dx+MM−1
b

∫

�N

(|∇vm|2 + Vb(x)v2
m) dx+ o(1)

≤
∫

�N

(|∇u|2 + V (x)u2) dx+MM−1
b

∫

�N

(|∇vm|2 + V (x)v2
m) dx+ o(1).

Since MM−1
b < 1 and

∫

�N
V −(x)v2

m dx → 0, it follows that vm → 0 and therefore um → u. It is

clear that u 6= 0. 2

Remark 2.2 If M = Mb, then all inequalities in the last formula above become equalities after

passing to the limit. Therefore either u = 0 or um → u in Lp(RN ). In the latter case M is attained.
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From the above theorem it follows that if σ(−∆ + V ) ⊂ (0,∞) and M <Mb, then there exists

a ground state solution of (1.1).

We shall also need to work with the functional Φ. Recall that (um) is called a Palais-Smale

sequence at the level c (a (PS)c-sequence) if Φ′(um)→ 0 and Φ(um)→ c. If each (PS)c-sequence

has a convergent subsequence, then Φ is said to satisfy the (PS)c-condition.

Theorem 2.3 If (V1), (V2) and (P ) hold, then Φ satisfies (PS)c for all

c <

(
1

2
− 1

p

)
M

p/(p−2)
b .

Proof Let (um) be a (PS)c-sequence with c satisfying the inequality above. First we show that

(um) is bounded. We have

(2.5) d1 + d2‖um‖ ≥ Φ(um)− 1

2
〈Φ′(um), um〉 =

(
1

2
− 1

p

)
‖um‖pp

and

(2.6) d1 + d2‖um‖ ≥ Φ(um)− 1

p
〈Φ′(um), um〉 =

(
1

2
− 1

p

)
‖um‖2 −

(
1

2
− 1

p

)∫

�N

V −(x)u2
m dx

for some constants d1, d2 > 0. Suppose ‖um‖ → ∞ and let wm := um/‖um‖. Dividing (2.5) by

‖um‖p we see that wm → 0 in Lp(RN ) and therefore wm ⇀ 0 in E after passing to a subsequence.

Hence
∫

�N
V −(x)w2

m dx → 0 (recall V − is bounded; in fact it suffices that V − ∈ Lq(RN ), where

q is as in (V ′1)). So dividing (2.6) by ‖um‖2, it follows that wm → 0 in E, a contradiction. Thus

(um) is bounded.

As in the preceding proof, we may assume um ⇀ u in E and um → u in L2
loc(R

N ), Lploc(R
N ) and

a.e. in RN . Set um = vm + u. Since Φ′(u) = 0 and Φ(u) = Φ(u)− 1
2〈Φ′(u), u〉 = ( 1

2 − 1
p)‖u‖pp ≥ 0,

it follows from (2.2), (2.3) that

(2.7) 0 = 〈Φ′(um), um〉+ o(1) = 〈Φ′(vm), vm〉+ 〈Φ′(u), u〉 + o(1) = 〈Φ′(vm), vm〉+ o(1)

and

(2.8) c = Φ(um) + o(1) = Φ(vm) + Φ(u) + o(1) ≥ Φ(vm) + o(1).

By (2.7),

(2.9) lim
m→∞

∫

�N

(|∇vm|2 + V (x)v2
m) dx = lim

m→∞

∫

�N

|vm|p dx =: γ,

possibly after passing to a subsequence, and therefore it follows from (2.8) that

(2.10) c ≥
(

1

2
− 1

p

)
γ.

By (2.4),

lim
m→∞

∫

�N

(|∇vm|2 + Vb(x)v2
m) dx = lim

m→∞

∫

�N

(|∇vm|2 + V (x)v2
m) dx = γ.

4



On the other hand,

‖vm‖2p ≤M−1
b

∫

�N

(|∇vm|2 + Vb(x)v2
m) dx

by the definition (2.1) of Mb; therefore γ2/p ≤M−1
b γ. Combining this with (2.10) we see that either

γ = 0 or

c ≥
(

1

2
− 1

p

)
M

p/(p−2)
b ,

hence γ must be 0 by the assumption on c. So according to (2.9),

lim
m→∞

∫

�N

(|∇vm|2 + V +(x)v2
m) dx = lim

m→∞

∫

�N

(|∇vm|2 + V (x)v2
m) dx = 0.

