Existence and number of solutions for a class of semilinear Schrödinger equations

Yanheng Ding

Institute of Mathematics, AMSS, Chinese Academy of Sciences 100080 Beijing, China

> Andrzej Szulkin Department of Mathematics, Stockholm University 106 91 Stockholm, Sweden

Dedicated to Djairo G. de Figueiredo on the occasion of his 70th birthday

Abstract

Using an argument of concentration-compactness type we study the problem $-\Delta u + \lambda V(x)u = |u|^{p-2}u, x \in \mathbb{R}^N$, where $2 and the set <math>\{x \in \mathbb{R}^N : V(x) < b\}$ is nonempty and has finite measure for some b > 0. In particular, we show that if $V^{-1}(0)$ has nonempty interior, then the number of solutions increases with λ . We also study concentration of solutions on the set $V^{-1}(0)$ as $\lambda \to \infty$.

1 Introduction

The purpose of this paper is to present simple proofs of some results concerning the existence and the number of decaying solutions for the Schrödinger equation

(1.1)
$$-\Delta u + V(x)u = |u|^{p-2}u, \quad x \in \mathbb{R}^N,$$

and for the related equations

(1.2)
$$-\Delta u + \lambda V(x)u = |u|^{p-2}u, \quad x \in \mathbb{R}^N$$

and

(1.3)
$$-\varepsilon^2 \Delta u + V(x)u = |u|^{p-2}u, \quad x \in \mathbb{R}^N,$$

respectively as $\lambda \to \infty$ and $\varepsilon \to 0$. In a concluding section we shall also consider concentration of solutions as $\lambda \to \infty$ or $\varepsilon \to 0$. We shall assume throughout that V and p satisfy the following assumptions:

 (V_1) $V \in C(\mathbb{R}^N)$ and V is bounded below.

- (V_2) There exists b > 0 such that the set $\{x \in \mathbb{R}^N : V(x) < b\}$ is nonempty and has finite measure.
- (P) $p \in (2, 2^*)$, where $2^* := 2N/(N-2)$ if $N \ge 3$ and $2^* := +\infty$ if N = 1 or 2.

Assumption (V_1) is only for simplicity. In Sections 2 and 3 it can be replaced by

 $(V'_1) \ V \in L^1_{loc}(\mathbb{R}^N) \text{ and } V^- := \max\{-V, 0\} \in L^q(\mathbb{R}^N), \text{ where } q = N/2 \text{ if } N \ge 3, q > 1 \text{ if } N = 2 \text{ and } q = 1 \text{ if } N = 1$

while in Section 4 we also need $V \in L^q_{loc}(\mathbb{R}^N)$. Such an extension requires nothing more than a simple modification of our arguments.

Note that if $\varepsilon^2 = \lambda^{-1}$, then u is a solution of (1.2) if and only if $v = \lambda^{-1/(p-2)}u$ is a solution of (1.3), hence as far as the existence and the number of solutions are concerned, these two problems are equivalent.

Problem (1.3) with $V \ge 0$ and a more general right-hand side has been studied extensively by several authors, see e.g. [5, 10, 11] and the references therein. For a problem similar to (1.2), again with $V \ge 0$ and a more general right-hand side, see [2]. In a recent work [6] it has been shown that for a certain class of functions V which may change sign, (1.1) has infinitely many solutions, see Remark 3.6 below. The results of the present paper extend and complement those mentioned above. In particular, our assumptions on V are rather weak, but perhaps more important, our proofs seem to be new and simpler. On the other hand, contrary to [5, 10, 11], we do not study single- or multispike solutions of (1.3) as $\varepsilon \to 0$. In a forthcoming paper we shall consider (1.2) for a much more general class of nonlinearities. However, this will be done at the expense of the simplicity of arguments.

Below $||u||_p$ will denote the usual $L^p(\mathbb{R}^N)$ -norm and $V^{\pm}(x) := \max\{\pm V(x), 0\}$. B_{ρ} and S_{ρ} will respectively denote the open ball and the sphere of radius ρ and center at the origin.

It is well known that the functional

$$\Phi(u) := \frac{1}{2} \int_{\mathbb{R}^N} (|\nabla u|^2 + V(x)u^2) \, dx - \frac{1}{p} \int_{\mathbb{R}^N} |u|^p \, dx$$

is of class C^1 in the Sobolev space

(1.4)
$$E = \{ u \in H^1(\mathbb{R}^N) : ||u||^2 := \int_{\mathbb{R}^N} (|\nabla u|^2 + V^+(x)u^2) \, dx < \infty \}$$

and critical points of Φ correspond to solutions u of (1.1). Moreover, $u(x) \to 0$ as $|x| \to \infty$. It is easy to see that if

