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Abstract. We present a unified approach to the method of Nehari manifold
for functionals which have a local minimum at 0 and we give several examples

where this method is applied to the problem of finding ground states and

multiple solutions for nonlinear elliptic boundary value problems. We also
consider a recent generalization of this method to problems where 0 is a saddle

point of the functional.
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CHAPTER 1

Introduction

In the two papers [33] and [34] Nehari has introduced a method which turned
out to be very useful in critical point theory and eventually came to bear his
name. He considered a boundary value problem for a certain nonlinear second
order ordinary differential equation in an interval (a, b) and showed that it has a
nontrivial solution which may be obtained by constrained minimization. In [34] he
also considered existence of solutions with a prescribed number of nodes in (a, b).

To describe Nehari’s method in an abstract setting, let E be a real Banach
space and Φ ∈ C1(E,R) a functional. The Fréchet derivative of Φ at u, Φ′(u), is
an element of the dual space E∗, and we shall denote Φ′(u) evaluated at v ∈ E by
Φ′(u)v. Suppose u 6= 0 is a critical point of Φ, i.e., Φ′(u) = 0. Then necessarily u
is contained in the set

(1) N := {u ∈ E \ {0} : Φ′(u)u = 0}.

So N is a natural constraint for the problem of finding nontrivial (i.e., 6= 0) critical
points of Φ. N is called the Nehari manifold though in general it may not be a
manifold. Set

(2) c := inf
u∈N

Φ(u).

Under appropriate conditions on Φ one hopes that c is attained at some u0 ∈ N
and that u0 is a critical point.

Assume without loss of generality that Φ(0) = 0. Assume that for each w ∈
S1(0) := {w ∈ E : ‖w‖ = 1} the function αw(s) := Φ(sw) attains a unique
maximum sw in (0,∞) such that α′w(s) > 0 whenever 0 < s < sw, α′w(s) < 0
whenever s > sw and sw ≥ δ for some δ > 0 independent of w ∈ S1(0). Then
α′w(sw) = Φ′(sww)w = 0. Hence sww is the unique point on the ray s 7→ sw,
s > 0, which intersects N . Moreover, N is bounded away from 0. It is easy to see
that N is closed in E and there exists a radial bijection between N and S1(0). In
Section 3.1 we shall see that if sw is bounded on compact subsets of S1(0), then this
bijection is in fact a homeomorphism. Clearly, c in (2), if attained, is positive. We
shall also show in Section 3.1 that u0 ∈ N is a critical point whenever Φ(u0) = c.
Note that since s 7→ αw(s) is increasing for all w ∈ S1(0) and 0 < s < δ, 0 is a local
minimum and hence a critical point of Φ. Since u0 is a solution to the equation
Φ′(u) = 0 which has minimal “energy” Φ in the set of all nontrivial solutions, we
shall call it a ground state.

Suppose in addition to the assumptions already made that E is a Hilbert space
and Φ ∈ C2(E,R). Then

α′′w(sw) = Φ′′(sww)(w,w) = s−2
w Φ′′(u)(u, u) ≤ 0, where u = sww ∈ N .
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2 1. INTRODUCTION

If Φ′′(u)(u, u) < 0 for all u ∈ N , then, setting G(u) := Φ′(u)u, we see that

G′(u)u = Φ′′(u)(u, u) + Φ′(u)u = Φ′′(u)(u, u) < 0, u ∈ N .

Since N = {u ∈ E \ {0} : G(u) = 0}, it follows from the implicit function theorem
that N is a C1-manifold of codimension 1 and E = Tu(N ) ⊕ Ru for each u ∈ N .
Hence in this case it is easily seen that any u ∈ N with Φ(u) = c (i.e., any minimizer
of Φ|N ) satisfies Φ′(u) = 0. More generally, a point u ∈ E is a nonzero critical point
of Φ if and only if u ∈ N and u is critical for the restriction of Φ to N . In view of
this property, one may apply critical point theory on the manifold N in order to
find critical points of Φ.

Our goal in this survey is to present a unified approach to the method of Nehari
manifold and to illustrate it with a number of examples where it can be applied in
order to show the existence of solutions to nonlinear boundary value problems. Our
approach is a little different from the usual and is taken from [44]. In particular, we
do not need to make customary assumptions which imply that Φ ∈ C2(E,R) and
Φ′′(u)(u, u) < 0 on N . Therefore our results will be somewhat more general than
those which may be found in the literature. We shall also treat so-called indefinite
problems in which 0 is a saddle point rather than a local minimum of Φ. Then
N need neither be closed (its closure may contain the origin) nor does it need to
intersect all rays s 7→ sw, s > 0, w ∈ S1(0). In the applications we shall consider
it turns out that in this case c = 0 and is not attained. In order to circumvent
this difficulty we shall replace N by the generalized Nehari manifold M which has
been introduced by Pankov in [35]. Ground states will be obtained by minimizing
Φ over M. Also here we follow the approach in [44].

The literature on the method of Nehari manifold is rather extensive. It would
be impossible to cover all different aspects of this method or to provide a reason-
ably complete bibliography. Therefore we focus on a few topics which we think are
representative and are in line with our interests and research experience. A partic-
ular topic which we leave out in order to keep this survey reasonably short is the
so-called fibering method which has been introduced by Pohozaev. See [12, 17, 24]
and the references there.

Although we assume the reader is somewhat familiar with critical point theory
and its applications to nonlinear boundary value problems, we summarize some
pertinent results in Chapter 2. More material may be found e.g. in [3, 23, 32, 37,
42, 45, 46].

The central part of this survey is Chapter 3 where we consider elliptic boundary
value problems in bounded domains and in RN . We make assumptions which imply
that the functionals Φ corresponding to these problems have a local minimum at 0
and show that infN Φ is attained and hence there exists a ground state. We also
discuss the existence of sign-changing solutions, and of infinitely many solutions for
even Φ.

In Chapter 4 we consider indefinite elliptic problems and obtain solutions by
minimizing Φ over M. More precisely, we have an orthogonal decomposition E =
E+ ⊕ E0 ⊕ E− of a Hilbert space E and the functionals which correspond to our
problems are of the form Φ(u) = 1

2‖u
+‖2 − 1

2‖u
−‖2 − I(u), where u± ∈ E±. Then

the generalized Nehari manifold is defined by

M := {u ∈ E \ (E0 ⊕ E−) : Φ′(u)u = 0 and Φ′(u)v = 0 for all v ∈ E0 ⊕ E−}.
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So all critical points u /∈ E0 ⊕ E− must be in M and one wants to show that
c := infMΦ is positive, is attained and if u0 ∈ M, Φ(u0) = c, then u0 is a critical
point of Φ. Under some additional assumptions there are no nontrivial critical
points in E0 ⊕ E−, hence the minimizers on M are ground states.

We would like to mention that we have included a few results which seem to
be new: Theorem 19 where existence of solutions for an equation involving the p-
Laplacian is shown and Theorems 41, 42 where existence of a ground state is shown
for an indefinite system of elliptic equations. The novelty is that in both cases we
admit a nonlinearity satisfying a weak superlinearity condition at infinity instead
of more common conditions of Ambrosetti-Rabinowitz type.

Notation. Bρ(p) and Sρ(p) will respectively denote the open ball and the sphere
centered at p and having radius ρ. We also write S as a shorthand for S1(0). The
sublevel set of c will be denoted by Φc, i.e.,

Φc := {u ∈ E : Φ(u) ≤ c}.
The symbol “⇀” will stand for weak convergence in E.

Acknowledgements: The second author likes to thank P. Bates for helpful
discussions and for pointing out the paper [14].





CHAPTER 2

Preliminaries

Below we summarize some facts from critical point theory and briefly describe
a variational framework for problems we shall consider.

2.1. Critical point theory

Let E be a Banach space and Φ ∈ C1(E,R) a functional. A point u ∈ E
is called critical if Φ′(u) = 0. The corresponding value c = Φ(u) is a critical
value or a critical level. A sequence (un) ⊂ E is called a Palais-Smale sequence
if (Φ(un)) is bounded and Φ′(un) → 0. If Φ(un) → c ∈ R and Φ′(un) → 0,
then (un) is a (PS)c-sequence. The functional Φ is said to satisfy the Palais-
Smale condition (or (PS)c-condition) if each Palais-Smale sequence (or (PS)c-
sequence) has a convergent subsequence. It is clear that if a (subsequence of)
a Palais-Smale sequence converges to u, then u is a critical point. The above
definitions can be easily carried over to C1-submanifolds of E (or more generally,
to Finsler manifolds). The only difference is that Φ′ must be considered as an
element of the cotangent bundle of the manifold M , i.e., Φ′(u) ∈ Tu(M)∗, the dual
of the tangent space to M at u.

In order to formulate our results we shall need the notion of genus. Let A be a
closed subset of E \ {0} such that A = −A. The genus of A, denoted γ(A), is the
smallest integer k such that there exists an odd mapping h ∈ C(A,Rk \ {0}). We
also set γ(∅) := 0 and γ(A) := ∞ if no h exists for any finite k. It can be shown
that if A is homeomorphic to the unit sphere in Rk by an odd homeomorphism,
then γ(A) = k. This implies that the unit sphere S in an infinite-dimensional
Banach space E contains compact sets of any genus k ≥ 1 and since γ(A) ≤ γ(B)
whenever A ⊂ B, it follows that γ(S) =∞. Properties of genus may be found e.g.
in [3, 37, 42].

Let E be a Banach space such that the unit sphere S in E is a submanifold of
class (at least) C1 and let Φ ∈ C1(S,R).

Theorem 1. If Φ is bounded below and satisfies the Palais-Smale condition,
then c := infS Φ is attained and is a critical value of Φ.

Proof. Let (un) ⊂ S be a minimizing sequence for Φ. By Ekeland’s variational
principle [25, 32, 45] we may assume Φ′(un) → 0. So (un) is a Palais-Smale
sequence and therefore un → u after passing to a subsequence. Hence Φ(u) = c
and Φ′(u) = 0. �

Let
Γj := {A ⊂ S : A = −A, A is compact and γ(A) ≥ j}

and
cj := inf

A∈Γj

sup
u∈A

Φ(u), j = 1, 2, . . . .
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6 2. PRELIMINARIES

If E is infinite-dimensional, then γ(S) =∞ and Γj 6= ∅ for any j. If Φ is bounded
below, then we have c1 ≤ c2 ≤ . . . and cj <∞ for all j because the sets A ∈ Γj are
compact. The following holds:

Theorem 2. If E is infinite-dimensional, Φ ∈ C1(S,R) is bounded below and
satisfies the Palais-Smale condition, then Φ has infinitely many pairs of critical
points.

This result may be found in [37, 42] for S respectively in a Hilbert space and
in a Banach space such that S is of class C1,1, and in [43] for S in a Banach space
such that S ∈ C1. (For S ∈ C1 Theorem 2 can also be easily deduced from [19].
One can in fact remove the compactness requirement in the definition of Γj ; this
requirement was essential for the argument in [43].)

We do not include the proof here but only point out that one shows all cj are
critical levels and if cj = . . . = cj+p for some p ≥ 0, then γ(Kcj ) ≥ p+ 1, where

Kcj
:= {u ∈ S : Φ(u) = cj and Φ′(u) = 0}.

Hence the number of critical points is infinite regardless of whether the number of
distinct cj ’s is finite or not.

2.2. Differential equations and boundary value problems

Let Ω ⊂ RN be a bounded domain and consider the boundary value problem

(3)
{
−∆u− λu = f(x, u), x ∈ Ω
u = 0, x ∈ ∂Ω.

Here we assume that λ is a real constant and f ∈ C(Ω×R,R) satisfies the growth
restriction

(4) |f(x, u)| ≤ a(1 + |u|q−1) for some a > 0 and 2 < q < 2∗,

where 2∗ := 2N/(N − 2) if N ≥ 3 and 2∗ := ∞ if N = 1 or 2. Recall that if
N ≥ 3, then 2∗ is the critical exponent with respect to the Sobolev embedding
H1(Ω) ↪→ Lq(Ω). Let H1

0 (Ω) be the closure of C∞0 (Ω) with respect to the norm
‖u‖ given by

‖u‖2 :=
∫

Ω

|∇u|2 dx.

