Cubical Type Theory: a constructive interpretation of the univalence axiom

Anders Mörtberg
(jww C. Cohen, T. Coquand, and S. Huber)

Institute for Advanced Study, Princeton

February 23, 2016
Introduction

Goal: provide a computational justification for notions from Homotopy Type Theory and Univalent Foundations, in particular the univalence axiom and higher inductive types

Specifically, design a type theory with good properties (normalization, decidability of type checking, etc.) where the univalence axiom computes and which has support for higher inductive types
Homotopy Type Theory

Builds on connection between type theory and homotopy theory

Adds extensionality concepts to (intensional) type theory:

- Function extensionality: two functions are equal if they produce the same output for all inputs
- Quotient types
- Can transport code and proofs between structures (univalence)
- Higher inductive types
Type theory

Type theory uses the syntax of λ-calculus, hence it can be seen as a functional programming language.

There are many proof assistants based on variations of type theory: Coq, Agda, Nuprl, Idris, Lean...

Programs and proofs are written in the same language.

HoTT is typically defined as an extension of intensional type theory (e.g. Martin-Löf type theory or Calculus of constructions).
BHk interpretation

Proofs are first-class citizens (just like functions in FP): an even natural number is a pair of the number and a proof that it is even.
BHK interpretation

Proofs are first-class citizens (just like functions in FP): an even natural number is a pair of the number and a proof that it is even.

This gives an interpretation of the logical connectives. For instance an implication:

\[P \rightarrow Q \]

is a function that maps a proof of \(P \) to a proof of \(Q \).
BHK interpretation

Proofs are first-class citizens (just like functions in FP): an even natural number is a pair of the number and a proof that it is even.

This gives an interpretation of the logical connectives. For instance an implication:

\[P \rightarrow Q \]

is a function that maps a proof of \(P \) to a proof of \(Q \).

Propositions form a “sub-universe” of the types and logical connectives are encoded by the general operations on types.
Equality/Identity types

\textbf{Inductive} \ eq \ (A : \ Type) \ (a : \ A) : \ A \to \ Type := \\
\quad \text{refl} : \ eq \ A \ a \ a

\textbf{Notation} \ (a = b) := (eq \ A \ a \ b).
\textbf{Notation} \ 1_a := (refl \ a).

\textbf{Lemma} \ eq_sym \ (A : \ Type) \ (a \ b : \ A) : \ a = b \to b = a.

\textbf{Lemma} \ eq_trans \ (A : \ Type) \ (a \ b \ c : \ A) : \ a = b \to b = c \to a = c.

\textbf{Lemma} \ eq_trans_refl_l \ (A : \ Type) \ (a \ b : \ A) \ (p : a = b), \ eq_trans \ 1_a \ p = p.

\textbf{Lemma} \ eq_trans_refl_r \ (A : \ Type) \ (a \ b : \ A) \ (p : a = b), \ eq_trans \ p \ 1_b = p.

...
Equality: transport

Definition transport \((A : \text{Type}) (P : A \to \text{Type})\)

\[(a \ b : A) (p : a = b) : P a \to P b := \ldots\]

“Leibniz identity of indiscernibles”: there cannot be separate objects or entities that have all their properties in common, that is, entities \(a\) and \(b\) are identical if every predicate possessed by \(a\) is also possessed by \(b\) and vice versa.
Equality: higher dimensional structure

As the first parameter to eq is a type one can plug in another eq:

\[
\begin{align*}
 a & \ b : A \\
 \ p & \ q : a = b \\
 \alpha & : p = q \\
 \vdots & \\
\end{align*}
\]

Equality is proof relevant, and has the structure of an \(\infty \)-groupoid...
Homotopy type theory

“In algebraic topology, homotopy theory is the study of homotopy groups; and more generally of the category of topological spaces and homotopy classes of continuous mappings.”
Homotopy type theory

“In algebraic topology, homotopy theory is the study of homotopy groups; and more generally of the category of topological spaces and homotopy classes of continuous mappings.”