(1.5)
$$M := \inf_{u \in E \setminus \{0\}} \frac{\int_{\mathbb{R}^N} (|\nabla u|^2 + V(x)u^2) \, dx}{\|u\|_p^2}$$

is attained at some \bar{u} and M is positive, then $u = M^{1/(p-2)}\bar{u}/\|\bar{u}\|_p$ is a solution of (1.1) and $u(x) \to 0$ as $|x| \to \infty$. Such u is called a ground state. We note for further reference that (V_1) , (V_2) and the Poincaré inequality imply E is continuously embedded in $H^1(\mathbb{R}^N)$. For basic critical point theory in a setting suitable for our purposes the reader is referred e.g. to [7, 14]. That $u(x) \to 0$ as $|x| \to \infty$ can be seen as follows. If N = 1 and $u \in H^1(\mathbb{R})$, then $u(x) \to 0$ as $|x| \to \infty$. Suppose $N \ge 2$, let u be a solution of (1.1) and set $W(x) = V(x) - |u(x)|^{p-2}$. Since V is continuous, bounded below and $|u|^{p-2} \in L^r(\mathbb{R}^N)$ for some r > N/2, it is easy to verify that $W^+ \in K_N^{loc}$ and $W^- \in K_N$, where K_N and K_N^{loc} are the Kato classes as defined in Section A2 of [13]. Since $-\Delta u + W(x)u = 0$, $u(x) \to 0$ according to Theorem C.3.1 in [13]. An alternative proof, for a much more general class of Schrödinger equations including those with V satisfying (V_1') instead of (V_1) , may be found in [8].

2 Compactness

In this section we study the compactness of minimizing sequences and of Palais-Smale sequences. We adapt well known arguments (see e.g. [7, 14]) to our situation.

Let

$$V_b(x) := \max\{V(x), b\}$$

and

(2.1)
$$M_b := \inf_{u \in E \setminus \{0\}} \frac{\int_{\mathbb{R}^N} (|\nabla u|^2 + V_b(x)u^2) \, dx}{\|u\|_p^2}.$$

Denote the spectrum of $-\Delta + V$ in $L^2(\mathbb{R}^N)$ by $\sigma(-\Delta + V)$ and recall the definition (1.5) of M.

Theorem 2.1 Suppose (V_1) , (V_2) , (P) are satisfied and $\sigma(-\Delta + V) \subset (0, \infty)$. If $M < M_b$, then each minimizing sequence for M has a convergent subsequence. So in particular, M is attained at some $u \in E \setminus \{0\}$.

Proof Let (u_m) be a minimizing sequence. We may assume $||u_m||_p = 1$. Since V < 0 on a set of finite measure, (u_m) is bounded in the norm of E given by (1.4). Passing to a subsequence we may assume $u_m \rightharpoonup u$ in E and by the continuity of the embedding $E \hookrightarrow H^1(\mathbb{R}^N)$, $u_m \rightarrow u$ in $L^2_{loc}(\mathbb{R}^N)$, $L^p_{loc}(\mathbb{R}^N)$ and a.e. in \mathbb{R}^N . Let $u_m = v_m + u$. Then

(2.2)
$$\int_{\mathbb{R}^N} (|\nabla u_m|^2 + V(x)u_m^2) \, dx = \int_{\mathbb{R}^N} (|\nabla v_m|^2 + V(x)v_m^2) \, dx + \int_{\mathbb{R}^N} (|\nabla u|^2 + V(x)u^2) \, dx + o(1)$$

and by the Brézis-Lieb lemma [4], [14, Lemma 1.32],

(2.3)
$$\int_{\mathbb{R}^N} |u_m|^p \, dx = \int_{\mathbb{R}^N} |v_m|^p \, dx + \int_{\mathbb{R}^N} |u|^p \, dx + o(1).$$

Moreover, by (V_2) and since $v_m \rightharpoonup 0$,

(2.4)
$$\int_{\mathbb{R}^N} (V(x) - V_b(x)) v_m^2 \, dx \to 0.$$

Using (2.2)-(2.4) and the definitions of M, M_b we obtain

$$\begin{split} &\int_{\mathbb{R}^N} (|\nabla u|^2 + V(x)u^2) \, dx + \int_{\mathbb{R}^N} (|\nabla v_m|^2 + V(x)v_m^2) \, dx + o(1) = M \\ &= M \|u_m\|_p^2 = M(\|u\|_p^p + \|v_m\|_p^p)^{2/p} + o(1) \le M(\|u\|_p^2 + \|v_m\|_p^2) + o(1) \\ &\le \int_{\mathbb{R}^N} (|\nabla u|^2 + V(x)u^2) \, dx + MM_b^{-1} \int_{\mathbb{R}^N} (|\nabla v_m|^2 + V_b(x)v_m^2) \, dx + o(1) \\ &\le \int_{\mathbb{R}^N} (|\nabla u|^2 + V(x)u^2) \, dx + MM_b^{-1} \int_{\mathbb{R}^N} (|\nabla v_m|^2 + V(x)v_m^2) \, dx + o(1). \end{split}$$

Since $MM_b^{-1} < 1$ and $\int_{\mathbb{R}^N} V^-(x) v_m^2 dx \to 0$, it follows that $v_m \to 0$ and therefore $u_m \to u$. It is clear that $u \neq 0$. \Box

Remark 2.2 If $M = M_b$, then all inequalities in the last formula above become equalities after passing to the limit. Therefore either u = 0 or $u_m \to u$ in $L^p(\mathbb{R}^N)$. In the latter case M is attained.