By Poincaré’s inequality, on H1
0 (Ω) ‖ . ‖ is equivalent to the usual H1(Ω)-norm. Let

Φ(u) :=
1
2

∫
Ω

|∇u|2 dx− 1
2

∫
Ω

λu2 dx−
∫

Ω

F (x, u) dx ≡ 1
2
‖u‖2 − I1(u)− I(u),

where

F (x, u) :=
∫ u

0

f(x, s) ds.

By a solution of (3) we shall always mean a weak solution u ∈ H1
0 (Ω).

Theorem 3. Suppose that f is continuous and satisfies (4). Then:
(i) Φ ∈ C1(H1

0 (Ω),R) and Φ′(u) = 0 if and only if u ∈ H1
0 (Ω) is a solution of (3).

(ii) The functionals I and I1 are weakly continuous, i.e., if un ⇀ u, then I(un)→
I(u) and I1(un)→ I1(u).
(iii) The operators I ′ and I ′1 are completely continuous (or weak-to-strong contin-
uous), i.e., if un ⇀ u, then I ′(un)→ I ′(u) and I ′1(un)→ I ′1(u).
(iv) If f(x, u) = o(u) uniformly in x as u → 0, then I ′(u) = o(‖u‖) and I(u) =
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o(‖u‖2) as u→ 0 in H1
0 (Ω).

(v) If N = 1, then f need not satisfy any growth restriction.

The proofs of (different parts of) the above result may be found in [3, 23, 32,
37, 42, 45, 46]. Here we only point out that weak continuity of I, I1 and complete
continuity of I ′, I ′1 follow from the compactness of the embedding H1

0 (Ω) ↪→ Lr(Ω)
for 1 ≤ r < 2∗ (the Rellich-Kondrachov theorem) and the fact that the operator
u 7→ f(x, u) is continuous from Lq(Ω) to Lq/(q−1)(Ω) (Krasnoselskii’s theorem).
(iv) is a consequence of the fact that f(x, u) = o(u) implies that for each ε > 0
there is Cε such that

|f(x, u)| ≤ ε|u|+ Cε|u|q−1

and (v) follows by the compactness of the embedding H1
0 (Ω) ↪→ C(Ω).

Remark 4. Consider the Newtonian system of differential equations

−q̈ + q = Wq(q, t), q ∈ RN , t ∈ R,

where V given by V (q, t) := W (q, t)− 1
2 |q|

2 is the Newtonian potential. If W and
Wq are continuous and 2π-periodic in t, then the conclusions of Theorem 3 remain
valid in the space H1(S1,RN ) consisting of 2π-periodic functions with the norm
given by

‖q‖2 :=
∫ 2π

0

(|q̇|2 + |q|2) dt,

see e.g. [32]. In particular, no growth restriction on W is necessary. The functional
here is

Φ(q) :=
1
2
‖q‖2 − I(q), where I(q) :=

∫ 2π

0

W (q, t) dt.

Let ∆pu := div(|∇u|p−2∇u), where p ∈ (1,∞). ∆p is called the p-Laplacian
and the problem corresponding to (3) is

(5)
{
−∆pu− λ|u|p−2u = f(x, u), x ∈ Ω
u = 0, x ∈ ∂Ω.

Now the function f needs to satisfy the growth restriction (4) with 2∗ replaced by
p∗ := Np/(N − p) if N > p and p∗ :=∞ otherwise. Let

Φ(u) :=
1
p

∫
Ω

|∇u|p dx− 1
p

∫
Ω

λ|u|p dx−
∫

Ω

F (x, u) dx ≡ 1
p
‖u‖p − I1(u)− I(u),

u ∈W 1,p
0 (Ω).

Theorem 5. Suppose that f is continuous and satisfies (4) with 2∗ replaced by
p∗ and 2 by p. Then:
(i) Φ ∈ C1(W 1,p

0 (Ω),R) and Φ′(u) = 0 if and only if u ∈ W 1,p
0 (Ω) is a solution of

(5).
(ii) The functionals I and I1 are weakly continuous.
(iii) The operators I ′ and I ′1 are completely continuous.
(iv) If f(x, u) = o(|u|p−1) uniformly in x as u → 0, then I ′(u) = o(‖u‖p−1) and
I(u) = o(‖u‖p) as u→ 0 in W 1,p

0 (Ω).
(v) If N < p, then f need not satisfy any growth restriction.
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The proofs of the above statements are very similar to the corresponding ones
in Theorem 3 and are outlined in [23]. A comprehensive treatment of problems
involving the p-Laplacian in a bounded domain may be found in [22].

Finally we consider the problem

(6)
{
−∆u+ V (x)u = f(x, u), x ∈ RN
u(x)→ 0, |x| → ∞,

where V ∈ C(RN ,R) is bounded and f ∈ C(RN ×R,R) satisfies the growth restric-
tion

(7) |f(x, u)| ≤ a(|u|+ |u|q−1) for some a > 0 and 2 < q < 2∗.

This time we work in H1(RN ), with the usual norm given by

‖u‖2 :=
∫

RN

(|∇u|2 + u2) dx,

and the functional is

Φ(u) :=
1
2

∫
RN

(|∇u|2 + V (x)u2) dx−
∫

RN

F (x, u) dx ≡ 〈Lu, u〉 − I(u).

Here L : H1(RN ) → H1(RN ) is bounded linear and 〈. , .〉 is the inner product in
H1(RN ).

Theorem 6. Suppose that V , f are continuous, V is bounded and f satisfies
(7). Then:
(i) Φ ∈ C1(H1(RN ),R) and Φ′(u) = 0 if and only if u ∈ H1(RN ) is a solution of
(6).
(ii) If f(x, u) = o(u) uniformly in x as u → 0, then I ′(u) = o(‖u‖) and I(u) =
o(‖u‖2) as u→ 0 in H1(RN ).

A proof that Φ is of class C1 and Φ′(u) = 0 if and only if u ∈ H1(RN ) is
a solution of (6) may be found in [21] or [45]. The fact that such solution must
necessarily tend to 0 as |x| → ∞ is discussed more in detail in [18] and [36]
(in particular, if 0 is not in the essential spectrum of −∆ + V , then u(x) → 0
exponentially, see [36]). We note that in unbounded domains it is necessary to
replace (4) by the stronger condition (7); however, the assumption that f(x, u) =
o(u) uniformly in x as u → 0 and (4) imply (7). The proof of (ii) is exactly
the same as that of (iv) in Theorem 3. Note that now one cannot expect I to
be weakly continuous or I ′ to be completely continuous because the embedding
H1(RN ) ↪→ Lr(RN ) is not compact for any r.

Finally, we recall a result concerning the spectrum of −∆ + V for periodic V .

Proposition 7. Supose that V ∈ C(RN ,R) is 1-periodic with respect to x1, . . . , xN .
Then the spectrum σ(−∆ + V ) in L2(RN ) is absolutely continuous, bounded below
but not above and consists of disjoint closed intervals.

A proof of this well-known fact may be found e.g. in [27, 40]. Note that we
do not exclude the possibility that the spectrum consists of only one interval, i.e.,
σ(−∆ + V ) = [a,∞) for some a ∈ R. Intervals (α, β) such that α, β ∈ σ(−∆ + V )
and (α, β) ∩ σ(−∆ + V ) = ∅ are called spectral gaps.



CHAPTER 3

Nehari manifold

3.1. Abstract setting

In what follows we always assume that E is a uniformly convex real Banach
space, Φ ∈ C1(E,R) and Φ(0) = 0. Recall that S := S1(0). A function ϕ ∈
C(R+,R+) is said to be a normalization function if ϕ(0) = 0, ϕ is strictly increasing
and ϕ(t)→∞ as t→∞. We shall need the following further assumptions:

(A1) There exists a normalization function ϕ such that

u 7→ ψ(u) :=
∫ ‖u‖

0

ϕ(t) dt ∈ C1(E \ {0},R),

J := ψ′ is bounded on bounded sets and J(w)w = 1 for all w ∈ S.
(A2) For each w ∈ E \ {0} there exists sw such that if αw(s) := Φ(sw), then

α′w(s) > 0 for 0 < s < sw and α′w(s) < 0 for s > sw.
(A3) There exists δ > 0 such that sw ≥ δ for all w ∈ S and for each compact

subset W ⊂ S there exists a constant CW such that sw ≤ CW for all
w ∈ W.

J in (A1) is called the duality mapping corresponding to ϕ, see [22] for a
detailed discussion of this notion. An obvious sufficient condition for (A1) to hold
is that ‖ · ‖ ∈ C1(E \ {0},R) (then one can take ϕ(t) = t). Here we will be mainly
interested in two cases: E a Hilbert space and E the Sobolev space W 1,p

0 (Ω) with
Ω ⊂ RN bounded and p > 1. In the first case we take ϕ(t) := t - then J is the
usual duality mapping between E and E∗. In the second case we put ϕ(t) := tp−1.
The associated functional ψ is given by ψ(u) = 1

p‖u‖
p and the duality mapping

(8) J = ψ′ : E → E∗, J(w)v =
∫

Ω

|∇w|p−2∇w · ∇v dx

is continuous and bounded on bounded sets, see [22] or Section 7.5A in [23]. It
follows from (A1) that S is a C1-submanifold of E and the tangent space of S at
w is

Tw(S) = {z ∈ E : J(w)z = 0}.
Recall that

N := {u ∈ E \ {0} : Φ′(u)u = 0}.
As has been shown in the introduction, (A2) implies that sw ∈ N if and only if
s = sw. Moreover, by the first part of (A3), N is closed in E and bounded away
from 0. Define the mappings m̂ : E \ {0} → N and m : S → N by setting

(9) m̂(w) := sww and m := m̂|S .

Proposition 8. Suppose Φ satisfies (A2) and (A3). Then:
(a) The mapping m̂ is continuous.

9



10 3. NEHARI MANIFOLD

(b) The mapping m is a homeomorphism between S and N , and the inverse of m
is given by m−1(u) = u/‖u‖.

Proof. (a) Suppose wn → w 6= 0. Since m̂(tw) = m̂(w) for each t > 0, we may
assume wn ∈ S for all n and it suffices to show that m̂(wn)→ m̂(w) after passing
to a subsequence. Write m̂(wn) = snwn. By (A2) and (A3), (sn) is bounded and
bounded away from 0, hence, taking a subsequence, sn → s > 0. Since N is closed
and m̂(wn)→ sw, sw ∈ N . Hence sw = sww = m̂(w).

(b) This is an immediate consequence of (a). �

We shall consider the functionals Ψ̂ : E \ {0} → R and Ψ : S → R defined by

(10) Ψ̂(w) := Φ(m̂(w)) and Ψ := Ψ̂|S .

Although we do not claim that N is a C1-manifold, we shall show that Ψ̂ is of
class C1 and there is a one-to-one correspondence between critical points of Ψ and
nontrivial critical points of Φ. In the context of a standard saddle point reduction
with respect to subspaces, a similar observation has been known for a long time,
see e.g. [2, 14]. Somewhat surprisingly, the variant below has not been used –
up to our knowledge – before [44]. However, see [6, 7] where the reduction to a
C1-functional Ψ : S → R has been made under stronger smoothness assumptions.

Proposition 9. Suppose E is a Banach space satisfying (A1). If Φ satisfies
(A2) and (A3), then Ψ̂ ∈ C1(E \ {0},R) and

Ψ̂′(w)z =
‖m̂(w)‖
‖w‖

Φ′(m̂(w))z for all w, z ∈ E, w 6= 0.