Therefore vm → 0 and um → u in E. 2

3 Existence of solutions

Theorem 3.1 Suppose (V1) and (P ) are satisfied, σ(−∆ + V ) ⊂ (0,∞), supx∈ �N V (x) = b > 0

and the measure of the set {x ∈ RN : V (x) < b − ε} is finite for all ε > 0. Then the infimum in

(1.5) is attained at some u ≥ 0. If V ≥ 0, then u > 0 in RN .

Proof Since V + is bounded, E = H1(RN ) here. Let ub be the radially symmetric positive solution

of the equation

−∆u+ bu = |u|p−2u, x ∈ RN .
It is well known that such ub exists, is unique and minimizes

(3.1) Nb := inf
u∈E\{0}

∫
�N

(|∇u|2 + bu2) dx

‖u‖2p
(see e.g. [7, Section 8.4] or [14, Section 1.7]). So if V ≡ b, we are done. Otherwise we may assume

without loss of generality that V (0) < b. Then

M = inf
u∈E\{0}

∫

�N
(|∇u|2 + V (x)u2) dx

‖u‖2p
≤
∫

�N
(|∇ub|2 + V (x)u2

b) dx

‖ub‖2p

<

∫

�N
(|∇ub|2 + bu2

b) dx

‖ub‖2p
= Nb = Mb,

where the last equality follows from the fact that Vb = b. In order to apply Theorem 2.1 we need to

show that M <Mb−ε for some ε > 0 (M <Mb does not suffice because the set {x ∈ RN : V (x) < b}
may have infinite measure). A simple computation shows that if λ > 0, then Nλb is attained at

uλb(x) = λ1/(p−2)ub(
√
λx) and

(3.2) Nλb = λrNb, where r = 1− N

2
+
N

p
> 0.

Choosing λ = (b− ε)/b we see that Nb−ε < Nb and Nb−ε → Nb as ε→ 0. So for ε small enough we

have

M < Nb−ε = inf
u∈E\{0}

∫

�N
(|∇u|2 + (b− ε)u2) dx

‖u‖2p
≤ inf

u∈E\{0}

∫

�N
(|∇u|2 + Vb−ε(x)u2) dx

‖u‖2p
= Mb−ε.
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Hence M is attained at some u. Since the expression on the right-hand side of (1.5) does not change

if u is replaced by |u|, we may assume u ≥ 0. By the maximum principle, if V ≥ 0, then u > 0 in

RN . 2

Theorem 3.2 Suppose V ≥ 0 and (V1), (V2), (P ) are satisfied. Then there exists Λ > 0 such that

for each λ ≥ Λ the infimum in (1.5) (with V (x) replaced by λV (x)) is attained at some uλ > 0.

Proof Here V = V +. Let b be as in (V2) and

(3.3) Mλ := inf
u∈E\{0}

∫

�N
(|∇u|2 + λV (x)u2) dx

‖u‖2p
, Mλ

b := inf
u∈E\{0}

∫

�N
(|∇u|2 + λVb(x)u2) dx

‖u‖2p
.

It suffices to show that Mλ < Mλ
b for all λ large enough. We may assume V (0) < b and choose

ε, δ > 0 so that V (x) < b − ε whenever |x| < 2δ. Let ϕ ∈ C∞0 (RN , [0, 1]) be a function such that

ϕ(x) = 1 for |x| ≤ δ and ϕ(x) = 0 for |x| ≥ 2δ. Set wλb(x) := ϕ(x)uλb(x) ≡ λ1/(p−2)ub(
√
λx)ϕ(x),

where ub is as in the proof of Theorem 3.1. Then for all sufficiently large λ and some c0 > 0,