From the above theorem it follows that if $\sigma(-\Delta + V) \subset (0, \infty)$ and $M < M_b$, then there exists a ground state solution of (1.1).

We shall also need to work with the functional Φ . Recall that (u_m) is called a Palais-Smale sequence at the level c (a $(PS)_c$ -sequence) if $\Phi'(u_m) \to 0$ and $\Phi(u_m) \to c$. If each $(PS)_c$ -sequence has a convergent subsequence, then Φ is said to satisfy the $(PS)_c$ -condition.

Theorem 2.3 If (V_1) , (V_2) and (P) hold, then Φ satisfies $(PS)_c$ for all

$$c < \left(\frac{1}{2} - \frac{1}{p}\right) M_b^{p/(p-2)}$$

Proof Let (u_m) be a $(PS)_c$ -sequence with c satisfying the inequality above. First we show that (u_m) is bounded. We have

(2.5)
$$d_1 + d_2 \|u_m\| \ge \Phi(u_m) - \frac{1}{2} \langle \Phi'(u_m), u_m \rangle = \left(\frac{1}{2} - \frac{1}{p}\right) \|u_m\|_p^p$$

and

$$(2.6) \quad d_1 + d_2 \|u_m\| \ge \Phi(u_m) - \frac{1}{p} \langle \Phi'(u_m), u_m \rangle = \left(\frac{1}{2} - \frac{1}{p}\right) \|u_m\|^2 - \left(\frac{1}{2} - \frac{1}{p}\right) \int_{\mathbb{R}^N} V^-(x) u_m^2 \, dx$$

for some constants $d_1, d_2 > 0$. Suppose $||u_m|| \to \infty$ and let $w_m := u_m/||u_m||$. Dividing (2.5) by $||u_m||^p$ we see that $w_m \to 0$ in $L^p(\mathbb{R}^N)$ and therefore $w_m \to 0$ in E after passing to a subsequence. Hence $\int_{\mathbb{R}^N} V^-(x) w_m^2 dx \to 0$ (recall V^- is bounded; in fact it suffices that $V^- \in L^q(\mathbb{R}^N)$, where q is as in (V'_1)). So dividing (2.6) by $||u_m||^2$, it follows that $w_m \to 0$ in E, a contradiction. Thus (u_m) is bounded.

As in the preceding proof, we may assume $u_m \to u$ in E and $u_m \to u$ in $L^2_{loc}(\mathbb{R}^N)$, $L^p_{loc}(\mathbb{R}^N)$ and a.e. in \mathbb{R}^N . Set $u_m = v_m + u$. Since $\Phi'(u) = 0$ and $\Phi(u) = \Phi(u) - \frac{1}{2} \langle \Phi'(u), u \rangle = (\frac{1}{2} - \frac{1}{p}) ||u||_p^p \ge 0$, it follows from (2.2), (2.3) that

(2.7)
$$0 = \langle \Phi'(u_m), u_m \rangle + o(1) = \langle \Phi'(v_m), v_m \rangle + \langle \Phi'(u), u \rangle + o(1) = \langle \Phi'(v_m), v_m \rangle + o(1)$$

and

(2.8)
$$c = \Phi(u_m) + o(1) = \Phi(v_m) + \Phi(u) + o(1) \ge \Phi(v_m) + o(1).$$

By (2.7),

(2.9)
$$\lim_{m \to \infty} \int_{\mathbb{R}^N} (|\nabla v_m|^2 + V(x)v_m^2) \, dx = \lim_{m \to \infty} \int_{\mathbb{R}^N} |v_m|^p \, dx =: \gamma,$$

possibly after passing to a subsequence, and therefore it follows from (2.8) that

(2.10)
$$c \ge \left(\frac{1}{2} - \frac{1}{p}\right)\gamma$$

By (2.4),

$$\lim_{m \to \infty} \int_{\mathbb{R}^N} (|\nabla v_m|^2 + V_b(x)v_m^2) \, dx = \lim_{m \to \infty} \int_{\mathbb{R}^N} (|\nabla v_m|^2 + V(x)v_m^2) \, dx = \gamma.$$