Proof. Let w ∈ E \ {0} and z ∈ E. Using the maximality property of sww
and the mean value theorem, we obtain

Ψ̂(w + tz)− Ψ̂(w) = Φ(sw+tz(w + tz))− Φ(sww)

≤ Φ(sw+tz(w + tz))− Φ(sw+tzw)

= Φ′(sw+tz(w + τttz))sw+tztz,

where |t| is small enough and τt ∈ (0, 1). Similarly,

Ψ̂(w + tz)− Ψ̂(w) ≥ Φ(sw(w + tz))− Φ(sww)

= Φ′(sw(w + ηttz))swtz,

where ηt ∈ (0, 1). Since the mapping w 7→ sw is continuous according to Proposi-
tion 8, we see combining these two inequalities that

lim
t→0

Ψ̂(w + tz)− Ψ̂(w)
t

= swΦ′(sww)z =
‖m̂(w)‖
‖w‖

Φ′(m̂(w))z.

Hence the Gâteaux derivative of Ψ̂ is bounded linear in z and continuous in w. It
follows that Ψ̂ is of class C1, see e.g. [23, 45]. �

Corollary 10. Suppose E is a Banach space satisfying (A1). If Φ satisfies
(A2) and (A3), then:
(a) Ψ ∈ C1(S,R) and

Ψ′(w)z = ‖m(w)‖Φ′(m(w))z for all z ∈ Tw(S).
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(b) If (wn) is a Palais-Smale sequence for Ψ, then (m(wn)) is a Palais-Smale
sequence for Φ. If (un) ⊂ N is a bounded Palais-Smale sequence for Φ, then
(m−1(un)) is a Palais-Smale sequence for Ψ.
(c) w is a critical point of Ψ if and only if m(w) is a nontrivial critical point of Φ.
Moreover, the corresponding values of Ψ and Φ coincide and infS Ψ = infN Φ.
(d) If Φ is even, then so is Ψ.

Proof. (a) follows from Proposition 9. Note only that since w ∈ S, we have
m(w) = m̂(w).

(b) We first note that by (A1) we have E = Tw(S)⊕ Rw for every w ∈ S, and
the projection E → Tw(S), z + tw 7→ z has uniformly bounded norm with respect
to w ∈ S. Indeed, J is bounded on bounded sets and J(w)(z + tw) = t, so if
‖z + tw‖ = 1, then |t| ≤ C for some constant C > 0 and therefore

‖z‖ ≤ |t|+ ‖z + tw‖ ≤ (C + 1)‖z + tw‖ for all w ∈ S, z ∈ TwS and t ∈ R.

Moreover, by (a) we have

(11) ‖Ψ′(w)‖ = sup
z∈Tw(S)
‖z‖=1

Ψ′(w)z = ‖u‖ sup
z∈Tw(S)
‖z‖=1

Φ′(u)z

with u = m(w), and since Φ′(u)w = Φ′(u) u
‖u‖ = 0, we conclude using (a) again

that

‖Ψ′(w)‖ ≤ ‖u‖‖Φ′(u)‖ = ‖u‖ sup
z∈Tw(S), t∈R
z+tw 6=0

Φ′(u)(z + tw)
‖z + tw‖

≤ (C + 1)‖u‖ sup
z∈Tw(S)\{0}

Φ′(u)z
‖z‖

= (C + 1)‖Ψ′(w)‖.

Since u ∈ N and N is bounded away from 0, this two-sided estimate, together with
the fact that Φ(u) = Ψ(w), easily yields the assertion.

(c) By (11), Ψ′(w) = 0 if and only if Φ′(m(w)) = 0. The other part is clear.
(d) If Φ is even, then sw = s−w. Hence m̂(−w) = −m̂(w) and the conclusion

follows from the definition of Ψ. �

Remark 11. We note that the infimum of Φ over N has the following minimax
characterization:

c = inf
u∈N

Φ(u) = inf
w∈E\{0}

max
s>0

Φ(sw) = inf
w∈S

max
s>0

Φ(sw).

Our next results give sufficient conditions for the existence of a ground state
and of infinitely many critical points of Φ.

Theorem 12. Let E be a Hilbert space and suppose that Φ(u) = 1
2‖u‖

2− I(u),
where
(i) I ′(u) = o(‖u‖) as u→ 0,
(ii) s 7→ I ′(su)u/s is strictly increasing for all u 6= 0 and s > 0,
(iii) I(su)/s2 →∞ uniformly for u on weakly compact subsets of E\{0} as s→∞,
(iv) I ′ is completely continuous.
Then equation Φ′(u) = 0 has a ground state solution. Moreover, if I is even, then
this equation has infinitely many pairs of solutions.
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In the following we say that Φ satisfies the Palais-Smale condition on N if
every Palais-Smale sequence (un) for Φ with un ∈ N for all n contains a convergent
subsequence.

Proof. First we verify that (A2) and (A3) are satisfied. By (i) and (iii),
αw(s) > 0 for s > 0 small and αw(s) < 0 for s large. Since

α′w(s) =
d

ds
Φ(sw) = s(‖w‖2 − s−1I ′(sw)w),

it follows from (ii) that there exists a unique sw with α′w(sw) = 0. Clearly, sw ≥ δ
for some δ > 0 and all w ∈ S according to (i), and sw ≤ CW for all w in a compact
subset W ⊂ S according to (iii).

We shall demonstrate in Proposition 14 below that Φ satisfies the Palais-Smale
condition on N . Assuming this, let (wn) be a Palais-Smale sequence for Ψ and
set un := m(wn) ∈ N . Then (un) is a Palais-Smale sequence for Φ according to
Corollary 10, hence un → u after passing to a subsequence and wn → m−1(u). It
follows that Ψ satisfies the Palais-Smale condition.

Let (wn) be a minimizing sequence for Ψ. By Ekeland’s variational principle
[25, 32, 45] we may assume Ψ′(wn) → 0, and by the Palais-Smale condition,
wn → w after passing to a subsequence. Hence w is a minimizer for Ψ and u is a
ground state solution for the equation Φ′(u) = 0, cf. Theorem 1 and Corollary 10.

Assume now that Φ is even. Then so is Ψ. Since infS Ψ > 0, Ψ is bounded from
below and the second conclusion follows from Corollary 10 and Theorem 2. �

In one of the problems considered in the next section we shall need an exten-
sion of the above result to Banach spaces. Let I0 ∈ C1(E,R) be even, positively
homogeneous of degree p > 1 (i.e., I0(su) = spI0(u), s > 0) and such that

(12) c0‖u‖p ≤ I0(u) ≤ c−1
0 ‖u‖p

for some constant c0 > 0.

Theorem 13. Let E be a uniformly convex Banach space satisfying (A1) and
suppose that Φ(u) = I0(u)− I(u), where
(i) I ′(u) = o(‖u‖p−1) as u→ 0,
(ii) s 7→ I ′(su)u/sp−1 is strictly increasing for all u 6= 0 and s > 0,
(iii) I(su)/sp →∞ uniformly for u on weakly compact subsets of E\{0} as s→∞,
(iv) I ′ is completely continuous,
(v) I0 is weakly lower semicontinuous, positively homogeneous of degree p, satisfies
(12) and

(I ′0(v)− I ′0(w))(v − w) ≥ c1(‖v‖p−1 − ‖w‖p−1)(‖v‖ − ‖w||)
for some c1 > 0 and all v, w ∈ E.
Then equation Φ′(u) = 0 has a ground state solution. Moreover, if I is even, then
this equation has infinitely many pairs of solutions.

Proof. Using (12) and the homogeneity of I0 it is easy to see that the argu-
ment of Theorem 12 goes through with obvious changes. �

Note that while in Theorem 12 the sphere S is a C∞-manifold, in Theorem 13
S may be of class C1 only. Therefore it is important to have a version of Theorem
2 which holds for such S. In the next section we shall encounter a problem where
S ∈ C1 but /∈ C1,1.
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To complete the proofs of Theorems 12 and 13 we still need to show that Φ
satisfies the Palais-Smale condition on N . Since (v) of Theorem 13 is automatically
satisfied if E is a Hilbert space and I0(u) = 1

2‖u‖
2, it suffices to show this for

Theorem 13. It was first noted in [31] that (in the context of semilinear boundary
value problems) the Palais-Smale condition for Φ on N is satisfied under weaker
growth assumptions than needed when no restriction to N is made.

Proposition 14. The following holds under the assumptions of Theorem 13:
(a) If (un) ⊂ N is a sequence such that supn∈N Φ(un) < ∞, then – passing to a
subsequence – we have un ⇀ u 6= 0 as n → ∞, and there is su > 0 such suu ∈ N
and Φ(suu) ≤ lim inf

n→∞
Φ(un).

(b) Φ|N is coercive, i.e., Φ(un)→∞ as un ∈ N , ‖un‖ → ∞.
(c) Φ satisfies the Palais-Smale condition on N .

The proof below is inspired by [31].

Proof. (a) Let (un) ⊂ N be a sequence such that Φ(un) ≤ d for all n. We
first claim that (un) is bounded. Otherwise ‖un‖ → ∞ and vn := un/‖un‖⇀ v in
E after passing to a subsequence. Suppose v = 0. Since un ∈ N and vn ⇀ 0, for
each s > 0 we have

(13) d ≥ Φ(un) = Φ(svn
vn) ≥ Φ(svn) ≥ c0sp − I(svn)→ c0s

p

because assumption (iv) of Theorem 13 implies that I is weakly continuous. This
yields a contradiction upon choosing s > (d/c0)1/p. So v 6= 0 and hence

(14) 0 ≤ Φ(un)
‖un‖p

≤ 1
c0
− I(‖un‖vn)

‖un‖p
→ −∞

as n → ∞ by (iii) of Theorem 13, a contradiction again. It follows that (un) is
bounded, so un ⇀ u after passing to a subsequence. If u = 0, we see as in (13) that

(15) d ≥ Φ(un) ≥ Φ(sun) ≥ d0s
p − I(sun)→ d0s

p

for all s > 0, where d0 = c0 infN ‖u‖ > 0, a contradiction. Hence u 6= 0. Moreover,
as I(suun)→ I(suu), again by the weak continuity of I, we have

Φ(suu) ≤ lim inf
n→∞

Φ(suun) ≤ lim inf
n→∞

Φ(un)

since un ∈ N .
(b) This follows directly from (a).
(c) Let (un) ⊂ N be a Palais-Smale sequence. By (a), un ⇀ u after passing to

a subsequence. Moreover,

Φ′(un) = I ′0(un)− I ′(un)→ 0 and I ′(un)→ I ′(u) as n→∞,

hence by (v) of Theorem 13,

o(1) = [I ′0(un)− I ′0(u)](un − u) ≥ c1(‖un‖p−1 − ‖u‖p−1)(‖un‖ − ‖u||).
If follows that ‖un‖ → ‖u‖ and therefore un → u by the uniform convexity of E.
So Φ satisfies the Palais-Smale condition on N . �

Remark 15. It is easily seen that the proof of Proposition 14 still goes through
if the condition that I0 satisfies (v) of Theorem 13 is replaced by the more general
condition that I0 can be written as a sum of a functional satisfying (v) and a
functional with completely continuous derivative. It will be convenient to use this
observation in the next section.
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3.2. Elliptic equations in bounded domains

Let Ω ⊂ RN be a bounded domain and consider the boundary value problem

(16)
{
−∆u− λu = f(x, u), x ∈ Ω
u = 0, x ∈ ∂Ω.

Here λ < λ1, where λ1 denotes the first Dirichlet eigenvalue of −∆ in Ω and
f ∈ C(Ω× R,R) satisfies the growth restriction

(17) |f(x, u)| ≤ a(1 + |u|q−1) for some a > 0 and 2 < q < 2∗.

Recall from Section 2.2 that 2∗ := 2N/(N − 2) if N ≥ 3 and 2∗ := ∞ otherwise.
Since λ < λ1, we may introduce an equivalent norm in E ≡ H1

0 (Ω) by setting

‖u‖2 :=
∫

Ω

(|∇u|2 − λu2) dx.

Let

F (x, u) :=
∫ u

0

f(x, s) ds

and
Φ(u) :=

1
2

∫
Ω

(|∇u|2 − λu2) dx−
∫

Ω

F (x, u) dx ≡ 1
2
‖u‖2 − I(u).