Mλ ≤
∫

�N
(|∇wλb|2 + λV (x)w2

λb) dx

‖wλb‖2p
≤
∫

�N
(|∇wλb|2 + λ(b− ε)w2

λb) dx

‖wλb‖2p

= λr
(∫

�N
(|∇ub|2 + bu2

b) dx− ε
∫

�N
u2
b dx

‖ub‖2p
+ o(1)

)
≤ λr(Nb − c0ε)

(Nb is defined in (3.1) and r in (3.2)). Using (3.2) and (3.3) we also see that

(3.4) Mλ
b ≥ inf

u∈E\{0}

∫

�N
(|∇u|2 + λbu2) dx

‖u‖2p
= Nλb = λrNb,

hence Mλ < Mλ
b (the infimum above is equal to Nλb also when E is a proper subspace of H1(RN )

because C∞0 (RN ), and hence also E, is dense in H1(RN )). By the argument at the end of the proof

of Theorem 3.1, the infimum is attained at some uλ > 0. 2

Remark 3.3 If (V1) is replaced by (V ′1), then we need to assume that the set {x ∈ RN : V (x) <

b − ε} appearing in Theorem 3.1 has nonempty interior for each ε > 0. Likewise, in Theorem 3.2

the set {x ∈ RN : V (x) < b} should have nonempty interior.

Next we shall consider the existence of multiple solutions under the hypothesis that V −1(0) has

nonempty interior.

Theorem 3.4 Suppose V ≥ 0, V −1(0) has nonempty interior and (V1), (V2), (P ) are satisfied.

For each k ≥ 1 there exists Λk > 0 such that if λ ≥ Λk, then (1.2) has at least k pairs of nontrivial

solutions in E.

Proof For a fixed k we can find ϕ1, . . . , ϕk ∈ C∞0 (RN ) such that suppϕj , 1 ≤ j ≤ k, is contained

in the interior of V −1(0) and suppϕi ∩ suppϕj = ∅ whenever i 6= j. Let

Fk := span{ϕ1, . . . , ϕk}.
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Since V ≥ 0, Φ(u) = 1
2‖u‖2 − 1

p‖u‖
p
p and therefore there exist α, ρ > 0 such that Φ|Sρ ≥ α. Denote

the set of all symmetric (in the sense that −A = A) and closed subsets of E by Σ, for each A ∈ Σ

let γ(A) be the Krasnoselski genus and

i(A) := min
h∈Γ

γ(h(A) ∩ Sρ),

where Γ is the set of all odd homeomorphisms h ∈ C(E,E). Then i is a version of Benci’s

pseudoindex [1, 3]. Let

Φλ(u) :=
1

2

∫

�N

(|∇u|2 + λV (x)u2) dx− 1

p

∫

�N

|u|p dx, λ ≥ 1

and

cj := inf
i(A)≥j

sup
u∈A

Φλ(u), 1 ≤ j ≤ k.

Since Φλ(u) ≥ Φ(u) ≥ α for all u ∈ Sρ and since i(Fk) = dimFk = k (see [1, 3]),

α ≤ c1 ≤ . . . ≤ ck ≤ sup
u∈Fk

Φλ(u) =: C.

It is clear that C depends on k but not on λ. As in (3.4), we have

Mλ
b ≥ Nλb = λrNb,

where r > 0, and therefore Mλ
b →∞. Hence C < ( 1

2 − 1
p)(Mλ

b )p/(p−2) whenever λ is large enough

and it follows from Theorem 2.3 that for such λ the Palais-Smale condition is satisfied at all levels

c ≤ C. By the usual critical point theory, all cj are critical levels and Φλ has at least k pairs of

nontrivial critical points. 2

Next we extend the above result to the case of V − 6≡ 0. As in [9], we consider the eigenvalue

problem

(3.5) −∆u+ λV +(x)u = µλV −(x)u, u ∈ E

(here λ ≥ 1 is fixed). An equivalent norm ‖u‖λ in E is given by the inner product

〈u, v〉λ :=

∫

�N

(∇u · ∇v + λV +(x)uv) dx.