On the other hand,

$$\|v_m\|_p^2 \le M_b^{-1} \int_{\mathbb{R}^N} (|\nabla v_m|^2 + V_b(x)v_m^2) \, dx$$

by the definition (2.1) of M_b ; therefore $\gamma^{2/p} \leq M_b^{-1}\gamma$. Combining this with (2.10) we see that either $\gamma = 0$ or

$$c \ge \left(\frac{1}{2} - \frac{1}{p}\right) M_b^{p/(p-2)},$$

hence γ must be 0 by the assumption on c. So according to (2.9),

$$\lim_{m \to \infty} \int_{\mathbb{R}^N} (|\nabla v_m|^2 + V^+(x)v_m^2) \, dx = \lim_{m \to \infty} \int_{\mathbb{R}^N} (|\nabla v_m|^2 + V(x)v_m^2) \, dx = 0.$$

Therefore $v_m \to 0$ and $u_m \to u$ in E. \Box

3 Existence of solutions

Theorem 3.1 Suppose (V_1) and (P) are satisfied, $\sigma(-\Delta + V) \subset (0, \infty)$, $\sup_{x \in \mathbb{R}^N} V(x) = b > 0$ and the measure of the set $\{x \in \mathbb{R}^N : V(x) < b - \varepsilon\}$ is finite for all $\varepsilon > 0$. Then the infimum in (1.5) is attained at some $u \ge 0$. If $V \ge 0$, then u > 0 in \mathbb{R}^N .

Proof Since V^+ is bounded, $E = H^1(\mathbb{R}^N)$ here. Let u_b be the radially symmetric positive solution of the equation

$$-\Delta u + bu = |u|^{p-2}u, \quad x \in \mathbb{R}^N.$$

It is well known that such u_b exists, is unique and minimizes

(3.1)
$$N_b := \inf_{u \in E \setminus \{0\}} \frac{\int_{\mathbb{R}^N} (|\nabla u|^2 + bu^2) \, dx}{\|u\|_p^2}$$

(see e.g. [7, Section 8.4] or [14, Section 1.7]). So if $V \equiv b$, we are done. Otherwise we may assume without loss of generality that V(0) < b. Then

$$M = \inf_{u \in E \setminus \{0\}} \frac{\int_{\mathbb{R}^N} (|\nabla u|^2 + V(x)u^2) \, dx}{\|u\|_p^2} \leq \frac{\int_{\mathbb{R}^N} (|\nabla u_b|^2 + V(x)u_b^2) \, dx}{\|u_b\|_p^2}$$

$$< \frac{\int_{\mathbb{R}^N} (|\nabla u_b|^2 + bu_b^2) \, dx}{\|u_b\|_p^2} = N_b = M_b,$$

where the last equality follows from the fact that $V_b = b$. In order to apply Theorem 2.1 we need to show that $M < M_{b-\varepsilon}$ for some $\varepsilon > 0$ ($M < M_b$ does not suffice because the set { $x \in \mathbb{R}^N : V(x) < b$ } may have infinite measure). A simple computation shows that if $\lambda > 0$, then $N_{\lambda b}$ is attained at $u_{\lambda b}(x) = \lambda^{1/(p-2)} u_b(\sqrt{\lambda}x)$ and

(3.2)
$$N_{\lambda b} = \lambda^r N_b, \text{ where } r = 1 - \frac{N}{2} + \frac{N}{p} > 0$$

Choosing $\lambda = (b - \varepsilon)/b$ we see that $N_{b-\varepsilon} < N_b$ and $N_{b-\varepsilon} \to N_b$ as $\varepsilon \to 0$. So for ε small enough we have

$$M < N_{b-\varepsilon} = \inf_{u \in E \setminus \{0\}} \frac{\int_{\mathbb{R}^N} (|\nabla u|^2 + (b-\varepsilon)u^2) \, dx}{\|u\|_p^2} \le \inf_{u \in E \setminus \{0\}} \frac{\int_{\mathbb{R}^N} (|\nabla u|^2 + V_{b-\varepsilon}(x)u^2) \, dx}{\|u\|_p^2} = M_{b-\varepsilon}$$

Hence M is attained at some u. Since the expression on the right-hand side of (1.5) does not change if u is replaced by |u|, we may assume $u \ge 0$. By the maximum principle, if $V \ge 0$, then u > 0 in \mathbb{R}^N . \Box

Theorem 3.2 Suppose $V \ge 0$ and (V_1) , (V_2) , (P) are satisfied. Then there exists $\Lambda > 0$ such that for each $\lambda \ge \Lambda$ the infimum in (1.5) (with V(x) replaced by $\lambda V(x)$) is attained at some $u_{\lambda} > 0$.