By Theorem 3, Φ ∈ C1(E,R), I ′ is completely continuous and critical points of
Φ are solutions of (16). The following result on the existence and multiplicity
of solutions of (16) is essentially contained in [31]. We note however that in [31]
stronger assumptions on f were imposed for the multiplicity result in order to apply
critical point theory on N .

Theorem 16. Suppose that λ < λ1, f satisfies (17) and
(i) f(x, u) = o(u) uniformly in x as u→ 0,
(ii) u 7→ f(x, u)/|u| is strictly increasing on (−∞, 0) and (0,∞),
(iii) F (x, u)/u2 →∞ uniformly in x as |u| → ∞.
Then equation (16) has a ground state solution. Moreover, if f is odd in u, then
(16) has infinitely many pairs of solutions.

Proof. We want to use Theorem 12. It follows from (i) and Theorem 3 that
I ′(u) = o(‖u‖) as u → 0, and it is easy to see from (ii) that s 7→ I ′(su)u/s is
strictly increasing if u 6= 0 and s > 0. Next we verify (iii) of Theorem 12. Let
W ⊂ E \ {0} be weakly compact and let (un) ⊂ W. It suffices to show that if
sn → ∞ as n → ∞, then so does a subsequence of I(snun)/s2

n. Passing to a
subsequence, un ⇀ u ∈ E \ {0} and un(x) → u(x) a.e. Since |snun(x)| → ∞ if
u(x) 6= 0, an application of Fatou’s lemma yields

I(snun)
s2
n

=
∫

Ω

F (x, snun)
(snun)2

u2
n dx→∞ as n→∞

(that F ≥ 0 is an easy consequence of (i) and (ii) above). Finally, (iv) of Theorem 12
is ensured by Theorem 3.

Now Theorem 12 yields that equation (16) has a ground state solution and if
f is odd in u, then (16) has infinitely many pairs of solutions. �

Remark 17. One can show that each ground state solution u0 is positive or
negative. Indeed, if u is a sign-changing solution, then we let u+ := max{u, 0}
and u− := min{u, 0} denote the positive and the negative part of u, respectively.
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Multiplying (16) by u± and integrating, we see that u± ∈ N . Hence Φ(u) =
Φ(u+) + Φ(u−) ≥ 2c. It follows that u0 ≥ 0 or u0 ≤ 0 and by Harnack’s inequality
[26], u0 > 0 or u0 < 0 in Ω.

Suppose f satisfies (17), (i) of Theorem 16 and the following Ambrosetti-
Rabinowitz condition [4]: There exist µ > 2 and R > 0 such that

(18) 0 < µF (x, u) ≤ f(x, u)u for all |u| ≥ R.
It is well known and may be found e.g. in [3, 4, 37, 42, 45] that under these
assumptions (16) has a positive solution, and if in addition f is odd in u, then
there are infinitely many pairs of solutions. A typical example of f satisfying both
(18) and the assumptions of Theorem 16 is f(x, u) = |u|q−2u, 2 < q < 2∗. It is easy
to show by integration that (18) implies |F (x, u)| ≥ a1|u|µ−a2 for some a1, a2 > 0.
On the other hand, there are functions which increase slower than that and yet
satisfy (i)-(iii) of Theorem 16, e.g. f(x, u) = ug(|u|), where g(0) = 0, g is strictly
increasing and g(s) → ∞, g(s)/sa → 0 for any a > 0 as s → ∞. Of course, there
also exist functions satisfying (18) but not (ii).

Next we add a result on the existence of least energy sign-changing solutions.
For this we put

Nsc := {u ∈ E : u± ∈ N} and csc := inf
u∈Nsc

Φ(u),

where as in Remark 17, u+ and u− are the positive and negative part of u. Since
u± ∈ N , we see that every sign-changing solution of (16) lies in Nsc.

Theorem 18. Under the assumptions of Theorem 16, (16) admits a least en-
ergy sign-changing solution, i.e. a solution u ∈ Nsc with Φ(u) = csc ≥ 2c.

This result is due to Liu and Wang [31]. The existence of least energy solution
was first asserted in [41] under somewhat stronger assumptions. However, the proof
in [41] is not fully correct since, as in many other papers, it has been overlooked
that the functionals

E → R, u 7→
∫

Ω

|∇u±|2 dx

are not of class C1, see [9, Section 3] for a discussion of this regularity problem.
The first correct proof – under stronger assumptions – on the existence of a least
energy sign-changing solution of (16) was given by Castro-Cossio-Neuberger [15].

Proof of Theorem 18. Let (un) ⊂ Nsc be a sequence of functions such that
Φ(un)→ csc as n→∞. Since Φ(un) = Φ(u+

n ) + Φ(u−n ) and Φ(u±n ) ≥ c > 0 for all
n, we see that Φ(u±n ) is bounded. Hence, by Proposition 14(a), u+

n ⇀ u1 6= 0 and
u−n ⇀ u2 6= 0 and therefore un ⇀ ũ := u1 + u2 as n → ∞. Since we may assume
a.e. pointwise convergence along a subsequence, we find that u1 ·u2 ≡ 0. Moreover,
for u := su1u1 + su2u2 = u+ + u− we have, by Proposition 14(a),

2c ≤ Φ(u) = Φ(su1u1) + Φ(su2u2) ≤ lim inf
n→∞

[Φ(u+
n ) + Φ(u−n )] = csc.

Since u ∈ Nsc, we conclude that Φ(u) = csc.
Using the quantitative deformation lemma (see [45, Lemma 2.3]), we shall now

prove that Φ′(u) = 0. It follows from assumption (ii) of Theorem 16 that, for
s, t > 0 and at least one of s, t 6= 1,

(19) Φ(su+ + tu−) = Φ(su+) + Φ(tu−) < Φ(u+) + Φ(u−) = csc.
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If Φ′(u) 6= 0, then there exist δ > 0 and µ > 0 such that

‖v − u‖ ≤ 3δ ⇒ ‖Φ′(v)‖ ≥ µ.
Let D = [ 1

2 ,
3
2 ]×[ 1

2 ,
3
2 ] and g(s, t) = su++tu−. It follows from (19) that Φ(g(s, t)) =

csc if and only if s = t = 1 and Φ(g(s, t)) < csc otherwise. Hence

(20) β := max
∂D

Φ ◦ g < csc.

For ε := min
{
csc−β

4 , µδ8

}
, [45, Lemma 2.3] yields a deformation η such that

a) η(1, v) = v if v /∈ Φ−1([csc − 2ε, csc + 2ε]),
b) Φ(η(1, v)) ≤ csc − ε for every v ∈ E with ‖v − u‖ ≤ δ and Φ(v) ≤ csc + ε.
c) Φ(η(1, v)) ≤ Φ(v) for all u ∈ E.
It is then clear that

max
(s,t)∈D

Φ(η(1, g(s, t))) < csc.

We shall prove that η(1, g(D)) ∩ Nsc 6= ∅, contradicting the definition of csc. Let
us define h(s, t) := η(1, g(s, t)) and

Ψ0(s, t) := (Φ′(su+)u+,Φ′(tu−)u−),

Ψ1(s, t) :=
(

1
s

Φ′(h+(s, t))h+(s, t),
1
t
Φ′(h−(s, t))h−(s, t)

)
.

Since Φ′(su±)u± > 0 if 0 < s < 1 and < 0 if s > 1, the product formula for
the degree now yields deg(Ψ0, D, 0) = 1. It follows from (20) and the property
a) of η that g = h on ∂D. Consequently, Ψ1 = Ψ0 on ∂D and deg(Ψ1, D, 0) =
deg(Ψ0, D, 0) = 1. Therefore Ψ1(s, t) = 0 for some (s, t) ∈ D, hence η(1, g(s, t)) =
h(s, t) ∈ Nsc. We conclude that u is a critical point of Φ. �

Next we consider a related boundary value problem for the p-Laplacian. Let
Ω ⊂ RN be a bounded domain. It is well known (see e.g. [22] or Section 7.5A in
[23]) that

λ1 := inf
u∈W 1,p

0 (Ω)
u6=0

∫
Ω
|∇u|p dx∫

Ω
|u|p dx

is attained and is the first Dirichlet eigenvalue of the p-Laplacian. Set

I0(u) :=
1
p

∫
Ω

(|∇u|p − λ|u|p) dx ≡ 1
p
‖u‖p − I1(u).

If λ < λ1, then it is clear that I0 is positively p-homogeneous and satisfies (12).
However, (pI0)1/p is not a norm and if 1 < p < 2, then the unit sphere is not a
C1,1-submanifold of E = W 1,p

0 (Ω). Our boundary value problem is now

(21)
{
−∆pu− λ|u|p−2u = f(x, u), x ∈ Ω
u = 0, x ∈ ∂Ω.

Recall from Section 2.2 that p∗ := Np/(N − p) if N > p and p∗ := ∞ otherwise.
The following result seems to be new.

Theorem 19. Suppose that λ < λ1 and f ∈ C(Ω×R,R) satisfies (17) with 2∗

replaced by p∗ and 2 by p. Suppose further
(i) f(x, u) = o(|u|p−1) uniformly in x as u→ 0,
(ii) u 7→ f(x, u)/|u|p−1 is strictly increasing on (−∞, 0) and (0,∞),
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(iii) F (x, u)/|u|p →∞ uniformly in x as |u| → ∞.
Then equation (21) has a ground state solution. Moreover, if f is odd in u, then
(21) has infinitely many pairs of solutions.

Proof. We shall apply Theorem 13 to the functional

Φ(u) :=
1
p

∫
Ω

|∇u|p dx− 1
p

∫
Ω

λ|u|p dx−
∫

Ω

F (x, u) dx ≡ I0(u)− I(u),

where

I0(u) =
1
p
‖u‖p − 1

p

∫
Ω

λ|u|p dx ≡ ψ(u)− I1(u)

and I(u) =
∫

Ω
F (x, u) dx. It is clear that (A1) holds with ψ(u) = 1

p‖u‖
p and

J = ψ′ given by (8). Very similarly as in the proof of Theorem 16 we find that
assumptions (i)-(iii) of Theorem 13 are satisfied. Moreover, both I ′ and I ′1 are
completely continuous by Theorem 5, so (iv) holds as well. In view of Remark 15
it therefore suffices to show that J satisfies

(J(v)− J(w))(v − w) ≥ (‖v‖p−1 − ‖w‖p−1)(‖v‖ − ‖w||) for v, w ∈ E,

but this property is well known, see e.g. [22] or (d) on p. 501 in [23]. �

The result is known if (ii) and (iii) are replaced by a condition of Ambrosetti-
Rabinowitz type (µ > 2 should be replaced by µ > p in (18)), see [22].

Also here one can show there exists a least energy sign-changing solution with
csc ≥ 2c and each ground state solution satisfies u ≥ 0 or u ≤ 0.

3.3. Elliptic problems in RN

Here we consider the problem

(22)
{
−∆u+ V (x)u = f(x, u), x ∈ RN
u(x)→ 0, |x| → ∞.

If V is bounded, f continuous and satisfying (17), but with 1 replaced by |u|, then

Φ(u) :=
1
2

∫
RN

(|∇u|2 + V (x)u2) dx−
∫

RN

F (x, u) dx

is of class C1 on E ≡ H1(RN ) and critical points of Φ correspond to solutions of
(22), see Theorem 6.

Theorem 20. Suppose V ∈ C(RN ,R), f ∈ C(RN × R,R) satisfies (17) and
(i) V , f are 1-periodic in x1, . . . , xN and V (x) > 0 for all x,
(ii) f(x, u) = o(u) uniformly in x as u→ 0,
(iii) u 7→ f(x, u)/|u| is strictly increasing on (−∞, 0) and (0,∞),
(iv) F (x, u)/u2 →∞ uniformly in x as |u| → ∞.
Then equation (22) has a ground state solution.

This extends Theorem 2.1 in [28] where it was additionally assumed that f
is of class C1 with fu satisfying a growth restriction. By (i), V is bounded and
bounded away from 0, hence

(23) ‖u‖2 :=
∫

RN

(|∇u|2 + V (x)u2) dx
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defines an equivalent norm and we have

Φ(u) =
1
2
‖u‖2 −

∫
RN

F (x, u) dx ≡ 1
2
‖u‖2 − I(u).

