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The Misfortunes of a Trio
of Mathematicians Using

Computer Algebra Systems.
Can We Trust in Them?

Antonio J. Durán, Mario Pérez, and Juan L. Varona

Introduction
Nowadays, mathematicians often use a computer
algebra system as an aid in their mathematical
research; they do the thinking and leave the tedious
calculations to the computer. Everybody “knows”
that computers perform this work better than
people. But, of course, we must trust in the results
derived via these powerful computer algebra
systems. First of all, let us clarify that this paper is
not, in any way, a comparison between different
computer algebra systems, but a sample of the
current state of the art of what mathematicians
can expect when they use this kind of software.
Although our example deals with a concrete system,
we are sure that similar situations may occur with
other programs.

We are currently using Mathematica to find
examples and counterexamples of some mathemat-
ical results that we are working out, with the aim
of finding the correct hypotheses and eventually
constructing a mathematical proof. Our goal was
to improve some results of Karlin and Szegő [4]
related to orthogonal polynomials on the real
line. The details are not important; this is just an
example of the use of a computer algebra system
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by a typical research mathematician, but let us
explain it briefly. It is not necessary to completely
understand the mathematics, just to realize that it
is typical mathematical research using computer
algebra as a tool.

Our starting point is a discrete positive measure
on the real line, µ =∑n≥0Mnδan (where δa denotes
the Dirac delta at a, and an < an+1) having
a sequence of orthogonal polynomials {Pn}n≥0

(where Pn has degree n and positive leading
coefficient). Karlin and Szegő considered in 1961
(see [4]) the l × l Casorati determinants
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,

n, k ≥ 0.

They proved that, under the assumption that l
is even, these determinants are positive for all
nonnegative integers n, k. Notice that the set of
indices {n,n+ 1, . . . , n+ l− 1} for the polynomials
Pn consists of consecutive nonnegative integers.
We are working out an extension of this remarkable
result for more general sets of indices F than those
formed by consecutive nonnegative integers. We
have some conjectures that we want to prove or
disprove.

We have not been able to prove our conjectures
yet, and, as far as we can see, this task seems
to be rather difficult. On the other hand, just in
case our conjectures are wrong, we have been
trying to find counterexamples with the help of
our computer algebra system. Eventually we hope
these experiments can shed some light on the
problem as well.

We have then proceeded to construct orthogonal
polynomials with respect to discrete positive
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In[236]:= basicMat =

-32 69 89 -60 -83 -22 -14 -58 85 56 -65 -30 -86 -9
6 99 11 57 47 -42 -48 -65 25 50 -70 -3 -90 31
78 38 12 64 -67 -4 -52 -65 19 71 38 -17 51 -3
-93 30 89 22 13 48 -73 93 11 -97 -49 61 -25 -4
54 -22 54 -53 -52 64 19 1 81 -72 -11 50 0 -81
65 -58 3 57 19 77 76 -57 -80 22 93 -85 67 58
29 -58 47 87 3 -6 -81 5 98 86 -98 51 -62 -66
93 -77 16 -64 48 84 97 75 89 63 34 -98 -94 19
45 -99 3 -57 32 60 74 4 69 98 -40 -69 -28 -26
-13 51 -99 -2 48 71 -81 -32 78 27 -28 -22 22 94
11 72 -74 86 79 -58 -89 80 70 55 -49 51 -42 66
-72 53 49 -46 17 -22 -48 -40 -28 -85 88 -30 74 32
-92 -22 -90 67 -25 -28 -91 -8 32 -41 10 6 85 21
47 -73 -30 -60 99 9 -86 -70 84 55 19 69 11 -84

;

In[235]:= smallMat =

528 853 -547 -323 393 -916 -11 -976 279 -665 906 -277 103 -485
878 910 -306 -260 575 -765 -32 94 254 276 -156 625 -8 -566
-357 451 -475 327 -84 237 647 505 -137 363 -808 332 222 -998
-76 26 -778 505 942 -561 -350 698 -532 -507 -78 -758 346 -545
-358 18 -229 -880 -955 -346 550 -958 867 -541 -962 646 932 168
192 233 620 955 -877 281 357 -226 -820 513 -882 536 -237 877
-234 -71 -831 880 -135 -249 -427 737 664 298 -552 -1 -712 -691
80 748 684 332 730 -111 -643 102 -242 -82 -28 585 207 -986
967 1 -494 633 891 -907 -586 129 688 150 -501 -298 704 -68
406 -944 -533 -827 615 907 -443 -350 700 -878 706 1 800 120
33 -328 -543 583 -443 -635 904 -745 -398 -110 751 660 474 255