Proof Here $V = V^+$. Let b be as in (V_2) and

$$(3.3) M^{\lambda} := \inf_{u \in E \setminus \{0\}} \frac{\int_{\mathbb{R}^{N}} (|\nabla u|^{2} + \lambda V(x)u^{2}) \, dx}{\|u\|_{p}^{2}}, M^{\lambda}_{b} := \inf_{u \in E \setminus \{0\}} \frac{\int_{\mathbb{R}^{N}} (|\nabla u|^{2} + \lambda V_{b}(x)u^{2}) \, dx}{\|u\|_{p}^{2}}.$$

It suffices to show that $M^{\lambda} < M_b^{\lambda}$ for all λ large enough. We may assume V(0) < b and choose $\varepsilon, \delta > 0$ so that $V(x) < b - \varepsilon$ whenever $|x| < 2\delta$. Let $\varphi \in C_0^{\infty}(\mathbb{R}^N, [0, 1])$ be a function such that $\varphi(x) = 1$ for $|x| \leq \delta$ and $\varphi(x) = 0$ for $|x| \geq 2\delta$. Set $w_{\lambda b}(x) := \varphi(x)u_{\lambda b}(x) \equiv \lambda^{1/(p-2)}u_b(\sqrt{\lambda x})\varphi(x)$, where u_b is as in the proof of Theorem 3.1. Then for all sufficiently large λ and some $c_0 > 0$,

$$M^{\lambda} \leq \frac{\int_{\mathbb{R}^{N}} (|\nabla w_{\lambda b}|^{2} + \lambda V(x) w_{\lambda b}^{2}) dx}{\|w_{\lambda b}\|_{p}^{2}} \leq \frac{\int_{\mathbb{R}^{N}} (|\nabla w_{\lambda b}|^{2} + \lambda(b-\varepsilon) w_{\lambda b}^{2}) dx}{\|w_{\lambda b}\|_{p}^{2}}$$
$$= \lambda^{r} \left(\frac{\int_{\mathbb{R}^{N}} (|\nabla u_{b}|^{2} + bu_{b}^{2}) dx - \varepsilon \int_{\mathbb{R}^{N}} u_{b}^{2} dx}{\|u_{b}\|_{p}^{2}} + o(1) \right) \leq \lambda^{r} (N_{b} - c_{0}\varepsilon)$$

 $(N_b \text{ is defined in } (3.1) \text{ and } r \text{ in } (3.2))$. Using (3.2) and (3.3) we also see that

(3.4)
$$M_b^{\lambda} \ge \inf_{u \in E \setminus \{0\}} \frac{\int_{\mathbb{R}^N} (|\nabla u|^2 + \lambda b u^2) \, dx}{\|u\|_p^2} = N_{\lambda b} = \lambda^r N_b,$$

hence $M^{\lambda} < M_b^{\lambda}$ (the infimum above is equal to $N_{\lambda b}$ also when E is a proper subspace of $H^1(\mathbb{R}^N)$ because $C_0^{\infty}(\mathbb{R}^N)$, and hence also E, is dense in $H^1(\mathbb{R}^N)$). By the argument at the end of the proof of Theorem 3.1, the infimum is attained at some $u_{\lambda} > 0$. \Box

Remark 3.3 If (V_1) is replaced by (V'_1) , then we need to assume that the set $\{x \in \mathbb{R}^N : V(x) < b - \varepsilon\}$ appearing in Theorem 3.1 has nonempty interior for each $\varepsilon > 0$. Likewise, in Theorem 3.2 the set $\{x \in \mathbb{R}^N : V(x) < b\}$ should have nonempty interior.

Next we shall consider the existence of multiple solutions under the hypothesis that $V^{-1}(0)$ has nonempty interior.

Theorem 3.4 Suppose $V \ge 0$, $V^{-1}(0)$ has nonempty interior and (V_1) , (V_2) , (P) are satisfied. For each $k \ge 1$ there exists $\Lambda_k > 0$ such that if $\lambda \ge \Lambda_k$, then (1.2) has at least k pairs of nontrivial solutions in E.

Proof For a fixed k we can find $\varphi_1, \ldots, \varphi_k \in C_0^{\infty}(\mathbb{R}^N)$ such that $\operatorname{supp} \varphi_j, 1 \leq j \leq k$, is contained in the interior of $V^{-1}(0)$ and $\operatorname{supp} \varphi_i \cap \operatorname{supp} \varphi_j = \emptyset$ whenever $i \neq j$. Let

$$F_k := \operatorname{span}\{\varphi_1, \ldots, \varphi_k\}$$

Since $V \ge 0$, $\Phi(u) = \frac{1}{2} ||u||^2 - \frac{1}{p} ||u||_p^p$ and therefore there exist $\alpha, \rho > 0$ such that $\Phi|_{S_{\rho}} \ge \alpha$. Denote the set of all symmetric (in the sense that -A = A) and closed subsets of E by Σ , for each $A \in \Sigma$ let $\gamma(A)$ be the Krasnoselski genus and

$$i(A) := \min_{h \in \Gamma} \gamma(h(A) \cap S_{\rho}),$$

where Γ is the set of all odd homeomorphisms $h \in C(E, E)$. Then *i* is a version of Benci's pseudoindex [1, 3]. Let

$$\Phi_{\lambda}(u) := \frac{1}{2} \int_{\mathbb{R}^N} (|\nabla u|^2 + \lambda V(x)u^2) \, dx - \frac{1}{p} \int_{\mathbb{R}^N} |u|^p \, dx, \quad \lambda \ge 1$$

and

$$c_j := \inf_{i(A) \ge j} \sup_{u \in A} \Phi_{\lambda}(u), \quad 1 \le j \le k.$$

