
Cubical Type Theory: a constructive interpretation of
the univalence axiom

Anders Mörtberg
(jww C. Cohen, T. Coquand, and S. Huber)

Institute for Advanced Study, Princeton

February 23, 2016

Anders Mörtberg(jww C. Cohen, T. Coquand, and S. Huber) (IAS) February 23, 2016 1 / 38

Introduction

Goal: provide a computational justification for notions from Homotopy
Type Theory and Univalent Foundations, in particular the univalence
axiom and higher inductive types

Specifically, design a type theory with good properties (normalization,
decidability of type checking, etc.) where the univalence axiom computes
and which has support for higher inductive types

Anders Mörtberg(jww C. Cohen, T. Coquand, and S. Huber)Introduction February 23, 2016 2 / 38

Homotopy
Type Theory
Univalent Foundations of Mathematics

THE UNIVALENT FOUNDATIONS PROGRAM

INSTITUTE FOR ADVANCED STUDY

Homotopy Type Theory

Builds on connection between type theory and homotopy theory

Adds extensionality concepts to (intensional) type theory:

Function extensionality: two functions are equal if they produce the
same output for all inputs

Quotient types

Can transport code and proofs between structures (univalence)

Higher inductive types

Anders Mörtberg(jww C. Cohen, T. Coquand, and S. Huber)Homotopy Type Theory February 23, 2016 3 / 38

Type theory

Type theory uses the syntax of λ-calculus, hence it can be seen as a
functional programming language

There are many proof assistants based on variations of type theory: Coq,
Agda, Nuprl, Idris, Lean...

Programs and proofs are written in the same languange

HoTT is typically defined as an extension of intensional type theory (e.g.
Martin-Löf type theory or Calculus of constructions)

Anders Mörtberg(jww C. Cohen, T. Coquand, and S. Huber)Homotopy Type Theory February 23, 2016 4 / 38

BHK interpretation

Proofs are first-class citizens (just like functions in FP): an even natural
number is a pair of the number and a proof that it is even

This gives an interpretation of the logical connectives. For instance an
implication:

P → Q

is a function that maps a proof of P to a proof of Q

Propositions form a “sub-universe” of the types and logical connectives are
encoded by the general operations on types

Anders Mörtberg(jww C. Cohen, T. Coquand, and S. Huber)Homotopy Type Theory February 23, 2016 5 / 38

BHK interpretation

Proofs are first-class citizens (just like functions in FP): an even natural
number is a pair of the number and a proof that it is even

This gives an interpretation of the logical connectives. For instance an
implication:

P → Q

is a function that maps a proof of P to a proof of Q

Propositions form a “sub-universe” of the types and logical connectives are
encoded by the general operations on types

Anders Mörtberg(jww C. Cohen, T. Coquand, and S. Huber)Homotopy Type Theory February 23, 2016 5 / 38

BHK interpretation

Proofs are first-class citizens (just like functions in FP): an even natural
number is a pair of the number and a proof that it is even

This gives an interpretation of the logical connectives. For instance an
implication:

P → Q

is a function that maps a proof of P to a proof of Q

Propositions form a “sub-universe” of the types and logical connectives are
encoded by the general operations on types

Anders Mörtberg(jww C. Cohen, T. Coquand, and S. Huber)Homotopy Type Theory February 23, 2016 5 / 38

Equality/Identity types

Inductive eq (A : Type) (a : A) : A -> Type :=

refl : eq A a a

Notation (a = b) := (eq A a b).

Notation 1_a := (refl a).

Lemma eq_sym (A : Type) (a b : A) : a = b -> b = a.

Lemma eq_trans (A : Type) (a b c : A) : a = b -> b = c -> a = c.

Lemma eq_trans_refl_l (A : Type) (a b : A) (p : a = b), eq_trans 1_a p = p.

Lemma eq_trans_refl_r (A : Type) (a b : A) (p : a = b), eq_trans p 1_b = p.

...

Anders Mörtberg(jww C. Cohen, T. Coquand, and S. Huber)Homotopy Type Theory February 23, 2016 6 / 38

Equality: transport

Definition transport (A : Type) (P : A -> Type)

(a b : A) (p : a = b) : P a -> P b := ...

“‘Leibniz identity of indiscernibles”: there cannot be separate objects or
entities that have all their properties in common, that is, entities a and b
are identical if every predicate possessed by a is also possessed by b and
vice versa

Anders Mörtberg(jww C. Cohen, T. Coquand, and S. Huber)Homotopy Type Theory February 23, 2016 7 / 38

Equality: higher dimensional structure

As the first parameter to eq is a type one can plug in another eq:

a b : A

p q : a = b

α : p = q

...

Equality is proof relevant, and has the structure of an ∞-groupoid...

Anders Mörtberg(jww C. Cohen, T. Coquand, and S. Huber)Homotopy Type Theory February 23, 2016 8 / 38

Homotopy type theory

“In algebraic topology, homotopy theory is the study of homotopy groups;
and more generally of the category of topological spaces and homotopy
classes of continuous mappings.”