<table>
<thead>
<tr>
<th>Type theory</th>
<th>Homotopy theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Type</td>
<td>A Space</td>
</tr>
<tr>
<td>a : A</td>
<td>a is a point in A</td>
</tr>
<tr>
<td>p : a = b</td>
<td>p is a path between a and b in A</td>
</tr>
<tr>
<td>α : p = q</td>
<td>α is a homotopy between p and q</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
</tr>
</tbody>
</table>

Anders Mörtberg (jww C. Cohen, T. C)
Univalence axiom

Equivalence of types, $\text{Equiv } A \ B$, is a generalization of bijection of sets

Univalence axiom (Voevodsky): equality of types is equivalent to equivalence of types:

$$\text{Equiv } (A = B) \ (\text{Equiv } A \ B)$$

In particular we get a map:

$$\text{Equiv } A \ B \rightarrow A = B$$
Univalence axiom: consequences

Can prove extensionality for functions:

\textbf{Lemma} \quad \texttt{funext (A B : Type) (f g : A -> B)}

\begin{align*}
(H : \forall a, f\ a = g\ a), \ f = g.
\end{align*}

Using this one can prove that for example insertion sort and quicksort are equal as functions and rewrite with this equality
Univalence axiom: consequences

Get transport for equivalences:

```lean
Definition transport_equiv (P : Type -> Type) (A B : Type) (p : Equiv A B) : P A -> P B :=
```

Get a new version of Leibniz’s principle of the identity of indiscernibles: reasoning is invariant under equivalence

Can be used for generic programming, for example to transform fields in a database using an isomorphism
Univalence axiom: consequences

Structure identity principle: univalence lifts to structures
(Coquand-Danielsson, Ahrens-Kapulkin-Shulman)

Definition transport_monoid \((P : \text{Monoid} \rightarrow \text{Type})\)

\[(A \ B : \text{Monoid}) \ (p : \text{EquivMonoid} \ A \ B) : P A \rightarrow P B := \ldots\]

Can be used for program and data refinements: can prove properties on
the monoid of unary natural numbers by computing with the monoid of
binary natural numbers
Univalence axiom: problems

The univalence axiom can be added to Coq as an Axiom:

```
Definition eqweqmap (A B : Type) (p : A = B) : Equiv A B :=
Axiom univalence (A B : Type), is_equiv (eqweqmap A B)).
```

By doing this Coq looses its good computational properties, in particular one can construct terms that are **stuck**

Solution: define a new type theory in which the univalence axiom computes, in other words where there is a term that realizes it
An extension of dependent type theory which allows the user to directly argue about n-dimensional cubes (points, lines, squares, cubes etc.) representing equality proofs

Based on a model in cubical sets formulated in a constructive metatheory

The univalence axiom is provable in the system

We have a prototype implementation in Haskell
Cubical Type Theory

Extends dependent type theory with:

1. Path types
2. Kan composition operations
3. Glue types
4. Higher inductive types
Base type theory

\[\Gamma, \Delta ::= () \mid \Gamma, x : A \]

\[t, u, A, B ::= x \mid \lambda x : A.\ t \mid t\ u \mid (x : A) \to B \]
\[\mid (t, u) \mid t.1 \mid t.2 \mid (x : A) \times B \]
\[\mid 0 \mid s\ u \mid \text{natrec}\ t\ u \mid N \]

with \(\eta \) for functions and pairs
Path types: the interval

Path types provides a convenient syntax for reasoning about (higher) equality proofs

Formal representation of the interval, \mathbb{I}:

$$r, s ::= 0 \mid 1 \mid i \mid 1 - r \mid r \land s \mid r \lor s$$

The context can contain variables in the interval:

$$\Gamma, \Delta ::= \ldots \mid \Gamma, i : \mathbb{I} \vDash (i \notin \text{dom}(\Gamma))$$
Path types

The intuition is that a type in a context with n names corresponds to an n-dimensional cube:

<table>
<thead>
<tr>
<th>$() \vdash A$</th>
<th>$\bullet A$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i : \mathbb{I} \vdash A$</td>
<td>$A(i0) \xrightarrow{A} A(i1)$</td>
</tr>
<tr>
<td>$i : \mathbb{I}, j : \mathbb{I} \vdash A$</td>
<td>$A(i0)(j1) \xrightarrow{A(j1)} A(i1)(j1)$</td>
</tr>
<tr>
<td></td>
<td>$A(i0)$</td>
</tr>
<tr>
<td></td>
<td>$A(i0)(j0) \xrightarrow{A(j0)} A(i1)(j0)$</td>
</tr>
</tbody>
</table>

Anders Mörtberg (jww C. Cohen, T. C. Cubical Type Theory)
Path types: syntax

\[t, u, A, B ::= \ldots \]
\[\mid \text{Path } A \ t \ u \mid \langle i \rangle \ t \mid t \ r \]

Path abstraction, \(\langle i \rangle \ t \), binds the name \(i \) in \(t \)

Path application, \(t \ r \), applies a term \(t \) to an element \(r : \mathbb{I} \)

This is similar to the notion of name-abstraction in nominal sets
Path types

We define $1_a : \text{Path } A \ a \ a$ as $\langle i \rangle \ a$, which corresponds to a proof of reflexivity:

\[
\begin{array}{cccc}
 & & 1_a & \\
 a & \rightarrow & & a
\end{array}
\]