Since $\Phi_{\lambda}(u) \ge \Phi(u) \ge \alpha$ for all $u \in S_{\rho}$ and since $i(F_k) = \dim F_k = k$ (see [1, 3]),

$$\alpha \leq c_1 \leq \ldots \leq c_k \leq \sup_{u \in F_k} \Phi_{\lambda}(u) =: C.$$

It is clear that C depends on k but not on λ . As in (3.4), we have

$$M_b^{\lambda} \ge N_{\lambda b} = \lambda^r N_b,$$

where r > 0, and therefore $M_b^{\lambda} \to \infty$. Hence $C < (\frac{1}{2} - \frac{1}{p})(M_b^{\lambda})^{p/(p-2)}$ whenever λ is large enough and it follows from Theorem 2.3 that for such λ the Palais-Smale condition is satisfied at all levels $c \leq C$. By the usual critical point theory, all c_j are critical levels and Φ_{λ} has at least k pairs of nontrivial critical points. \Box

Next we extend the above result to the case of $V^- \not\equiv 0$. As in [9], we consider the eigenvalue problem

(3.5)
$$-\Delta u + \lambda V^+(x)u = \mu \lambda V^-(x)u, \quad u \in E$$

(here $\lambda \geq 1$ is fixed). An equivalent norm $||u||_{\lambda}$ in E is given by the inner product

$$\langle u, v \rangle_{\lambda} := \int_{\mathbb{R}^N} (\nabla u \cdot \nabla v + \lambda V^+(x) u v) \, dx$$

Since $V^- > 0$ on a set of finite measure, the linear operator $u \mapsto \int_{\mathbb{R}^N} \lambda V^-(x) u \cdot dx$ is compact. It follows that there are finitely many eigenvalues $\mu \leq 1$ and the quadratic form

$$u \mapsto \int_{\mathbb{R}^N} (|\nabla u|^2 + \lambda V(x)u^2) \, dx$$

is negative semidefinite on the space E^- spanned by the corresponding eigenfunctions. It is easy to see that dim $E^- \to \infty$ as $\lambda \to \infty$.

Theorem 3.5 Suppose $V^- \neq 0$, $V^{-1}(0)$ has nonempty interior and (V_1) , (V_2) , (P) are satisfied. For each $k \geq 1$ there exists $\Lambda_k > 0$ such that if $\lambda \geq \Lambda_k$, then (1.2) has at least k pairs of nontrivial solutions in E. **Proof** We need to modify the argument of Theorem 3.4. Let φ_j and F_k be as before. If e is an eigenfunction of (3.5) and μ a corresponding eigenvalue, then

(3.6)
$$\langle e, \varphi_j \rangle_{\lambda} = \mu \lambda \int_{\mathbb{R}^N} V^-(x) e \varphi_j \, dx = 0$$

because supp $\varphi_j \subset V^{-1}(0)$. Hence $E_k := E^- + F_k = E^- \oplus F_k$. Let $l = \dim E^-$ and

$$c_j := \inf_{i(A) \ge l+j} \sup_{u \in A} \Phi_{\lambda}(u), \quad 1 \le j \le k.$$

Write u = e + f, $e \in E^-$, $f \in F_k$. By (3.6) and since there exists a continuous projection $L^p(\mathbb{R}^N) \to F_k$,

$$\Phi_{\lambda}(u) \leq \frac{1}{2} \int_{\mathbb{R}^N} |\nabla f|^2 \, dx - \frac{\tilde{C}}{p} \int_{\mathbb{R}^N} |f|^p \, dx$$

for some $\tilde{C} \leq 1$. Thus

$$c_k \leq \sup_{u \in E_k} \Phi_\lambda(u) = C,$$

where C is independent of λ . If $i(A) \geq l+1$, then $\gamma(h(A) \cap S_{\rho}) \geq l+1$ for each $h \in \Gamma$ and therefore $h(A) \cap S_{\rho}$ intersects any subspace of codimension $\leq l$. The space E has an orthogonal decomposition $E = E^+ \oplus E^- \oplus F$ (with respect to the inner product $\langle ., . \rangle_{\lambda}$), where E^+ corresponds to the eigenvalues $\mu > 1$ of (3.5) and F is the subspace of functions $u \in E$ whose support is contained in $V^{-1}([0,\infty))$. It is clear that the quadratic part of Φ_{λ} is positive definite on E^+ , and it is also positive definite on F because $V^{-1}(0)$ has finite measure. Hence there exist $\alpha, \rho > 0$ (possibly depending on λ) such that $\Phi_{\lambda}|_{S_{\rho}\cap(E^+\oplus F)} \geq \alpha$. Since $\operatorname{codim}(E^+ \oplus F) = l$, it follows that $h(A) \cap S_{\rho} \cap (E^+ \oplus F) \neq \emptyset$ and $c_1 \geq \alpha$. Now it remains to repeat the argument at the end of the preceding proof. \Box

Remark 3.6 (i) If $V(x) \to \infty$ as $|x| \to \infty$, then it is well known that the embedding $H^1(\mathbb{R}^N) \hookrightarrow L^q(\mathbb{R}^N)$, $2 \le q < 2^*$ is compact, see e.g. [2]. Therefore the Palais-Smale condition holds at all levels and (1.1) has infinitely many solutions.