-537 -311 829 28 175 182 -930 258 -808 -399 -43 -68 -553 421
-373 -447 -252 -619 -418 764 994 -543 -37 -845 30 -704 147 -534
638 -33 932 -335 -75 -676 -934 239 210 665 414 -803 564 -805

;

In[234]:= powersMat = DiagonalMatrix[{10 ˆ123, 10 ˆ152, 10 ˆ185, 10 ˆ220, 10 ˆ397, 10 ˆ449,

10 ˆ503, 10 ˆ563, 10 ˆ979, 10 ˆ1059, 10 ˆ1143, 10 ˆ1229, 10 ˆ1319, 10 ˆ1412}];

In[232]:= bigMat = basicMat.powersMat + smallMat;

In[227]:= a = Det[bigMatrix];

In[228]:= b = Det[bigMatrix];

In[237]:= a == b

Out[238]= False



The Misfortunes of a Trio of Mathematicians Using
Computer Algebra Systems. Can We Trust in Them?

“In attempting to isolate the computational problem, we finally
realized that, in some circumstances, Mathematica (version 9.0.1
at that time) makes some strange mistakes when computing
determinants whose entries are large integers. Errors do not
always occur – only in some cases. Even worse, given the same
matrix, the determinant function can give different values!”

“This resembles the well-known Pentium division bug discovered
by Thomas Nicely in 1994, which only affected certain kinds of
numbers. But it seems Mathematica is a black box even darker
than the internals of a microprocessor, so it is difficult to try to
understand what kinds of numbers are affected by the
Mathematica bug that we are describing.”

Anders Mörtberg Introduction February 5, 2016 2 / 24
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Bugs in computer algebra systems (CAS)

The bug was reported October 7, 2013 (Mathematica 8), and was
still there in June 2014 (Mathematica 9)...

Yesterday I tried on my office machine (Mathematica 10) and the
particular determinant bug seems to have been fixed – but I was still
getting incorrect counterexamples to the conjecture from the paper...

Bugs in CAS are serious, not only because mathematicians can end
up “proving” something false or finding incorrect counterexamples,
but because CAS are used a lot also in industry (cars, aviation,
military, medicine...)1

1https://en.wikipedia.org/wiki/List_of_software_bugs
Anders Mörtberg Introduction February 5, 2016 3 / 24
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How to increase reliability?

The conclusion of the article is:

“Software bugs should not prevent us from continuing this
mutually beneficial relationship [between mathematicians and
computers] in the future. However, for the time being, when
dealing with a problem whose answer cannot be easily verified
without a computer, it is highly advisable to perform the
computations with at least two computer algebra systems.”

Anders Mörtberg Introduction February 5, 2016 4 / 24



How to increase reliability?

“We run millions and millions of tests on every version of
Mathematica, trying to exercise every part of the system. And
doing that is orders of magnitude more powerful at catching
bugs than any kind of pure human testing.” – Stephen Wolfram
(2007)

“Program testing can be used to show the presence of bugs, but
never to show their absence!” – Dijkstra (1970)

Can we do better?

Yes! By formally verifying the correctness of the implementation using a
proof assistant.
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Formalizing Bareiss algorithm

Want: Polynomial time algorithm for computing the determinant of a
matrix with coefficients in any commutative ring

Formally verified implementation in Coq – that can be used to
compute determinants correctly

Coq is both a proof assistant and a programming language. One can
write both programs and their correctness proofs in the system, and
Coq then checks that the proofs are correct.

Anders Mörtberg Bareiss February 5, 2016 6 / 24



Bareiss algorithm

Erwin Bareiss: ”Sylvester’s Identity and Multistep Integer-Preserving
Gaussian Elimination” (1968)

Compute determinant of integer matrices in polynomial time

Similar to Gaussian elimination, but some subtle differences:
I After n “steps” ann is the determinant of the n× n upper-left submatrix
I All divisions are guaranteed to be exact, ie. the computations are

fraction-free

“We [he and Halmos] share a philosophy about linear algebra:
we think basis-free, we write basis-free, but when the chips are
down we close the office door and compute with matrices like
fury.” – Irving Kaplansky
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Anders Mörtberg Bareiss February 5, 2016 7 / 24



Bareiss algorithm: Example


2 2 4 5
5 8 9 3
1 2 8 5
6 6 7 1
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Bareiss algorithm: Example


2 2 4 5
0 6 −2 −19
0 2 12 5
0 0 −10 −28



Anders Mörtberg Bareiss February 5, 2016 9 / 24



Bareiss algorithm: Example


2 2 4 5
0 6 −2 −19
0 0 76 68
0 0 −60 −168
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Bareiss algorithm: Example


2 2 4 5
0 6 −2 −19
0 0 76/2 68/2
0 0 −60/2 −168/2
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Bareiss algorithm: Example