Since V − > 0 on a set of finite measure, the linear operator u 7→
∫

�N
λV −(x)u · dx is compact. It

follows that there are finitely many eigenvalues µ ≤ 1 and the quadratic form

u 7→
∫

�N

(|∇u|2 + λV (x)u2) dx

is negative semidefinite on the space E− spanned by the corresponding eigenfunctions. It is easy

to see that dimE− →∞ as λ→∞.

Theorem 3.5 Suppose V − 6≡ 0, V −1(0) has nonempty interior and (V1), (V2), (P ) are satisfied.

For each k ≥ 1 there exists Λk > 0 such that if λ ≥ Λk, then (1.2) has at least k pairs of nontrivial

solutions in E.
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Proof We need to modify the argument of Theorem 3.4. Let ϕj and Fk be as before. If e is an

eigenfunction of (3.5) and µ a corresponding eigenvalue, then

(3.6) 〈e, ϕj〉λ = µλ

∫

�N

V −(x)eϕj dx = 0

because suppϕj ⊂ V −1(0). Hence Ek := E− + Fk = E− ⊕ Fk. Let l = dimE− and

cj := inf
i(A)≥l+j

sup
u∈A

Φλ(u), 1 ≤ j ≤ k.

Write u = e + f , e ∈ E−, f ∈ Fk. By (3.6) and since there exists a continuous projection

Lp(RN )→ Fk,

Φλ(u) ≤ 1

2

∫

�N

|∇f |2 dx− C̃

p

∫

�N

|f |p dx

for some C̃ ≤ 1. Thus

ck ≤ sup
u∈Ek

Φλ(u) = C,

where C is independent of λ. If i(A) ≥ l + 1, then γ(h(A) ∩ Sρ) ≥ l + 1 for each h ∈ Γ and

therefore h(A) ∩ Sρ intersects any subspace of codimension ≤ l. The space E has an orthogonal

decomposition E = E+⊕E−⊕F (with respect to the inner product 〈. , .〉λ), where E+ corresponds

to the eigenvalues µ > 1 of (3.5) and F is the subspace of functions u ∈ E whose support is

contained in V −1 ([0,∞)). It is clear that the quadratic part of Φλ is positive definite on E+, and

it is also positive definite on F because V −1(0) has finite measure. Hence there exist α, ρ > 0

(possibly depending on λ) such that Φλ|Sρ∩(E+⊕F ) ≥ α. Since codim(E+ ⊕ F ) = l, it follows that

h(A) ∩ Sρ ∩ (E+ ⊕ F ) 6= ∅ and c1 ≥ α. Now it remains to repeat the argument at the end of the

preceding proof. 2

Remark 3.6 (i) If V (x)→∞ as |x| → ∞, then it is well known that the embedding H 1(RN ) ↪→
Lq(RN ), 2 ≤ q < 2∗ is compact, see e.g. [2]. Therefore the Palais-Smale condition holds at all

levels and (1.1) has infinitely many solutions.

(ii) It has been shown in [6] that if V ∈ C1(RN ) and satisfies certain growth conditions at

infinity (which are much weaker than the requirement that V (x)→∞ as |x| → ∞), then (1.1) has

infinitely many solutions.

4 Concentration of solutions

Theorem 4.1 Suppose (V1), (V2), (P ) are satisfied and V −1(0) has nonempty interior Ω. Let

um ∈ E be a solution of the equation

(4.1) −∆u+ λmV (x)u = |u|p−2u, x ∈ RN .

If λm → ∞ and ‖um‖λm ≤ C for some C > 0, then, up to a subsequence, um → ū in Lp(RN ),

where ū is a weak solution of the equation

(4.2) −∆u = |u|p−2u, x ∈ Ω,

and ū = 0 a.e. in RN \ V −1(0). If moreover V ≥ 0, then um → ū in E.
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We note that ū ∈ H1
0 (Ω) if V −1(0) = Ω and ∂Ω is locally Lipschitz continuous (cf. [2]). Before

proving the above theorem we point out some of its consequences.

Corollary 4.2 Suppose (V1), (V2), (P ) are satisfied, V −1(0) has nonempty interior, V ≥ 0, um ∈
E is a solution of (4.1), λm → ∞ and Φλm(um) is bounded and bounded away from 0. Then the

conclusion of Theorem 4.1 is satisfied and ū 6= 0.