(23) remains valid, and so does Theorem 20, if V > 0 is replaced by the weaker
condition that σ(−∆ + V ) ⊂ (0,∞), where σ is the spectrum in L2(RN ). As has
been noticed in Section 2.2, (17) and (ii) imply that f satisfies the proper growth
restriction which is (7). Hence Φ ∈ C1(E,R). By the periodicity of V and f , if u is
a solution of (22), then so is u(· − y) for any y ∈ ZN . Two solutions which are not
translates of each other by an element of ZN will be called geometrically distinct. If
f is odd in u, then (22) has in fact infinitely many geometrically distinct solutions
under the assumptions of Theorem 20. We do not include the lengthy proof of this
fact here and refer the reader to [44]. We remark that under stronger conditions
there exist infinitely many geometrically distinct solutions also for non-odd f , see
[21].

Let us note that if V is a positive constant and f = f(u), then Φ(u) = Φ(u(· −
y)) for all y ∈ RN and any translate u(· − y) of a solution u 6= 0 is again a solution.
Hence the correct notion of geometrically distinct solutions here is the requirement
that they are not translates of each other by any y ∈ RN . It follows that existence
of a single nontrivial solution automatically leads to the existence of infinitely many
geometrically distinct ones in the ZN -sense. However, as we shall see in Section 3.5,
it is not necessarily true that the number of those which are RN -distinct is infinite.

We shall need the following result whose simple proof is left to the reader:

Lemma 21. If f satisfies (ii) and (iii) of Theorem 20, then F (x, u) > 0 and
1
2f(x, u)u > F (x, u) for all u 6= 0.

Proof of Theorem 20. We cannot apply Theorem 12 directly. It is easy to
verify that (i)-(iii) of this theorem still hold, with the same proof as in Theorem 16
(note only that un ⇀ u in E implies un → u in L2

loc(RN ) and hence un(x)→ u(x)
a.e. after taking a subsequence). Therefore the results of Corollary 10 remain
valid. However, I ′ is not completely continuous and Φ cannot satisfy the Palais-
Smale condition on N . Indeed, if Φ′(u) = 0 and un(x) := u(x−yn), where yn ∈ ZN ,
then (un) is a Palais-Smale sequence which converges weakly but not strongly to 0
if |yn| → ∞.

Let (wn) ⊂ S be a minimizing sequence for Ψ. By Ekeland’s variational prin-
ciple we may assume Ψ′(wn)→ 0, hence also Φ′(un)→ 0, where un := m(wn). We
shall show that (un) is bounded. Suppose ‖un‖ → ∞, then vn := un/‖un‖⇀ v in
E and vn → v a.e. after passing to a subsequence. By (ii) and (17), for each ε > 0
there is Cε such that

(24) |f(x, u)| ≤ ε|u|+ Cε|u|q−1.

If v = 0 and vn → 0 in Lq(RN ), then for each s > 0,
∫

RN F (x, svn) dx→ 0 according
to (24) and therefore

(25) d ≥ Φ(un) ≥ Φ(svn) =
s2

2
−
∫

RN

F (x, svn) dx→ s2

2
,
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a contradiction for s >
√

2d. So vn 6→ 0 in Lq(RN ) and it follows from P.L. Lions’
lemma [29], [45, Lemma 1.21] that

(26)
∫
B1(yn)

v2
n dx ≥ δ

for some δ > 0, yn ∈ RN and almost all n. Since Φ and N are invariant by
translations of the form v 7→ v(· − y), y ∈ ZN , we may assume translating vn
if necessary that the sequence (yn) is bounded. Since vn → v in L2

loc(RN ), (26)
implies v 6= 0 and we get a contradiction since Fatou’s lemma yields

(27) 0 ≤ Φ(un)
‖un‖2

=
1
2
−
∫

RN

F (x, un)
u2
n

v2
n dx→ −∞ as n→∞.

So (un) is bounded and we may assume un ⇀ u in E and un → u a.e. Hence u
is a solution of (22), possibly the trivial one (u = 0). If un → 0 in Lq(RN ), then∫

RN f(x, un)un dx = o(‖un‖) by (24) and the Hölder and Sobolev inequalities. So

(28) o(‖un‖) = Φ′(un)un = ‖un‖2 −
∫

RN

f(x, un)un dx = ‖un‖2 + o(‖un‖)

and therefore un → 0. However, this is a contradiction because un ∈ N and N is
bounded away from 0. So un 6→ 0 in Lq(RN ) and applying P.L. Lions’ lemma once
more, we see that (26) holds with vn replaced by un and as before we may assume
translating un if necessary that un ⇀ u 6= 0. Hence u is a nontrivial solution of
(22) and in particular, u ∈ N .

We still need to show that Φ(u) = c := infN Φ. Since we may assume passing
to a subsequence that un → u a.e., Lemma 21 and Fatou’s lemma imply

c+ o(1) = Φ(un)− 1
2

Φ′(un)un =
∫

RN

(
1
2
f(x, un)un − F (x, un)

)
dx

≥
∫

RN

(
1
2
f(x, u)u− F (x, u)

)
dx+ o(1)

= Φ(u)− 1
2

Φ′(u)u+ o(1) = Φ(u) + o(1).

Hence Φ(u) ≤ c. The reverse inequality is obvious. �

Remark 22. Again, one sees by the argument of Remark 17 that u > 0 or
u < 0 in RN if u is a ground state solution.

Remark 23. Also in the framework of Theorem 20 it is possible to replace −∆
by −∆p (and modify the other assumptions accordingly). A somewhat stronger
result on the existence of a ground state for an equation involving the p-Laplacian
has been obtained in [30] by means of different methods.

We add another result for a nonperiodic V corresponding to a potential well.

Theorem 24. Suppose V ∈ C(RN ,R) satisfies
(i) 0 < infRN V ≤ supRN V = V∞ <∞ with V∞ := lim

|x|→∞
V (x).

Suppose furthermore that the nonlinearity f = f(u) in (22) does not depend on x,
is continuous and satisfies
(ii) f(u) = o(u) as u→ 0,
(iii) u 7→ f(u)/|u| is strictly increasing on (−∞, 0) and (0,∞),



20 3. NEHARI MANIFOLD

(iv) F (u)/u2 →∞ as |u| → ∞.
Then equation (22) has a ground state solution.

This extends Theorem 2.1 in [28] where it was additionally assumed that f is
of class C1 with fu satisfying a growth restriction. The proof we will sketch here is
also somewhat simpler than the one in [28] since we do not use a bounded domain
approximation of problem (22).

Proof of Theorem 24. Since parts of the argument are similar to the proof
of Theorem 20, we only give a brief sketch. We consider the associated limit energy
functional

Φ∞ : E → R, Φ∞(u) :=
1
2

∫
RN

(|∇u|2 + V∞u
2) dx−

∫
RN

F (u) dx

and the corresponding minimax value

c∞ := inf
w∈E\{0}

max
s>0

Φ∞(sw).

By assumption (i), we infer that c ≤ c∞. Moreover, by Theorem 20 and Remark
22, c∞ is attained at a strictly positive or a strictly negative solution u ∈ E of
the equation −∆u + V∞u = f(u). So if V is strictly smaller than V∞ on a set
of positive measure, we have Φ(su) < Φ∞(su) ≤ c∞ for all s > 0, and from this
and assumption (iii) it easily follows that c < c∞. So we may assume without
loss of generality that c < c∞ since otherwise we must have V ≡ V∞ and the
assertion follows from Theorem 20. Now let (wn) be a minimizing sequence for Ψ.
Again we may assume Ψ′(wn) → 0, so that also Φ′(un) → 0 with un := m(wn).
Arguing by contradiction, we suppose ‖un‖ → ∞; then vn := un/‖un‖ ⇀ v in
E and vn → v a.e. after passing to a subsequence. If v = 0 and vn → 0 in
Lq(RN ), then for each s > 0,

∫
RN F (svn) dx→ 0 according to (24), and we obtain

a contradiction as in (25). So vn 6→ 0 in Lq(RN ) and therefore (26) holds again for
some δ > 0, yn ∈ RN and almost all n. If the sequence (yn) is bounded, we obtain
a contradiction as in the proof of Theorem 20. If, on the other hand, |yn| → ∞ for
a subsequence, then ṽn → v in L2

loc(RN ) for the functions ṽn = vn(· − yn), and as
in (27) Fatou’s lemma yields the contradiction

0 ≤ Φ(un)
‖un‖2

=
1
2
−
∫

RN

F (un)
u2
n

v2
n dx =

1
2
−
∫

RN

F (ũn)
ũ2
n

ṽ2
n dx→ −∞

as n→∞ with ũn := un(·−yn). So (un) is bounded. As in the proof of Theorem 20
we then find a new sequence of points yn ∈ RN , n ∈ N such that ũn ⇀ u 6= 0 for the
translated functions ũn := un(·−yn). We claim that the sequence (yn) is bounded.
Indeed, if |yn| → ∞ for a subsequence, the assumption on the asymptotic shape of
V implies that u is a critical point of Φ∞ and therefore

c+ o(1) = Φ(un)− 1
2

Φ′(un)un =
∫

RN

(
1
2
f(un)un − F (un)

)
dx

=
∫

RN

(
1
2
f(ũn)ũn − F (ũn)

)
dx ≥

∫
RN

(
1
2
f(u)u− F (u)

)
dx+ o(1)

= Φ∞(u)− 1
2

Φ′∞(u)u+ o(1) = Φ∞(u) + o(1) ≥ c∞ + o(1)
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which contradicts the inequality c < c∞. Hence the sequence (yn) is bounded, so
we may without loss of generality assume that yn = 0 and therefore ũn = un for all
n. Then we can conclude as in the proof of Theorem 20. �

We remark that in a similar way one can treat elliptic systems like −∆pu = Fu(x, u, v), x ∈ Ω
−∆pv = Fv(x, u, v), x ∈ Ω
u = v = 0, x ∈ ∂Ω,

where Ω ⊂ RN is bounded, Fu, Fv satisfy a suitable growth restriction and F, Fu, Fv
satisfy suitably modified conditions (W2)-(W4) in Section 3.5. It is also possible
to consider a system in RN , with −∆p replaced by −∆u + u (and similarly for v)
provided F is periodic in x1, . . . , xN . The details are left to the reader.

3.4. A multiplicity result for a singularly perturbed problem with
domain topology

In this section we revisit the classical work of Benci and Cerami [11] on the
multiplicity of positive solutions of the problem

(29)

{
−ε2∆u+ µu = f(u), x ∈ Ω,

u = 0 x ∈ ∂Ω.

Here Ω ⊂ RN is a smooth bounded domain, µ > 0 is a fixed constant and the
nonlinearity f ∈ C(R,R) satisfies (17) and (ii)-(iv) of Theorem 24. The following
multiplicity result in terms of the Lusternik-Schnirelman category has been obtained
by Benci and Cerami under stronger assumptions. In particular, they require the
nonlinearity to be of class C1,1 and such that the Ambrosetti-Rabinowitz condition
(18) holds. We recall that the category catX(A) of a subset A of a topological space
X is defined as the minimal k ∈ N such that A is covered by k closed subsets of X
which are contractible in X. As usual, if no such k exists, we put catX(A) = ∞.
We also write cat(X) := catX(X).

Theorem 25. Suppose that f satisfies (17), (ii)-(iv) of Theorem 24 and that
the underlying domain Ω is topologically nontrivial, i.e., it is not contractible. Then
there exists ε0 > 0 such that, for any ε ∈ (0, ε0), problem (29) admits at least
cat(Ω) + 1 positive solutions.

In the following we briefly sketch the proof of this result and refer to the papers
indicated below for the details. Let E := H1

0 (Ω) and consider the functional

Φ : E → R, Φ(u) :=
1
2
‖u‖2 − I(u)

with
‖u‖2 =

∫
Ω

(
ε2|∇u|2 + µu2

)
dx and I(u) =

∫
Ω

F (u+) dx.