Type theory Homotopy theory

A Type A Space
a : A a is a point in A
p : a = b p is a path between a and b in A
α : p = q α is a homotopy between p and q
...

...

Anders Mörtberg(jww C. Cohen, T. Coquand, and S. Huber)Homotopy Type Theory February 23, 2016 9 / 38

Homotopy type theory

“In algebraic topology, homotopy theory is the study of homotopy groups;
and more generally of the category of topological spaces and homotopy
classes of continuous mappings.”

Type theory Homotopy theory

A Type A Space
a : A a is a point in A
p : a = b p is a path between a and b in A
α : p = q α is a homotopy between p and q
...

...

Anders Mörtberg(jww C. Cohen, T. Coquand, and S. Huber)Homotopy Type Theory February 23, 2016 9 / 38

Univalence axiom

Equivalence of types, Equiv A B, is a generalization of bijection of sets

Univalence axiom (Voevodsky): equality of types is equivalent to
equivalence of types:

Equiv (A = B) (Equiv A B)

I particular we get a map:

Equiv A B → A = B

Anders Mörtberg(jww C. Cohen, T. Coquand, and S. Huber)Homotopy Type Theory February 23, 2016 10 / 38

Univalence axiom: consequences

Can prove extensionality for functions:

Lemma funext (A B : Type) (f g : A -> B)

(H : forall a, f a = g a), f = g.

Using this one can prove that for example insertion sort and quicksort are
equal as functions and rewrite with this equality

Anders Mörtberg(jww C. Cohen, T. Coquand, and S. Huber)Homotopy Type Theory February 23, 2016 11 / 38

Univalence axiom: consequences

Get transport for equivalences:

Definition transport_equiv (P : Type -> Type) (A B : Type)

(p : Equiv A B) : P A -> P B :=

Get a new version of Leibniz’s principle of the identity of indiscernibles:
reasoning is invariant under equivalence

Can be used for generic programming, for example to transform fields in a
database using an isomorphism

Anders Mörtberg(jww C. Cohen, T. Coquand, and S. Huber)Homotopy Type Theory February 23, 2016 12 / 38

Univalence axiom: consequences

Structure identity principle: univalence lifts to structures
(Coquand-Danielsson, Ahrens-Kapulkin-Shulman)

Definition transport_monoid (P : Monoid -> Type)

(A B : Monoid) (p : EquivMonoid A B) : P A -> P B := ...

Can be used for program and data refinements: can prove properties on
the monoid of unary natural numbers by computing with the monoid of
binary natural numbers

Anders Mörtberg(jww C. Cohen, T. Coquand, and S. Huber)Homotopy Type Theory February 23, 2016 13 / 38

Univalence axiom: problems

The univalence axiom can be added to Coq as an Axiom:

Definition eqweqmap (A B : Type) (p : A = B) : Equiv A B :=

Axiom univalence (A B : Type), is_equiv (eqweqmap A B)).

By doing this Coq looses its good computational properties, in particular
one can construct terms that are stuck

Solution: define a new type theory in which the univalence axiom
computes, in other words where there is a term that realizes it

Anders Mörtberg(jww C. Cohen, T. Coquand, and S. Huber)Homotopy Type Theory February 23, 2016 14 / 38

Cubical Type Theory

An extension of dependent type theory which allows the user to directly
argue about n-dimensional cubes (points, lines, squares, cubes etc.)
representing equality proofs

Based on a model in cubical sets formulated in a constructive metatheory

The univalence axiom is provable in the system

We have a prototype implementation in Haskell

Anders Mörtberg(jww C. Cohen, T. Coquand, and S. Huber)Cubical Type Theory February 23, 2016 15 / 38

Cubical Type Theory

Extends dependent type theory with:

1 Path types

2 Kan composition operations

3 Glue types

4 Higher inductive types

Anders Mörtberg(jww C. Cohen, T. Coquand, and S. Huber)Cubical Type Theory February 23, 2016 16 / 38

Base type theory

Γ,∆ ::= () | Γ, x : A

t, u,A,B ::= x | λx : A. t | t u | (x : A)→ B
| (t, u) | t.1 | t.2 | (x : A)× B
| 0 | s u | natrec t u | N

with η for functions and pairs

Anders Mörtberg(jww C. Cohen, T. Coquand, and S. Huber)Cubical Type Theory February 23, 2016 17 / 38

Path types: the interval

Path types provides a convenient syntax for reasoning about (higher)
equality proofs

Formal representation of the interval, I:

r , s ::= 0 | 1 | i | 1− r | r ∧ s | r ∨ s

The context can contain variables in the interval:

Γ,∆ ::= . . . | Γ, i : I

Γ `
Γ, i : I `

(i /∈ dom(Γ))

Anders Mörtberg(jww C. Cohen, T. Coquand, and S. Huber)Cubical Type Theory February 23, 2016 18 / 38

Path types

The intuition is that a type in a context with n names corresponds to an
n-dimensional cube:

() ` A • A
i : I ` A A(i0) A(i1)A

i : I, j : I ` A

A(i0)(j1) A(i1)(j1)

A(i0)(j0) A(i1)(j0)

A(j1)

A

A(j0)

A(i0) A(i1)

...
...