Proof We have Φλm(um) = 1
2‖um‖2λm −

1
p‖um‖

p
p and

Φλm(um) = Φλm(um)− 1

2
〈Φ′λm(um), um〉 =

(
1

2
− 1

p

)
‖um‖pp.

Hence ‖um‖p, and therefore also ‖um‖λm is bounded. So the conclusion of Theorem 4.1 holds.

Moreover, as ‖um‖p is bounded away from 0, ū 6= 0. 2

Note that as a consequence of this corollary, if k is fixed, then any sequence of solutions um of

(1.2) with λ = λm → ∞ obtained in Theorem 3.4 contains a subsequence concentrating at some

ū 6= 0. Moreover, it is possible to obtain a positive solution for each λ, either via Theorem 3.1 or by

the mountain pass theorem. It follows that each sequence (um) of such solutions with λm →∞ has

a subsequence concentrating at some ū which is positive in Ω. Corresponding to um are solutions

vm = ε
2/(p−2)
m um of (1.3), where ε2

m = λ−1
m . Then vm → 0 and ε

−2/(p−2)
m vm → ū. This should be

compared with (iii) of Theorem 1 in [5] where it was shown that limm→∞ ε
−2/(p−2)
m ‖vm‖∞ > 0.

It will become clear from the proof of Theorem 4.1 that if V −1(0) has empty interior, then

ū ≡ 0 which is impossible under the assumptions of Corollary 4.2. Since σ(−∆ + λV ) ⊂ (a,∞)

for some a > 0 (independent of λ if λ is bounded away from 0), u = 0 is the only critical point of

Φλ in Br for some r > 0. Hence in this case Φλm(um) → ∞ and ‖um‖ → ∞ if um is a nontrivial

solution of (1.2) with λ = λm →∞.

If V − 6= 0, we do not know whether um → ū in E or whether a result corresponding to Corollary

4.2 is true. However, if V −1(0) has empty interior, then it follows from Theorem 4.1 that either

um → 0 in Lp(RN ) or ‖um‖λm →∞.

Proof of Theorem 4.1 We modify the argument in [2]. Since λm ≥ 1, ‖um‖ ≤ ‖um‖λm ≤ C.

Passing to a subsequence, um ⇀ ū in E and um → ū in Lploc(R
N ). Since 〈Φ′λm(um), ϕ〉 = 0, we see

that
∫

�N
V (x)umϕdx → 0 and

∫

�N
V (x)ūϕ dx = 0 for all ϕ ∈ C∞0 (RN ). Therefore ū = 0 a.e. in

RN \ V −1(0).

We claim that um → ū in Lp(RN ). Assuming the contrary, it follows from P.L. Lions’ vanishing

lemma (see [12, Lemma I.1] or [14, Lemma 1.21]) that
∫

Bρ(xm)
(um − ū)2 dx ≥ γ

for some (xm) ⊂ RN , ρ, γ > 0 and almost all m (Bρ(x) denotes the open ball of radius ρ and center

x). Since um → ū in L2
loc(R

N ), |xm| → ∞. Therefore the measure of the set Bρ(xm) ∩ {x ∈ RN :

V (x) < b} tends to 0 and

‖um‖2λm ≥ λmb
∫

Bρ(xm)∩{V ≥b}
u2
m dx = λmb

(∫

Bρ(xm)
(um − ū)2 dx+ o(1)

)
→∞,

9



a contradiction.

Let now V ≥ 0. Since um satisfies (4.1), 〈Φ′λm(um), ū〉 = 0 and ū(x) = 0 whenever V (x) > 0, it

follows that

‖um‖2 ≤ ‖um‖2λm = ‖um‖pp
and

‖ū‖2 = ‖ū‖2λm = ‖ū‖pp.
Hence lim supm→∞ ‖um‖2 ≤ ‖ū‖pp = ‖ū‖2 and therefore um → ū in E. 2
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[13] B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. (New Series) 7, (1982), 447–526.

[14] M. Willem, Minimax Theorems, Birkhäuser, Boston 1996.
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