Consider also the subset S+ := {u ∈ E : ‖u‖ = 1, u+ 6= 0} of the unit sphere in E,
where as before, u+ denotes the positive part of u. For the sake of simplicity, we do
not use ε-dependent notation for the functions and sets introduced in this section.
It is easy to see that Φ is a C1-functional, and from the maximum principle it
follows that critical points correspond to positive solutions of (29). As a substitute
for the conditions (A2) and (A3) introduced in Section 3.1, we note the following
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properties.

(I) For each w ∈ E with w+ 6= 0 there exists sw such that if Φ′(sw)w > 0 for
0 < s < sw and Φ′(sw)w > 0 for s > sw.
(II) There exists δ > 0 such that sw ≥ δ for all w ∈ S+ and for each compact subset
W ⊂ S+ there exists a constant CW such that sw ≤ CW for all w ∈ W.
(III) The map m : S+ → N , m(u) = suu is a homeomorphism between S+ and N ,
and the inverse of m is given by m−1(u) = u/‖u‖.

Here, as before, N := {u ∈ E \ {0} : Φ′(u)u = 0} is the Nehari manifold. Similarly
as in Section 3.1 we now consider the functional Ψ : S+ → R defined by Ψ(w) :=
Φ(m̂(w)). By the same argument as in the proof of Proposition 9, we see that Ψ
is a C1-functional on the open subset S+ of the smooth manifold S. Moreover, we
have

(30) Ψ′(w)z = ‖m(w)‖Φ′(m(w))z for all w ∈ S+ and z ∈ Tw(S+).

Hence nontrivial critical points of Ψ are in 1-1-correspondence with nontrivial criti-
cal points of Φ. In order to apply variational methods to the functional Ψ, we need
the following crucial observation:

Lemma 26. (i) Let (un) ⊂ S+ be a sequence such that dist(un, ∂S+) → 0
as n → ∞ (where the distance is taken with respect to the norm ‖ · ‖). Then
Ψ(un)→∞.
(ii) Ψ satisfies the Palais-Smale condition in S+, i.e. every sequence (un) in S+

such that Ψ(un) is bounded and Ψ′(un) → 0 as n → ∞ contains a subsequence
which converges strongly to some u ∈ S+.

Proof. (i) Let s > 0, and note that

Φ(sun) =
s2

2
− I(sun),

where as a consequence of (17) and similar arguments as in the proof of [8, Lemma
3.1] we have

|I(sun)| =
∣∣∣∫

Ω

F (su+
n ) dx

∣∣∣ ≤ C(s2

∫
Ω

|u+
n |2 dx+ sq

∫
Ω

|u+
n |q dx

)
≤ C̃

(
s2 dist2(un, ∂S+) + sq distq(un, ∂S+)

)
→ 0 as n→∞.

If follows that

lim inf
n→∞

Ψ(un) ≥ lim inf
n→∞

Φ(sun) =
s2

2
for every s > 0

and therefore Ψ(un)→∞, as claimed.
(ii) By the same argument as in the proof of Theorem 14, we see that Φ satisfies

the Palais-Smale condition on N . Combining this information with (i) and (30),
we conclude that (ii) holds. �

Similarly as before, we now consider the least energy value

c = inf
u∈N

Φ(u) = inf
w∈E\{0}

max
s>0

Φ(sw) = inf
w∈S+

max
s>0

Φ(sw) = inf
w∈S+

Ψ(w).

As a consequence of standard deformation arguments with respect to the flow of a
pseudogradient vector field of Ψ on S+ (see e.g. [42, Chapter 5]), we now derive
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an abstract multiplicity result for critical points of Ψ in terms of the Lusternik-
Schnirelman category with respect to sublevel sets.

Theorem 27. If there exists d ≥ c and a compact set K ⊂ Sd+ such that
catSd

+
(K) ≥ k for some k ∈ N, where Sd+ := {u ∈ S+ : Ψ(u) ≤ d}, then Sd+

contains at least k critical points of Ψ. If furthermore k ≥ 2 and there exists e > d
such that K is contractible in Se+, then there exists another critical point of Ψ in
Se+ \ Sd+.

The proof uses standard minimax arguments for the Lusternik-Schnirelman
category like e.g. in [3, 42, 45]. We note here that by the definitions of Ψ and m
and property (III) above, the following corollary is immediate.

Corollary 28. If there exists d ≥ c and a compact set K ⊂ Sd+ such that
catNd(K) ≥ k for some k ∈ N, where N d := {u ∈ N : Φ(u) ≤ d}, then N d

contains at least k critical points of Φ. If furthermore k ≥ 2 and there exists e > d
such that K is contractible in N e, then there exists another critical point of Φ in
N e \ N d.

In view of Corollary 28, the proof of Theorem 25 is completed once we find,
for each small enough ε > 0, values d = d(ε) ≥ c, e = e(ε) > d and a compact set
K ⊂ N d such that

catNd(K) ≥ cat(Ω),(31)

K is contractible in N e.(32)

While it is easy to see that (32) holds for a given compact set K ⊂ N and large
enough e (see [11, p. 43]), property (31) requires more work and the details are
technical. The idea is to use the fact that for ε positive and close to zero and values
d slightly larger than c (depending on ε) the functions in N d are concentrated
around points in Ω, and therefore the barycenter map

u 7→
∫

Ω
x|∇u|2 dx∫

Ω
|∇u|2 dx

can be used to exploit the effect of the domain topology. The construction of a
set K satisfying (31) has been carried out in detail in [11], and up to one point
the arguments only rely on properties of the nonlinearity f guaranteed by (17) and
(ii)-(iv) of Theorem 24. The point where additional information is needed is the
analysis of Φ-minimizing sequences onN in the case where ε = 1 and the underlying
domain is the exterior of a ball in RN , see [11, p. 38]. Here it is crucial to note
that these sequences are bounded, but this can be seen precisely as in the proof of
Theorem 20. For the sake of brevity we do not give more details in this survey. As
a final remark we only note that the arguments in [11] can be somewhat simplified
by replacing the barycenter map by a generalized barycenter as defined in [16] or
[10].

3.5. Newtonian systems

In this section we briefly discuss the Newtonian system of ordinary differential
equations

(33) −q̈ + q = Wq(q, t), q ∈ RN , t ∈ R
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under the following assumptions on W :
(W1) W ∈ C(RN × R,R), Wq ∈ C(RN × R,RN ) and W is 2π-periodic in t,
(W2) Wq(q, t) = o(|q|) uniformly in t as q → 0,
(W3) s 7→ s−1Wq(sq, t) · q is strictly increasing for all q 6= 0 and s > 0,
(W4) W (q, t)/|q|2 →∞ uniformly in t as |q| → ∞.
Since W (q, t) may be replaced by W (q, t)−W (0, t), we may also assume without

loss of generality that W (0, t) = 0 for all t.

Theorem 29. Suppose W satisfies (W1)-(W4). Then system (33) has a 2π-
periodic ground state solution. If W is even in q, then (33) possesses infinitely
many pairs of 2π-periodic solutions.

Let E := H1(S1,RN ), where H1(S1,RN ) is the space of 2π-periodic RN -valued
functions with the norm given by

‖q‖2 =
∫ 2π

0

(|q̇|2 + |q|2) dt.

The functional corresponding to (33) is

Φ(q) :=
1
2
‖q‖2 −

∫ 2π

0

W (q, t) dt ≡ 1
2
‖q‖2 − I(q).

Since there is an embedding E ↪→ C(S1,RN ), no growth restriction on Wq is neces-
sary, and since this embedding is compact, I ′ is a completely continuous operator,
see Remark 4. Now it is easy to see that the proof of Theorem 16 may be adapted
to the present situation.

A (non-periodic) solution q of (33) will be called homoclinic (to 0) if q 6≡ 0 and
q(t), q̇(t)→ 0 as |t| → ∞.

Theorem 30. Suppose W satisfies (W1)-(W4). Then system (33) has a homo-
clinic solution which is a ground state.

Here E := H1(R,RN ) with the usual norm given by

‖q‖2 :=
∫

R
(|q̇|2 + |q|2) dt

and

Φ(q) := ‖q‖2 −
∫

R
W (q, t) dt.

Then Φ ∈ C1(E,R) and critical points q 6= 0 of Φ are homoclinic solutions of (33),
see e.g. [20]. The proof of Theorem 30 parallels that of Theorem 20. We omit the
details.

Also now it would be possible to apply the arguments of [44] in order to show
the existence of infinitely many geometrically distinct pairs of homoclinics if W is
even in q, and also here it is known that for not necessarily even W there exist
infinitely many homoclinics under some stronger assumptions, see e.g. [5, 20].

Suppose the system (33) is autonomous, i.e., W = W (q), and W satisfies (W1)-
(W4). Then there exists a homoclinic q and also all its translates q(· − θ), θ ∈ R,
are homoclinics. Consider now the single equation

−q̈ + q = q3, q, t ∈ R.
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The potential V (q) = 1
4q

4− 1
2q

2 is a W -shaped curve and it is easy to see by energy
considerations that if q0 is a homoclinic, then A = {±q0(· − θ) : θ ∈ R} is the set of
all homoclinics. So there exist only two homoclinics which are geometrically distinct
in the R-sense (i.e., distinct in the real and not only formal sense) but infinitely
many Z-distinct ones, cf. the considerations preceding the proof of Theorem 20.





CHAPTER 4

Generalized Nehari manifold

4.1. Abstract setting

In this section we assume E is a Hilbert space and Φ ∈ C1(E,R). Moreover,
we are given an orthogonal decomposition

E = E+ ⊕ E0 ⊕ E− ≡ E+ ⊕ F

such that dimE0 <∞. We shall write

u = u+ + u0 + u− = u+ + v, u± ∈ E±, u0 ∈ E0, v ∈ F.

So in contrast to our previous notation, from now on u± do not denote the positive
and the negative part of a function u. Let

S+ := S ∩ E+ = {u ∈ E+ : ‖u‖ = 1},

(34) E(u) := Ru⊕ F ≡ Ru+ ⊕ F and Ê(u) := R+u⊕ F ≡ R+u+ ⊕ F,

where as usual, R+ = [0,∞). We make the following assumptions on Φ:

(B1) Φ(u) = 1
2‖u

+‖2 − 1
2‖u
−‖2 − I(u), where I(0) = 0, 1

2I
′(u)u > I(u) > 0 for

all u 6= 0 and I is weakly lower semicontinuous.
(B2) For each w ∈ E \ F there exists a unique nontrivial (i.e., 6= 0) critical

point m̂(w) of Φ| bE(w). Moreover, m̂(w) is the unique global maximum of
Φ| bE(w).

(B3) There exists δ > 0 such that ‖m̂(w)+‖ ≥ δ for all w ∈ E \ F , and for
each compact subset W ⊂ E \ F there exists a constant CW such that
‖m̂(w)‖ ≤ CW for all w ∈ W.

The inequality in (B1) may seem artificial and restrictive but it will be satisfied
in our applications, see Lemma 21. Let

M := {u ∈ E \ F : Φ′(u)u = 0 and Φ′(u)v = 0 for all v ∈ F}.

If u 6= 0 and Φ′(u) = 0, then Φ(u) = Φ(u) − 1
2Φ′(u)u = 1

2I
′(u)u − I(u) > 0 while

Φ ≤ 0 on F . HenceM contains all nontrivial critical points of Φ and Ê(w)∩M =
{m̂(w)} whenever w ∈ E \ F . Since m̂(w) = m̂(tw) for all t > 0, it is easy to see
that if F = {0}, then (B2), (B3) are equivalent to (A2), (A3) and M = N . We
shall call the set M the generalized Nehari manifold. It has been introduced by
Pankov in [35]. We also note that if Φ ∈ C2(E,R) and the restriction of Φ′′(m̂(w))
to E(w) is negative definite for all w ∈ E \ F , then M is a manifold of class C1 as
follows from the implicit function theorem. According to our definitions, we have

(35) m̂ : E \ F →M and m := m̂|S+ : S+ →M.