2 2 4 5
0 6 −2 −19
0 0 38 34
0 0 −30 −84
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Bareiss algorithm: Example


2 2 4 5
0 6 −2 −19
0 0 38 34
0 0 0 −2172
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Bareiss algorithm: Example


2 2 4 5
0 6 −2 −19
0 0 38 34
0 0 0 −2172/6
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Bareiss algorithm: Example


2 2 4 5
0 6 −2 −19
0 0 38 34
0 0 0 −362



Anders Mörtberg Bareiss February 5, 2016 15 / 24



Bareiss algorithm: Example

det


2 2 4 5
5 8 9 3
1 2 8 5
6 6 7 1

 = −362

Anders Mörtberg Bareiss February 5, 2016 16 / 24



Bareiss algorithm: problems

0 on diagonal implies division by zero?

I No problem, find a nonzero pivot and reorganize

Generalize to any commutative ring?

I No, the ring need to have an “explicit” divisibility function:

a | b ⇔ ∃x .b = ax

I Examples: Euclidean domains (Z, k[x ]) and polynomial rings over these
(Z[x , y ], k[x , y , z ], . . . )

But, there is a neat trick that allows us to generalize this algorithm to any
commutative ring...
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A nice trick

Apply the algorithm to xI −M

Compute on R[x ] with polynomial pseudo-division instead of division
on R

Put x = 0 in the result

Benefits:

More general

No need for pivoting (we have x along the diagonal)

Get characteristic polynomial for free

Algorithm is the same as Bareiss’

Sasaki-Murao: Efficient Gaussian Elimination Method for Symbolic
Determinants and Linear Systems (1982)
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Correctness?

Why are all the divisions always exact?

Bareiss’ original paper has a complicated proof relying on quite
complicated identities...
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(a) to triangular form with subsequent back substitution,

(b) to diagonal form

such that the elements of the reduced system are integers, provided the elements

a,-,- of

(5) A«» = A © B (A augmented by B)

are integers.

A. Reduction of A to Triangular Form.

1. Division-free algorithms. The simplest reduction algorithm is given by the

recurrence formulas (known as Gaussian elimination algorithm)

(6)
(0)   _ (fc)   _

(*-d
akk

(*-i)
aik

¿fr»
at°

(fe = 1,2, ••-,% — 1) (i = fc 4- 1, •• -, n) (j = k + 1, •••,n, n+ 1, •••,m).

The advantage of this formula is the absence of any division operations. The dis-

advantage lies in large absolute integers a¡k\

The next simplest division-free transformation is given by Eq. (1.6),t if the

divisor is disregarded and I = k — 2. The result is

(7) .<*>

(k-2) (k-2) (k-2)
ak-l,k-l      ß/t-l.A      O-k-l.i

(k-2)
ak,k—i

Ak-2)
ai,k-i

(k-2)
akk

(k-2)
aik

(k-i)
a-kj

„(k-2)

It is also instructive to obtain (7) directly from (6) instead of from (1.6) by

applying (6) twice as follows:

a?> =

Ak-1) Ak-1)
akk akj
Ak-1) Ak-1)

U>ik ulj

— i„^k-l)       Ak-2) „(k-2) Ak-2) w Ak-2) i
— (flk-i,k-iakk        — a,k—i,kdk,k—l)\ßk—l,k—lO'

Ak-2) Ak-2) Ak-2),
ak-i.jai,k-i)

iJk-V      „<*~2> s.<-k-V„lk-'i'>\'Jk-V      „(*-2) Ak-2) Ak-2),
— (ßk-i.k-iaik     — ak-i,kai,k-i)\ak-i,k-iakj     — ak-i,¡ak,k-i)

-   r«(*-2)      n(k~2) Ak-2) Ak-2),    (k-2) (k-2)
— \ük-i,k-iakk     — ai;—i,kak,k-i)ak-i,k—iaij

C^t*-2'      „(*~2> Ak-2) Ak-2), Ak-2)      Ak-2)
— \ak—i,k—iaik     — ak-i,kai,k-i)ak—i,k—iakj

Ak-2) (k-2)   (k-2)    (k-2)     .     ,   (k-2)    (k-2)    (k-2)    (k-2) i
— ak-i,k—ißkk    <ik—\,jQ'i,k—i 4- \ßk-i,kak,k-iak—i,jai,k—i\

,      Ak-2) (k-2)    (k-2)    (k-2) ¡Ak-2)    (k-2)    (k-2)    (k-2) i
"T ak-i,k— iaik    B*-i,jt»t,t-i — \ak-i,kai,k-iak-i,jak,k-i\ ■

The two products indicated by brackets [   ] cancel. The remaining terms have the

common factor afrp/k-i. It then follows easily that for (6)