Given $p : \text{Path } A \ a \ b$ we have $p\ 0 = a$, $p\ 1 = b$ and

\[
\begin{array}{cccc}
 & & p \ (1-i) & \\
 b & \rightarrow & & a
\end{array}
\]
Path types: connections

Given \(p : \text{Path} \ A \ a \ b \) we can build

\[
\begin{align*}
\begin{array}{ccc}
\text{a} & \xrightarrow{p \ i} & \text{b} \\
p \ 0 & \downarrow & \downarrow \\
\text{a} & \xrightarrow{p \ 0} & \text{a}
\end{array} & \quad &
\begin{array}{ccc}
\text{b} & \xrightarrow{p \ 1} & \text{b} \\
p \ j & \downarrow & \downarrow \\
\text{a} & \xrightarrow{p \ i} & \text{b}
\end{array}
\end{align*}
\]
Path types: rules

\[\Gamma \vdash A \quad \Gamma \vdash t : A \quad \Gamma \vdash u : A \]
\[\frac{}{\Gamma \vdash \text{Path} \ A \ t \ u} \]

\[\Gamma \vdash t : \text{Path} \ A \ u_0 \ u_1 \quad \Gamma \vdash r : \mathbb{I} \]
\[\frac{}{\Gamma \vdash t \ r : A} \]

\[\Gamma \vdash t : \text{Path} \ A \ u_0 \ u_1 \]
\[\frac{}{\Gamma \vdash t \ 0 = u_0 : A} \]

\[\Gamma \vdash \langle i \rangle \ t : \text{Path} \ A \ t(i_0) \ t(i_1) \]

\[\Gamma \vdash A \quad \Gamma, i : \mathbb{I} \vdash t : A \]
\[\frac{}{\Gamma \vdash (\langle i \rangle \ t) \ r = t(i/r) : A} \]

\[\Gamma \vdash t : \text{Path} \ A \ u_0 \ u_1 \]
\[\frac{}{\Gamma \vdash t \ 1 = u_1 : A} \]

\[\Gamma, i : \mathbb{I} \vdash t \ i = u \ i : A \]
\[\frac{}{\Gamma \vdash t = u : \text{Path} \ A \ u_0 \ u_1} \]
Path types: function extensionality

Function extensionality for path types can be proved as:

\[
\frac{
\Gamma \vdash f, g : (x : A) \to B \quad \Gamma \vdash p : (x : A) \to \text{Path } B (f x) (g x)
}{
\Gamma \vdash \langle i \rangle \lambda x : A. \ p x i : \text{Path } ((x : A) \to B) \ f \ g
}\]
Kan composition operations

We want to be able to compose paths:

\[a \longrightarrow c \]
\[a \quad q \quad j \quad b \]
\[a \quad p \quad i \quad b \]

In general this corresponds to computing the missing sides of n-dimensional cubes (Kan composition)
The face lattice

In order to do this we need syntax for representing partially specified n-dimensional cubes, hence we introduce the face lattice \(F \):

\[
\phi, \psi ::= 0_F \mid 1_F \mid (i = 0) \mid (i = 1) \mid \phi \land \psi \mid \phi \lor \psi
\]

We add context restrictions:

\[
\Gamma, \Delta ::= \ldots \mid \Gamma, \phi
\]

\[
\Gamma \vdash \phi : F \quad \frac{\Gamma \vdash \phi : F}{\Gamma, \phi \vdash}
\]
Partial elements

<table>
<thead>
<tr>
<th>$i : \mathbb{I}, (i = 0) \lor (i = 1) \vdash A$</th>
<th>$A(i0) \bullet \bullet A(i1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i : \mathbb{I}, j : \mathbb{I}, (i = 0) \lor (j = 1) \vdash A$</td>
<td>$A(i0)(j1) \xrightarrow{A(j1)} A(i1)(j1)$</td>
</tr>
<tr>
<td></td>
<td>$A(i0)$</td>
</tr>
<tr>
<td></td>
<td>$A(i0)(j0)$</td>
</tr>
<tr>
<td>$i : \mathbb{I}, j : \mathbb{I}, (i = 0) \lor (i = 1) \lor (j = 0) \vdash A$</td>
<td>$A(i0)(j1)$</td>
</tr>
<tr>
<td></td>
<td>$A(i0)$</td>
</tr>
<tr>
<td></td>
<td>$A(i0)(j0)$</td>
</tr>
<tr>
<td></td>
<td>$A(i1)$</td>
</tr>
<tr>
<td></td>
<td>$A(i1)(j1)$</td>
</tr>
<tr>
<td></td>
<td>$A(i1)(j0)$</td>
</tr>
</tbody>
</table>
We add syntax for specifying shapes/systems:

\[
\begin{align*}
t, u, A, B & ::= \ldots \\
| & S \\
S & ::= [\varphi_1 t_1, \ldots, \varphi_n t_n]
\end{align*}
\]