27
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It is easy to see that m is a bijection whose inverse m−1 is given by

m−1(u) =
u+

‖u+‖
.

Since by (B3), ‖m(w)+‖ ≥ δ for all w ∈ E \ F , M is bounded away from F and
closed. Let

c := inf
u∈M

Φ(u).

It follows from (B2) that c > 0 if it is attained. We shall show that if u0 ∈M and
Φ(u0) = c, then u0 is a critical point of Φ and hence it must be a ground state for
the equation Φ′(u) = 0.

Let us mention here that a reduction of an indefinite functional to a functional
on E+ is well known under stronger differentiability conditions, see [14] and e.g.
[1, 13, 38, 39] (and [2] for a related finite-dimensional reduction). In [38, 39]
a reduction in two steps has been performed: first to E+ and then to a Nehari
manifold on E+.

Proposition 31. Suppose Φ satisfies (B1)-(B3). Then:
(a) The mapping m̂ is continuous.
(b) The mapping m is a homeomorphism between S+ and M.

Proof. (a) Suppose (wn) ⊂ E\F , wn → w /∈ F . Since m̂(w) = m̂(w+/‖w+‖),
we may assume without loss of generality that wn ∈ S+. It suffices to show that
m̂(wn) → m̂(w) after passing to a subsequence. Write m̂(wn) = snwn + vn (vn =
v0
n + v−n ∈ F ). By (B3), (m̂(wn)) is bounded. So taking a subsequence, sn → s and
vn ⇀ v∗ = v0

∗ + v−∗ . Setting m̂(w) = sw + v, it follows from (B2) that

Φ(m̂(wn)) ≥ Φ(snwn + v)→ Φ(sw + v) = Φ(m̂(w))

and hence, using the weak lower semicontinuity of the norm and I,

Φ(m̂(w)) ≤ lim
n→∞

Φ(m̂(wn)) = lim
n→∞

(
1
2
s2
n −

1
2
‖v−n ‖2 − I(m̂(wn))

)
≤ 1

2
s2 − 1

2
‖v−∗ ‖2 − I(sw + v∗) ≤ Φ(m̂(w)).

Hence the inequalities above must be equalities. It follows that (v−n ) is strongly
convergent and so is (v0

n) because dimE0 <∞. Consequently, vn → v∗ and by the
uniqueness property (B2), v∗ = v.

(b) This is immediate from (a) and the fact that m−1 is continuous. �

Let
Ψ̂ : E+ \ {0} → R, Ψ̂(w) := Φ(m̂(w)) and Ψ := Ψ̂|S+ .

Proposition 32. Suppose Φ satisfies (B1)-(B3). Then Ψ̂ ∈ C1(E+ \ {0},R)
and

Ψ̂′(w)z =
‖m̂(w)+‖
‖w‖

Φ′(m̂(w))z for all w, z ∈ E+, w 6= 0.

Proof. Let w ∈ E+ \ {0}, z ∈ E+ and put m̂(w) = sww + vw, vw ∈ F . As in
the proof of Proposition 9, we have

Ψ̂(w + tz)− Ψ̂(w) = Φ(sw+tz(w + tz) + vw+tz)− Φ(sww + vw)

≤ Φ(sw+tz(w + tz) + vw+tz)− Φ(sw+tzw + vw+tz)

= Φ′(sw+tzw + vw+tz + τtsw+tztz)sw+tztz
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for all |t| small enough and some τt ∈ (0, 1), and also a similar reverse inequality
holds. So continuing as in the above-mentioned proof, we obtain

Ψ̂′(w)z = swΦ′(sww + vw)z =
‖m̂(w)+‖
‖w‖

Φ′(m̂(w))z.

�

Corollary 33. Suppose Φ satisfies (B1)-(B3). Then:
(a) Ψ ∈ C1(S+,R) and

Ψ′(w)z = ‖m(w)+‖Φ′(m(w))z for all z ∈ Tw(S+).

(b) If (wn) is a Palais-Smale sequence for Ψ, then (m(wn)) is a Palais-Smale
sequence for Φ. If (un) ⊂ M is a bounded Palais-Smale sequence for Φ, then
(m−1(un)) is a Palais-Smale sequence for Ψ.
(c) w is a critical point of Ψ if and only if m(w) is a nontrivial critical point of Φ.
Moreover, the corresponding values of Ψ and Φ coincide and infS+ Ψ = infMΦ.
(d) If Φ is even, then so is Ψ.

The argument is the same as in Corollary 10 except that the proof of (b) needs
to be slightly modified. Now we have E = Tw(S+) ⊕ E(w) for all w ∈ S+ and
setting = m(w), (11) is replaced by

‖Ψ′(w)‖ = sup
z∈Tw(S+)
‖z‖=1

Ψ′(w)z = ‖u+‖ sup
z∈Tw(S+)
‖z‖=1

Φ′(u)z = ‖u+‖ ‖Φ′(u)‖,

where the last equality follows because Φ′(u)v = 0 for all v ∈ E(w) and E(w) is
orthogonal to Tw(S+). Since ‖u+‖ ≥ δ > 0 for u ∈M, this gives the conclusion.

Remark 34. Similarly as in Remark 11, we now have the following variational
characterization of the infimum of Φ over M:

c = inf
u∈M

Φ(u) = inf
w∈E\F

max
u∈ bE(w)

Φ(u) = inf
w∈S+

max
u∈ bE(w)

Φ(u).

The following is an analogue of Theorem 12:

Theorem 35. Suppose Φ satisfies (B1), (B2) and
(i) I ′(u) = o(‖u‖) as u→ 0,
(ii) I(su)/s2 →∞ uniformly for u on weakly compact subsets of E \{0} as s→∞.
(iii) I ′ is completely continuous.
Then equation Φ′(u) = 0 has a ground state solution. Moreover, if I is even, then
this equation has infinitely many pairs of solutions.

Proof. We show that (B3) holds. By (B1) and (i), we can find ρ, η > 0 such
that Φ(w) ≥ η whenever w ∈ Sρ(0) ∩ E+. So for any w ∈ E \ F , Φ(m̂(w)) ≥ η.
Since Φ(m̂(w)+) ≥ Φ(m̂(w)), ‖m̂(w)+‖ ≥ δ for some δ > 0. That ‖m̂(w))‖ ≤ CW
for all w in a compact set W ⊂ S+ is an immediate consequence of (B1), (ii) and
the fact that Φ(m̂(w)) > 0. Since m̂(w) = m̂(w+/‖w+‖) for all w ∈ E \ F , this is
also true ifW is a compact subset of E \F . We also note that c = infM Φ ≥ η > 0.

The rest of the argument is the same as in the proof of Theorem 12 taking
Corollary 33 into account and assuming Proposition 36 below. �

We remark that it does not suffice to assume s 7→ I ′(su)u/s is increasing for
all s > 0 in order to ensure that (B2) holds.
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Proposition 36. Under the assumptions of Theorem 35, Φ satisfies the Palais-
Smale condition on M.

Proof. We modify some earlier arguments. Let (un) ⊂M be a sequence such
that Φ(un) ≤ d for some d > 0 and Φ′(un) → 0. If (un) is unbounded, we set
vn := un/‖un‖. Passing to a subsequence, we may assume ‖un‖ → ∞ and vn ⇀ v.
It follows from (ii) that if v 6= 0, then

(36) 0 ≤ Φ(un)
‖un‖2

=
1
2
‖v+
n ‖2 −

1
2
‖v−n ‖2 −

I(‖un‖vn)
‖un‖2

and the right-hand side above tends to −∞ (cf. (14)). Hence v = 0. By (36) and
since I ≥ 0, ‖v+

n ‖ ≥ ‖v−n ‖. If v+
n → 0, then also v−n → 0 and therefore

‖v0
n‖2 = 1− ‖v+

n ‖2 − ‖v−n ‖2 → 1.

Hence v0
n → v0 because E0 is finite-dimensional. So v 6= 0, a contradiction. There-

fore v+
n 6→ 0 and thus ‖v+

n ‖ ≥ α for all n and some α > 0, possibly after passing to
a subsequence. We complete the proof of boundedness of (un) by noting that

(37) d ≥ Φ(un) ≥ Φ(sv+
n ) ≥ 1

2
α2s2 − I(sv+

n )→ 1
2
α2s2

for all s > 0, a contradiction again (cf. (15)). So (un) is bounded and

Φ′(un) = u+
n − u−n − I ′(un)→ 0.

Since I ′ is completely continuous and dimE0 < ∞, (un) has a convergent subse-
quence. �

4.2. Elliptic equations – the indefinite case

Now we return to the problem (16) in a bounded domain, but this time for
λ ≥ λ1. Let E = H1

0 (Ω) and let E = E+ ⊕ E0 ⊕ E− be the orthogonal decompo-
sition corresponding to the spectrum of −∆ − λ in E. More precisely, denote the
Dirichlet eigenvalues of −∆ by λ1, λ2, . . . and a corresponding orthogonal (in E)
set of eigenfunctions by e1, e2, . . .. Suppose λk < λ = λk+1 = · · · = λm < λm+1,
where 1 ≤ k < m. Then

E− = span {e1, . . . , ek} and E0 = span {ek+1, . . . , em}.

We also admit the cases k = 0 and k = m ≥ 1 which respectively correspond to
E− = {0} and E0 = {0}. Let u = u+ + u0 + u− ∈ E+ ⊕ E0 ⊕ E−. In E we
introduce an equivalent norm such that∫

Ω

(|∇u|2 − λu2) dx = ‖u+‖2 − ‖u−‖2.

Then the functional Φ corresponding to (16) is given by

(38) Φ(u) =
1
2
‖u+‖2 − 1

2
‖u−‖2 − I(u),

where as before,

(39) I(u) =
∫

Ω

F (x, u) dx.

The following result is taken from [44] and is an extension of Theorem 16 to the
case λ ≥ λ1:
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Theorem 37. Suppose that λ ≥ λ1, f satisfies (17) and
(i) f(x, u) = o(u) uniformly in x as u→ 0,
(ii) u 7→ f(x, u)/|u| is strictly increasing on (−∞, 0) and (0,∞),
(iii) F (x, u)/u2 →∞ uniformly in x as |u| → ∞.
Then equation (16) has a ground state solution. Moreover, if f is odd in u, then
(16) has infinitely many pairs of solutions.

Proof. Since I is weakly continuous by Theorem 3, it follows from (38) and
Lemma 21 that (B1) holds, and so do (i), (ii) of Theorem 35 as has been shown
during the course of the proof of Theorem 16. Since also (iii) holds according to
Theorem 3, the conclusion will follow from Theorem 35 if we can verify (B2). This
will be done in Proposition 39 below. �

In Lemma 38 and Proposition 39 below we assume that the hypotheses of
Theorem 37 are satisfied.

Lemma 38. Let u, s, v be real numbers such that s ≥ −1 and let w := su+v 6= 0.
Then

f(x, u)[s(
s

2
+ 1)u+ (1 + s)v] + F (x, u)− F (x, u+ w) < 0

for all x ∈ Ω.

Proof. We fix x ∈ Ω and u, v ∈ R. For s ≥ −1 we put z = z(s) := (1+s)u+v
(so z = u+ w) and

g(s) := f(x, u)[s(
s

2
+ 1)u+ (1 + s)v] + F (x, u)− F (x, z).

We must show g(s) < 0 whenever u 6= z. Suppose u = 0. Then z 6= 0 and hence
g(s) = −F (x, z) < 0 by Lemma 21. In what follows we assume u 6= 0. If uz ≤ 0,
we have, since v = z − (1 + s)u,

g(s) = f(x, u)
[(

s2

2
+ s

)
u+ (s+ 1)(z − (s+ 1)u)

]
+ F (x, u)− F (x, z)

< f(x, u)
[(

s2

2
+ s

)
u+ (s+ 1)(z − (s+ 1)u)

]
+

1
2
f(x, u)u− F (x, z)(40)

= −1
2

(s+ 1)2f(x, u)u+ (s+ 1)f(x, u)z − F (x, z) ≤ 0,

where we have used Lemma 21 and the fact that f(x, u)z ≤ 0 whenever uz ≤ 0.
Hence g(s) < 0 in this case. Suppose uz > 0. We note that

g(−1) = −1
2
f(x, u)u+ F (x, u)− F (x, v) < −F (x, v) ≤ 0 and lim

s→∞
g(s) = −∞

by Lemma 21. Moreover,

(41) g′(s) = uz

(
f(x, u)
u

− f(x, z)
z

)
.