(ii) It has been shown in [6] that if $V \in C^1(\mathbb{R}^N)$ and satisfies certain growth conditions at infinity (which are much weaker than the requirement that $V(x) \to \infty$ as $|x| \to \infty$), then (1.1) has infinitely many solutions.

4 Concentration of solutions

Theorem 4.1 Suppose (V_1) , (V_2) , (P) are satisfied and $V^{-1}(0)$ has nonempty interior Ω . Let $u_m \in E$ be a solution of the equation

(4.1)
$$-\Delta u + \lambda_m V(x)u = |u|^{p-2}u, \quad x \in \mathbb{R}^N.$$

If $\lambda_m \to \infty$ and $||u_m||_{\lambda_m} \leq C$ for some C > 0, then, up to a subsequence, $u_m \to \bar{u}$ in $L^p(\mathbb{R}^N)$, where \bar{u} is a weak solution of the equation

(4.2)
$$-\Delta u = |u|^{p-2}u, \quad x \in \Omega,$$

and $\bar{u} = 0$ a.e. in $\mathbb{R}^N \setminus V^{-1}(0)$. If moreover $V \ge 0$, then $u_m \to \bar{u}$ in E.

We note that $\bar{u} \in H_0^1(\Omega)$ if $V^{-1}(0) = \overline{\Omega}$ and $\partial\Omega$ is locally Lipschitz continuous (cf. [2]). Before proving the above theorem we point out some of its consequences.

Corollary 4.2 Suppose (V_1) , (V_2) , (P) are satisfied, $V^{-1}(0)$ has nonempty interior, $V \ge 0$, $u_m \in E$ is a solution of (4.1), $\lambda_m \to \infty$ and $\Phi_{\lambda_m}(u_m)$ is bounded and bounded away from 0. Then the conclusion of Theorem 4.1 is satisfied and $\bar{u} \ne 0$.

Proof We have $\Phi_{\lambda_m}(u_m) = \frac{1}{2} ||u_m||_{\lambda_m}^2 - \frac{1}{p} ||u_m||_p^p$ and

$$\Phi_{\lambda_m}(u_m) = \Phi_{\lambda_m}(u_m) - \frac{1}{2} \langle \Phi'_{\lambda_m}(u_m), u_m \rangle = \left(\frac{1}{2} - \frac{1}{p}\right) \|u_m\|_p^p.$$

Hence $||u_m||_p$, and therefore also $||u_m||_{\lambda_m}$ is bounded. So the conclusion of Theorem 4.1 holds. Moreover, as $||u_m||_p$ is bounded away from 0, $\bar{u} \neq 0$. \Box

Note that as a consequence of this corollary, if k is fixed, then any sequence of solutions u_m of (1.2) with $\lambda = \lambda_m \to \infty$ obtained in Theorem 3.4 contains a subsequence concentrating at some $\bar{u} \neq 0$. Moreover, it is possible to obtain a positive solution for each λ , either via Theorem 3.1 or by the mountain pass theorem. It follows that each sequence (u_m) of such solutions with $\lambda_m \to \infty$ has a subsequence concentrating at some \bar{u} which is positive in Ω . Corresponding to u_m are solutions $v_m = \varepsilon_m^{2/(p-2)} u_m$ of (1.3), where $\varepsilon_m^2 = \lambda_m^{-1}$. Then $v_m \to 0$ and $\varepsilon_m^{-2/(p-2)} v_m \to \bar{u}$. This should be compared with (iii) of Theorem 1 in [5] where it was shown that $\lim_{m\to\infty} \varepsilon_m^{-2/(p-2)} \|v_m\|_{\infty} > 0$.

It will become clear from the proof of Theorem 4.1 that if $V^{-1}(0)$ has empty interior, then $\bar{u} \equiv 0$ which is impossible under the assumptions of Corollary 4.2. Since $\sigma(-\Delta + \lambda V) \subset (a, \infty)$ for some a > 0 (independent of λ if λ is bounded away from 0), u = 0 is the only critical point of Φ_{λ} in B_r for some r > 0. Hence in this case $\Phi_{\lambda_m}(u_m) \to \infty$ and $||u_m|| \to \infty$ if u_m is a nontrivial solution of (1.2) with $\lambda = \lambda_m \to \infty$.