Together with rules for specifying when these shapes are well formed:

\[
\frac{
\Gamma, \varphi_1 \vdash A_1 \quad \cdots \quad \Gamma, \varphi_n \vdash A_n \quad \Gamma, \varphi_i \land \varphi_j \vdash A_i = A_j
}{
\Gamma \vdash [\varphi_1 A_1, \ldots, \varphi_n A_n]
}
\]
Kan compositions

The syntax of compositions is given by:

\[t, u, A, B ::= \ldots \]
\[\mid \text{comp}^i A [\varphi \mapsto u] a_0 \]

where \(u \) is a system defined on \(\varphi \)

\[
\Gamma \vdash \varphi \quad \Gamma, i : \Pi \vdash A \quad \Gamma, \varphi, i : \Pi \vdash u : A \quad \Gamma \vdash a_0 : A(i0)
\]

\[
\Gamma \vdash \text{comp}^i A [\varphi \mapsto u] a_0 : A(i1)
\]
Kan composition: example

With composition we can justify transitivity of path types:

\[
\Gamma \vdash p : \text{Path } A a b \quad \Gamma \vdash q : \text{Path } A b c \\
\Gamma \vdash \langle i \rangle \text{comp}^j A [(i = 0) \mapsto a, (i = 1) \mapsto q j] (p i) : \text{Path } A a c
\]
Kan composition: transport and equality judgments

Composition for $\varphi = 0_F$ corresponds to transport:

$$\Gamma \vdash \text{transport}^i A \ a = \text{comp}^i A [] a : A(i1)$$

Equality judgments for comp is defined by case on A, this is the main part of the system.
In order to be able to prove univalence we add a **glueing** operation:

\[t, u, A, B ::= \ldots \]

\[\text{Glue} \left[\varphi \mapsto (T, f) \right] A \]
\[\text{glue} \left[\varphi \mapsto t \right] u \]
\[\text{unglue} \left[\varphi \mapsto (T, f) \right] u \]

\[
\Gamma \vdash A \quad \Gamma, \varphi \vdash T \quad \Gamma, \varphi \vdash f : \text{Equiv} \ T \ A \\
\hline
\Gamma \vdash \text{Glue} \left[\varphi \mapsto (T, f) \right] A
\]
Glue: example

In the case $\varphi = (i = 0) \lor (i = 1)$ the glueing operation can be illustrated as the dashed line in:

$$
\begin{array}{ccc}
T_0 & \longrightarrow & T_1 \\
\downarrow_{f(i0)} & \downarrow & \downarrow_{f(i1)} \\
A(i0) & \xrightarrow{A} & A(i1)
\end{array}
$$

Composition for glueing is the most complicated part of the system.
Universe and univalence

We can also add a universe U and define composition for it using composition for Glue.

For univalence we need to define a map:

$$(w : \text{Equiv } A B) \to \text{Path } U A B$$

Using glue we get:

\[
\begin{array}{ccc}
A & \longrightarrow & B \\
\downarrow & \downarrow & \downarrow \\
B & \longrightarrow & B
\end{array}
\]

$w \sim \text{id}_B$
Higher inductive types

Higher inductive types generalize inductive types by allowing constructors for not only points, but also for (higher) equalities.

Examples:

- Quotient types
- Propositional truncation (squash types)
- Topological spaces (circle, sphere, torus...)
Integers as a higher inductive types

\[
data \text{int} = \text{pos } (n : \text{nat}) \\
| \text{neg } (n : \text{nat}) \\
| \text{zeroP } <i> [(i = 0) \rightarrow \text{pos zero} \\
, (i = 1) \rightarrow \text{neg zero}]
\]

\[
\text{sucInt : int } \rightarrow \text{ int } = \text{split} \\
\text{pos n } \rightarrow \text{ pos (suc n)} \\
\text{neg n } \rightarrow \text{ sucNat n} \text{ where sucNat : nat } \rightarrow \text{ int } = \text{split} \\
\text{zero } \rightarrow \text{ pos one} \\
\text{suc n } \rightarrow \text{ neg n} \\
\text{zeroP } @ i \rightarrow \text{ pos one}
\]
Summary and future work

We have an implementation in Haskell, try it:

https://github.com/mortberg/cubicaltt/

Future work:

- metatheory (normalization, decidability of type checking...)
- formalize correctness (wip of Mark Bickford in Nuprl)
- general formulation and semantics of higher inductive types
Thank you for your attention!