Suppose that g attains its maximum on [−1,∞) at some point s with g(s) ≥ 0. Then
g′(s) = 0 and u = z by (41) and (ii) of Theorem 37, so g(s) = − 1

2s
2f(x, u)u ≤ 0. It

follows that g(s) may be 0 if u = z (i.e., w = 0) but must be negative otherwise. �

Recall the definition (34) of Ê(u).
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Proposition 39. (i) Ê(w) ∩M 6= ∅ for any w ∈ E \ (E0 ⊕ E−) ≡ E \ F .
(ii) If u ∈M, then

Φ(u+ w) < Φ(u) whenever u+ w ∈ Ê(u), w 6= 0.

Hence u is the unique global maximum of Φ| bE(u).

Proof. (i) Let w ∈ E \ F . Since Ê(w) = Ê(w+/‖w+‖), we may assume
w ∈ S+. We claim that Φ ≤ 0 on Ê(w)\BR(0) provided R is large enough. Arguing
by contradiction, we find a sequence (un) such that ‖un‖ → ∞ and Φ(un) ≥ 0.
Setting vn := un/‖un‖, we can use (36) and the argument following it to conclude
that vn ⇀ 0 and at the same time ‖v+

n ‖ = ‖snw‖ = sn is bounded and bounded
away from 0. But then v+

n → sw, s > 0, a contradiction.
By (i) of Theorem 37, Φ(sw) = 1

2s
2+o(s2) as s→ 0. Hence 0 < sup bE(w) Φ <∞.

Since Φ is weakly upper semicontinuous on Ê(w) and Φ ≤ 0 on Ê(w) ∩ F , the
supremum is attained at some point u0 such that u+

0 6= 0. So u0 is a critical point
of Φ| bE(w) and hence u0 ∈M.

Since dimF < ∞, the argument above could be simplified. We have chosen
not to do this because later on we shall encounter a situation where F is infinite-
dimensional.

(ii) Let

B(v1, v2) :=
∫

Ω

(∇v1 · ∇v2 − λv1v2) dx, v1, v2 ∈ E.

For u ∈ M, let u + w ∈ Ê(u). Then u + w = (1 + s)u + v, where s ≥ −1 and
v = v0 + v− ∈ F . A calculation gives

Φ(u+ w)− Φ(u) =
1
2

[B(u+ w, u+ w)−B(u, u)] +
∫

Ω

(F (x, u)− F (x, u+ w)) dx

=
1
2

[B((1 + s)u+ v, (1 + s)u+ v)−B(u, u)] +
∫

Ω

(F (x, u)− F (x, u+ w)) dx

=
1
2

(
[(1 + s)2 − 1]B(u, u) + 2(1 + s)B(u, v) +B(v, v)

)
+
∫

Ω

(F (x, u)− F (x, u+ w)) dx

= −‖v
−‖2

2
+B(u, s(

s

2
+ 1)u+ (1 + s)v) +

∫
Ω

(F (x, u)− F (x, u+ w)) dx

= −‖v
−‖2

2
+
∫

Ω

(
f(x, u)[s(

s

2
+ 1)u+ (1 + s)v] + F (x, u)− F (x, u+ w)

)
dx.

In the last step we have used the fact that z := s( s2 + 1)u + (1 + s)v ∈ E(u) and
therefore

0 = Φ′(u)z = B(u, z)−
∫

Ω

f(x, u)z dx.

Since w is nonzero on a set of positive measure, the last integral above is negative
according to Lemma 38 and hence Φ(u+ w) < Φ(u). �

We have completed the proof of Theorem 37. Next we turn to a result in
[44] for the nonlinear Schrödinger equation (22) with V such that 0 is in a gap
of the spectrum of −∆ + V . In [44] it has been shown that (22) has a ground
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state solution and if, in addition, f is odd in u, then there are infinitely many
geometrically distinct solutions. Here we only prove the existence of a ground
state.

Theorem 40. Suppose V ∈ C(RN ,R), f ∈ C(RN × R,R) satisfies (17) and
(i) V , f are 1-periodic in x1, . . . , xN , 0 /∈ σ(−∆+V ) and σ(−∆+V )∩(−∞, 0) 6= ∅,
(ii) f(x, u) = o(u) uniformly in x as u→ 0,
(iii) u 7→ f(x, u)/|u| is strictly increasing on (−∞, 0) and (0,∞),
(iv) F (x, u)/u2 →∞ uniformly in x as |u| → ∞.
Then equation (22) has a ground state solution.

Proof. Let E = H1(RN ). Since 0 /∈ σ(−∆+V ) and σ(−∆+V )∩(−∞, 0) 6= ∅,
E0 = {0}, dimE± =∞ and there is an equivalent norm in E such that∫

RN

(|∇u|2 + V (x)u2) dx = ‖u+‖2 − ‖u−‖2.

Hence (38) holds except that in (39) Ω should be replaced by RN . Since F ≥ 0, I
is weakly lower semicontinuous as follows easily from Fatou’s lemma and the fact
that if un ⇀ u in E, then un → u in L2

loc(RN ) and hence a.e. after passing to
a subsequence. This and Lemma 21 imply that (B1) holds, and so does (B2) by
Proposition 39. (The only difference here is that integration is performed over RN
instead of Ω and −λv1v2 is replaced by V (x)v1v2 in the definition of the bilinear
form B. Note also that in the setting of Theorem 37 we had dimE− < ∞ but as
we have already mentioned in the proof of Proposition 39, this fact was not used.)
That (B3) is satisfied and c = infMΦ > 0 follows as in the proof of Theorem 35.

Now it remains to combine the arguments of Theorem 20 and Proposition 36
as follows. We take a minimizing Palais-Smale sequence (wn) for Ψ. Then (un),
where un := m(wn), is a Palais-Smale sequence for Φ according to Corollary 33.
Assuming ‖un‖ → ∞ and setting vn := un/‖un‖, we see as in (36) and the argument
following it that vn ⇀ 0 after passing to a subsequence and ‖v+

n ‖ ≥ 1/
√

2 (because
‖v+
n ‖ ≥ ‖v−n ‖ and ‖v+

n ‖2 + ‖v−n ‖2 = 1). If v+
n → 0 in Lq(RN ), then using (24) we

obtain a contradiction as in (37). Hence (26) holds with vn replaced by v+
n , and

again we may assume, possibly after replacing vn by vn(· − yn) for some yn ∈ ZN ,
that (yn) is a bounded sequence. But then v+ 6= 0 and hence v 6= 0, a contradiction.
We have shown that (un) is bounded. The rest of the argument is exactly the same
as in Theorem 20 except that if un → 0 in Lq(RN ), then (28) should read

o(‖u+
n ‖) = Φ′(un)u+

n = ‖u+
n ‖2 −

∫
RN

f(x, un)u+
n dx = ‖u+

n ‖2 + o(‖u+
n ‖).

Hence u+
n → 0 in E and

lim inf
n→∞

Φ(un) = lim inf
n→∞

(
1
2
‖u+

n ‖2 −
1
2
‖u−n ‖2 − I(un)

)
≤ 1

2
lim
n→∞

‖u+
n ‖2 = 0,

contradicting the fact that infMΦ > 0. �

Below we formulate two results for systems of equations. Let Ω ⊂ RN be a
bounded domain and consider the problem

(42)

 −∆u1 = h(x, u2), x ∈ Ω
−∆u2 = g(x, u1), x ∈ Ω
u1 = u2 = 0, x ∈ ∂Ω.
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These systems, both in bounded and unbounded domains, have been considered in
several recent papers, see e.g. [38, 39] and the references there. Our results seem
to be new under the weak superlinearity conditions which we impose here.

Denote

G(x, u1) :=
∫ u1

0

g(x, s) ds and H(x, u2) :=
∫ u2

0

h(x, s) ds.

Theorem 41. Suppose g, h satisfy (17) and (i)-(iii) of Theorem 37. Then
system (42) has a ground state solution. Moreover, if g is odd in u1 and h odd in
u2, then (42) has infinitely many pairs of solutions.

Proof. Let E := H1
0 (Ω)×H1

0 (Ω) and

Φ(u) :=
∫

Ω

∇u1 · ∇u2 dx−
∫

Ω

(G(x, u1) +H(x, u2)) dx for u = (u1, u2) ∈ E.

Then Φ ∈ C1(E,R) and critical points of Φ are solutions of (42). The quadratic
form

u 7→
∫

Ω

∇u1 · ∇u2 dx

is indefinite and E = E+ ⊕ E−, where

(43) E± = {u ∈ E : u2 = ±u1}.

So dimE± =∞ and each u ∈ E may be represented as

u = u+ + u− =
1
2

(u1 + u2, u1 + u2) +
1
2

(u1 − u2, u2 − u1), where u± ∈ E±.

Hence we can write

Φ(u) =
1
2
‖u+‖2 − 1

2
‖u−‖2 − I(u)

with the norm ‖·‖ on E defined by ‖u‖2 =
∫

Ω
(|∇u1|2+|∇u2|2) for u = (u1, u2) ∈ E.

Now it remains to repeat the argument of Theorem 37. The only point which
requires explanation is that, since Lemma 38 holds for both g and h, we obtain as
in Proposition 39(ii):

If u ∈M, then Φ(u+ w) < Φ(u) for any w 6= 0 such that u+ w ∈ Ê(u).

Indeed, we can write

u+ w = (1 + s)u+ v with s ≥ −1 and v ∈ E−.
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Hence a computation similar to the one in the proof of Proposition 39(ii) gives

Φ(u+ w)− Φ(u) = −‖v‖
2

2

+
∫

Ω

(
∇u1 · ∇[s(

s

2
+ 1)u2 + (1 + s)v2] dx

+
∫

Ω

(
∇u2 · ∇[s(

s

2
+ 1)u1 + (1 + s)v1] dx

+
∫

Ω

(
G(x, u1)−G(x, u1 + w1) +H(x, u2)−H(x, u2 + w2)

)
dx

= −‖v‖
2

2
+
∫

Ω

(
g(x, u1)[s(

s

2
+ 1)u1 + (1 + s)v1] +G(x, u1)−G(x, u1 + w1)

)
dx

+
∫

Ω

(
h(x, u2)[s(

s

2
+ 1)u2 + (1 + s)v2] +H(x, u2)−H(x, u2 + w2)

)
dx.

Since w = (w1, w2) 6= 0, at least one of the integrals above is negative and therefore
Φ(u+ w) < Φ(u) as required. �

Finally we consider the problem

(44)

 −∆u1 + u1 = h(x, u2), x ∈ RN
−∆u2 + u2 = g(x, u1), x ∈ RN
u1(x), u2(x)→ 0, |x| → ∞.

Theorem 42. Suppose g, h satisfy (17) and (i)-(iv) of Theorem 40. Then
system (44) has a ground state solution.

Here E = H1(RN )×H1(RN ),

Φ(u1, u2) =
∫

RN

(∇u1 · ∇u2 + u1u2) dx−
∫

RN

(G(x, u1) +H(x, u2)) dx

and E = E+⊕E−, with E± given by (43). The proof is by inspection of the argu-
ments of Theorems 40 and 41. It can also be seen by inspection of the arguments in
[44] that if g, h are odd in u1 and u2 respectively, then there exist infinitely many
geometrically distinct solutions. However, if g and h are independent of x, see our
earlier comments concerning ZN -distinct vs. RN -distinct.

Remark 43. It is easy to see that one can admit more general linear parts in
(42) and (44). We do not pursue the details.
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