If $V^- \neq 0$, we do not know whether $u_m \to \bar{u}$ in E or whether a result corresponding to Corollary 4.2 is true. However, if $V^{-1}(0)$ has empty interior, then it follows from Theorem 4.1 that either $u_m \to 0$ in $L^p(\mathbb{R}^N)$ or $||u_m||_{\lambda_m} \to \infty$.

Proof of Theorem 4.1 We modify the argument in [2]. Since $\lambda_m \geq 1$, $||u_m|| \leq ||u_m||_{\lambda_m} \leq C$. Passing to a subsequence, $u_m \rightharpoonup \bar{u}$ in E and $u_m \rightarrow \bar{u}$ in $L^p_{loc}(\mathbb{R}^N)$. Since $\langle \Phi'_{\lambda_m}(u_m), \varphi \rangle = 0$, we see that $\int_{\mathbb{R}^N} V(x) u_m \varphi \, dx \rightarrow 0$ and $\int_{\mathbb{R}^N} V(x) \bar{u} \varphi \, dx = 0$ for all $\varphi \in C_0^{\infty}(\mathbb{R}^N)$. Therefore $\bar{u} = 0$ a.e. in $\mathbb{R}^N \setminus V^{-1}(0)$.

We claim that $u_m \to \bar{u}$ in $L^p(\mathbb{R}^N)$. Assuming the contrary, it follows from P.L. Lions' vanishing lemma (see [12, Lemma I.1] or [14, Lemma 1.21]) that

$$\int_{B_{\rho}(x_m)} (u_m - \bar{u})^2 \, dx \ge \gamma$$

for some $(x_m) \subset \mathbb{R}^N$, $\rho, \gamma > 0$ and almost all m $(B_\rho(x)$ denotes the open ball of radius ρ and center x). Since $u_m \to \bar{u}$ in $L^2_{loc}(\mathbb{R}^N)$, $|x_m| \to \infty$. Therefore the measure of the set $B_\rho(x_m) \cap \{x \in \mathbb{R}^N : V(x) < b\}$ tends to 0 and

$$\|u_m\|_{\lambda_m}^2 \ge \lambda_m b \int_{B_\rho(x_m) \cap \{V \ge b\}} u_m^2 \, dx = \lambda_m b \left(\int_{B_\rho(x_m)} (u_m - \bar{u})^2 \, dx + o(1) \right) \to \infty,$$

a contradiction.

Let now $V \ge 0$. Since u_m satisfies (4.1), $\langle \Phi'_{\lambda_m}(u_m), \bar{u} \rangle = 0$ and $\bar{u}(x) = 0$ whenever V(x) > 0, it follows that

$$||u_m||^2 \le ||u_m||_{\lambda_m}^2 = ||u_m||_{\mu}^2$$

and

$$\|\bar{u}\|^2 = \|\bar{u}\|^2_{\lambda_m} = \|\bar{u}\|^p_p.$$

Hence $\limsup_{m\to\infty} \|u_m\|^2 \le \|\bar{u}\|_p^p = \|\bar{u}\|^2$ and therefore $u_m \to \bar{u}$ in E. \Box

References

- [1] P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with "strong" resonance at infinity, Nonlin. Anal. 7 (1983), 981–1012.
- [2] T. Bartsch, A. Pankov and Z.Q. Wang, Nonlinear Schrödinger equations with steep potential well, Comm. Contemp. Math. 3 (2001), 549–569.
- [3] V. Benci, On critical point theory of indefinite functionals in the presence of symmetries, Trans. Amer. Math. Soc. 274 (1982), 533–572.
- [4] H. Brézis, E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486–490.
- [5] J. Byeon, Z.Q. Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations, II, Calc. Var. PDE 18 (2003), 207–219.
- [6] G. Cerami, G. Devillanova and S. Solimini, *Infinitely many bound states for some nonlinear scalar field equations*, Preprint.
- [7] J. Chabrowski, Variational Methods for Potential Operator Equations, de Gruyter, Berlin 1997.
- [8] J. Chabrowski and A. Szulkin, On the Schrödinger equation involving a critical Sobolev exponent and magnetic field, Top. Meth. Nonl. Anal., to appear.
- [9] S.W. Chen and Y.Q. Li, Nontrivial solution for a semilinear elliptic equation in unbounded domain with critical Sobolev exponent, J. Math. Anal. Appl. 272 (2002), 393–406.
- [10] M. del Pino and P. Felmer, Semi-classical states of nonlinear Schrödinger equations: a variational reduction method, Math. Ann. 324 (2002), 1–32.
- [11] L. Jeanjean and K. Tanaka, Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities, Calc. Var. PDE 21 (2004), 287–318.
- [12] P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Part I, Ann. IHP, Analyse Non Linéaire 1 (1984), 109–145.
- [13] B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. (New Series) 7, (1982), 447–526.
- [14] M. Willem, *Minimax Theorems*, Birkhäuser, Boston 1996.