(k)   _      (k-2)
an — ak—i,k—i

(k-2) (k-2) (k-i)
ak—i,k-i    ak-i,k    at-i.j

(k-2)
ak,k-i

(k-i)
Ui.k-l

Ak-2)
akk

Ak-2)
aik

„ (k-2)
a-kj

(k-i)
dij

Disregarding the factor af-PX-i in this equation yields (7). Therefore, the coeffi-

cients afp of (7) are smaller by a factor af-PX-i and, in addition, can be obtained

from af~2) more efficiently than those of (6) because two terms cancel and need

t Equation (1.6) means Eq. (6) of Section I.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



Correctness

When formalizing this algorithm and its correctness proof we found a
simpler argument

Let a be the element to divide with and M the submatrix we are
simplifying. The key observation is that the recursive call satisfies the
following invariants:

a is regular (ie. not a zero divisor)

ak divides all k + 1 minors of M

All principal minors of M are regular

Coquand-M-Siles: A Formal Proof of Sasaki-Murao Algorithm (2012)

Anders Mörtberg Bareiss February 5, 2016 20 / 24



Lemma bareiss_recE : forall m a (M : ’M[{poly R}]_(1 + m)),

a \is monic ->

(forall k (f g : ’I_k.+1 -> ’I_m.+1), rdvdp (a ^+ k) (minor f g M)) ->

(forall p (h h’ : p < 1 + m), pminor h h’ M \is monic) ->

a ^+ m * (bareiss_rec a M) = \det M.

Proof.

elim=> [a M _ _ _|m ih a M am hpm hdvd] /=.

by rewrite expr0 mul1r {2}[M]mx11_scalar det_scalar1.

have ak_monic k : a ^+ k \is monic by apply/monic_exp.

set d := M 0 0; set M’ := _ - _; set M’’ := map_mx _ _; simpl in M’.

have d_monic : d \is monic.

have -> // : d = pminor (ltn0Sn _) (ltn0Sn _) M.

have h : widen_ord (ltn0Sn m.+1) =1 (fun _ => 0)

by move=> x; apply/ord_inj; rewrite ord1.

by rewrite /pminor (minor_eq h h) minor1.

have dk_monic : forall k, d ^+ k \is monic by move=> k; apply/monic_exp.

have hM’ : M’ = a *: M’’.

pose f := fun m (i : ’I_m) (x : ’I_2) => if x == 0 then 0 else (lift 0 i).

apply/matrixP => i j.

rewrite !mxE big_ord1 !rshift1 [a * _]mulrC rdivpK ?(eqP am,expr1n,mulr1) //.

move: (hdvd 1%nat (f _ i) (f _ j)).

by rewrite !minor2 /f /= expr1 !mxE !lshift0 !rshift1.

rewrite -[M]submxK; apply/(@lregX _ d m.+1 (monic_lreg d_monic)).

have -> : ulsubmx M = d%:M by apply/rowP=> i; rewrite !mxE ord1 lshift0.

rewrite key_lemma -/M’ hM’ detZ mulrCA [_ * (a ^+ _ * _)]mulrCA !exprS -!mulrA.

rewrite ih // => [p h h’|k f g].

rewrite -(@monicMl _ (a ^+ p.+1)) // -detZ -submatrix_scale -hM’.

rewrite -(monicMl _ d_monic) key_lemma_sub monicMr //.

by rewrite (minor_eq (lift_pred_widen_ord h) (lift_pred_widen_ord h’)) hpm.

case/rdvdpP: (hdvd _ (lift_pred f) (lift_pred g)) => // x hx; apply/rdvdpP => //.

exists x; apply/(@lregX _ _ k.+1 (monic_lreg am))/(monic_lreg d_monic).

rewrite -detZ -submatrix_scale -hM’ key_lemma_sub mulrA [x * _]mulrC mulrACA.

by rewrite -exprS [_ * x]mulrC -hx.

Qed.



Computation

“Beware of bugs in the above code; I have only proved it correct,
not tried it.” – Donald Knuth (1977)

We ran the computation of the big determinant in Coq and got the
correct result in 46s

Mathematica 10 computes the correct results in 1.5s

We also “extracted” the Coq code to Haskell, compiled and ran the
computation and got the result in 0.5s
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Conclusions

One should not blindly trust computer algebra systems! And there are
alternatives to running the computations in two systems...

Formal proofs and interactive theorem proving can help to increase
the reliability, and these tools are now getting so good that it is
becoming feasible to use them for real world problems!

Vision: a computer algebra system with formal correctness proofs of
critical parts? Maybe one day Coq be used as a computer algebra
system?
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Thank you for your attention!
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