Constructive Algebra in Functional Programming and Type Theory Anders Mörtberg

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction

Master thesis: Haskell implementation of constructive algebra

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Current work:

- Bézout and GCD domains in type theory
- Gauss elimination in Haskell and type theory
- Smith normal form in Haskell

Haskell

- Functional
- Pure Easier to reason about programs

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- Lazy Infinite datastructures
- Type classes

Type classes

class Eq a where
$$(==)$$
 :: a \rightarrow a \rightarrow Bool

class Ring a where (<+>) :: $a \rightarrow a \rightarrow a$ (<*>) :: $a \rightarrow a \rightarrow a$ neg :: $a \rightarrow a$ zero :: aone :: a

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Specification

Specify with computable boolean functions

propAddAssoc :: (Ring a, Eq a) \Rightarrow a \rightarrow a \rightarrow a \rightarrow Bool propAddAssoc x y z = (x \leftrightarrow y) \leftrightarrow z == x \leftrightarrow (y \leftrightarrow z)

• (Ring a, Eq a) \Rightarrow Means that the type a is a "discrete ring"

Can be tested using software testing techniques

Example

type Z = Integer instance Ring Z where (<*>) = (*) (<+>) = (+) neg = negate one = 1 zero = 0

> quickCheck (propAddAssoc :: Z \rightarrow Z \rightarrow Z \rightarrow Property) +++ OK, passed 100 tests.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Linear algebra over a field

Solving systems of linear equations

$$MX = 0$$
 $MX = A$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Gauss elimination

Coherent rings

- Generalize the notion of solving equations to finding generators of solutions over rings
- Given a vector M there exist a matrix L such that ML = 0 and

$$MX = 0 \iff \exists Y. X = LY$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

Representation in Haskell

```
type Vector a = [a]
type Matrix a = [[a]]
```

```
class Ring a \Rightarrow Coherent a where solve :: Vector a \rightarrow Matrix a
```

propCoherent :: (Coherent a, Eq a) \Rightarrow Vector a \rightarrow Bool propCoherent m = isSolution (solve m) m

▲□▶ ▲□▶ ★ □▶ ★ □▶ = ● ● ●

Properties of coherent rings

Theorem

In a coherent ring it is possible to solve homogenous systems of equations

$$MX = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

solveMxN :: Coherent a \Rightarrow Matrix a \rightarrow Matrix a

Properties of coherent rings

Theorem

Let R be an integral domain and $I, J \subseteq R$ two f.g. ideals then

 $I \cap J$ f.g. $\Rightarrow R$ coherent

```
type Ideal a = [a]
solveInt :: (Ideal a \rightarrow Ideal a \rightarrow (Ideal a,[[a]],[[a]]))
\rightarrow Vector a
\rightarrow Matrix a
```

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Strongly discrete rings

 A ring is strongly discrete if we can decide ideal membership, i.e. we can solve

$$a_1x_1+\cdots+a_nx_n=b$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

class Ring a \Rightarrow StronglyDiscrete a where member :: a \rightarrow Ideal a \rightarrow Maybe [a]

Bézout domains

- Non-Noetherian analogue of principal ideal domains
- PID: Every ideal is principal
 - Quantification over all ideals
- Bézout domain: Every finitely generated ideal is principal
- Equivalent definition:

$$orall a \ b. \exists g \ a_0 \ b_0 \ x \ y. \ a = g a_0 \ \land \ b = g b_0 \ \land \ a_0 x + b_0 y = 1$$

ション ふゆ アメリア メリア しょうめん

Bézout domains

Theorem Every Bézout domain is coherent

Theorem Every Bézout domain is strongly discrete iff division is explicit

Theorem

Every Euclidean domain is a Bézout domain. In particular $\mathbb Z$ and k[x] are Bézout domains

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Prüfer domains

- Non-Noetherian analogue of Dedekind domains
- Every f.g. ideal is invertible: Given a f.g. ideal I there exists (f.g. nonzero) J such that IJ is principal
- First order characterization:

$$\forall x \ y. \ 3 \exists u \ v \ w. ux = vy \land (1-u)y = wx$$

ション ふゆ アメリア メリア しょうめん

Theorem

Given f.g. ideal I and J, we can find generators of $I\cap J$

Examples of Prüfer domains

Theorem

Every Bézout domain is a Prüfer domain (compare: Every PID is a Dedekind domain)

Theorem

Let R be a Bézout domain and L an algebraic extension of its field of fractions K. The integral closure of R inside L is a Prüfer domain.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

•
$$\mathbb{Z}[\sqrt{-5}]$$

• $k[x, y]$ with $y^2 = 1 - x^4$

Current work

- Bézout and GCD domains in type theory
- Gauss elimination over field in Haskell
 - ► Formalized in type theory using SSReflect by Cyril Cohen

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Smith normal form in Haskell

GCD domains

- Non-Noetherian analogue of unique factorization domains
- GCD domain: Every pair of elements have a greatest common divisor

$$\forall a \, b. \exists g \, x \, y. \, a = gx \land b = gy \land \forall g'. g' \mid a \land g' \mid b \to g' \mid g$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

GCD domains in SSReflect

- Based of integral domain with decidable equality and explicit units
- In a GCD domain this give explicit divisibility

$$\forall a \ b. \ a \nmid b \lor \exists x. \ b = ax$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

GCD domains in SSReflect

Theorem Every Bézout domain is a GCD domain

Theorem

Euclids lemma: If $a \mid bc$ and gcd(a, b) = 1 then $a \mid c$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

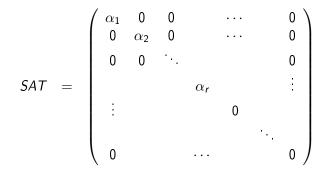
Future work

- ► Gauss lemma
- ▶ If *R* is a GCD domain then *R*[*x*] is also a GCD domain
- Implement Euclidean rings and prove that they are Bézout domains

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

Smith normal form

Let A be a nonzero m × n matrix over a PID. There exists invertible m × m and n × n matrices S,T such that



◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

and $\alpha_i \mid \alpha_{i+1}$

The α_i are called the invariant factors of the matrix

Representation in Haskell

data Matrix a = Cons a [a] [a] (Matrix a) | Empty

$$\left(\begin{array}{rrr}
1 & 2\\
3 & 4
\end{array}\right)$$

▲□▶ ▲圖▶ ▲ 臣▶ ★ 臣▶ 三臣 … 釣�?

ex :: Matrix Z ex = Cons 1 [2] [3] (Cons 4 [] [] Empty)

Future work: Smith normal form in SSReflect

Convert Haskell implementation to type theory

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Need constructive PIDs

Future work: Constructive PIDs

- ► Mines, Richman, Ruitenburg: Bézout domains such that if we have a sequence u(n) with u(n + 1) | u(n) then there exists k such that u(k) | u(k + 1)
- In type theory this can be represented as that the relation

$$R(a, b) := a \mid b \&\& not(b \mid a)$$

ション ふゆ アメリア メリア しょうめん

is well-founded

Questions?

This work has been partially funded by the FORMATH project, nr. 243847, of the FET program within the 7th Framework program of the European Commission

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ のへで