Anders Mörtberg(jww C. Cohen, T. Coquand, and S. Huber)Cubical Type Theory February 23, 2016 19 / 38

Path types: syntax

t, u,A,B ::= . . .
| Path A t u | 〈i〉 t | t r

Path abstraction, 〈i〉 t, binds the name i in t

Path application, t r , applies a term t to an element r : I

This is similar to the notion of name-abstraction in nominal sets

Anders Mörtberg(jww C. Cohen, T. Coquand, and S. Huber)Cubical Type Theory February 23, 2016 20 / 38

Path types

We define 1a : Path A a a as 〈i〉 a, which corresponds to a proof of
reflexivity:

a a
1a

Given p : Path A a b we have p 0 = a, p 1 = b and

b a
p (1−i)

Anders Mörtberg(jww C. Cohen, T. Coquand, and S. Huber)Cubical Type Theory February 23, 2016 21 / 38

Path types: connections

Given p : Path A a b we can build

a b

a a

p i

p (i ∧ j)

p 0

p 0 p j

b b

a b

p 1

p (i ∨ j)

p i

p j p 1
j

i

Anders Mörtberg(jww C. Cohen, T. Coquand, and S. Huber)Cubical Type Theory February 23, 2016 22 / 38

Path types: rules

Γ ` A Γ ` t : A Γ ` u : A

Γ ` Path A t u

Γ ` A Γ, i : I ` t : A

Γ ` 〈i〉 t : Path A t(i0) t(i1)

Γ ` t : Path A u0 u1 Γ ` r : I
Γ ` t r : A

Γ ` A Γ, i : I ` t : A

Γ ` (〈i〉 t) r = t(i/r) : A

Γ ` t : Path A u0 u1

Γ ` t 0 = u0 : A

Γ ` t : Path A u0 u1

Γ ` t 1 = u1 : A

Γ, i : I ` t i = u i : A

Γ ` t = u : Path A u0 u1

Anders Mörtberg(jww C. Cohen, T. Coquand, and S. Huber)Cubical Type Theory February 23, 2016 23 / 38

Path types: function extensionality

Function extensionality for path types can be proved as:

Γ ` f , g : (x : A)→ B Γ ` p : (x : A)→ Path B (f x) (g x)

Γ ` 〈i〉 λx : A. p x i : Path ((x : A)→ B) f g

Anders Mörtberg(jww C. Cohen, T. Coquand, and S. Huber)Cubical Type Theory February 23, 2016 24 / 38

Kan composition operations

We want to be able to compose paths:

a c

a b
p i

a q j
j

i

In general this corresponds to computing the missing sides of
n-dimensional cubes (Kan composition)

Anders Mörtberg(jww C. Cohen, T. Coquand, and S. Huber)Cubical Type Theory February 23, 2016 25 / 38

The face lattice

In order to do this we need syntax for representing partially specified
n-dimensional cubes, hence we introduce the face lattice F:

ϕ,ψ ::= 0F | 1F | (i = 0) | (i = 1) | ϕ ∧ ψ | ϕ ∨ ψ

We add context restrictions:

Γ,∆ ::= . . . | Γ, ϕ

Γ ` ϕ : F
Γ, ϕ `

Anders Mörtberg(jww C. Cohen, T. Coquand, and S. Huber)Cubical Type Theory February 23, 2016 26 / 38

Partial elements

i : I, (i = 0) ∨ (i = 1) ` A A(i0) • • A(i1)

i : I, j : I, (i = 0) ∨ (j = 1) ` A

A(i0)(j1) A(i1)(j1)

A(i0)(j0)

A(j1)

A(i0)

i : I, j : I, (i = 0) ∨ (i = 1) ∨ (j = 0) ` A

A(i0)(j1) A(i1)(j1)

A(i0)(j0) A(i1)(j0)
A(j0)

A(i0) A(i1)

Anders Mörtberg(jww C. Cohen, T. Coquand, and S. Huber)Cubical Type Theory February 23, 2016 27 / 38

Systems

We add syntax for specifying shapes/systems:

t, u,A,B ::= . . .
| S

S ::= [ϕ1 t1, . . . , ϕn tn]

Together with rules for specififying when these shapes are well formed:

Γ, ϕ1 ` A1 · · · Γ, ϕn ` An Γ, ϕi ∧ ϕj ` Ai = Aj

Γ ` [ϕ1 A1, . . . , ϕn An]

Anders Mörtberg(jww C. Cohen, T. Coquand, and S. Huber)Cubical Type Theory February 23, 2016 28 / 38

Kan compositions

The syntax of compositions is given by:

t, u,A,B ::= . . .
| compi A [ϕ 7→ u] a0

where u is a system defined on ϕ

Γ ` ϕ Γ, i : I ` A Γ, ϕ, i : I ` u : A Γ ` a0 : A(i0)

Γ ` compi A [ϕ 7→ u] a0 : A(i1)

Anders Mörtberg(jww C. Cohen, T. Coquand, and S. Huber)Cubical Type Theory February 23, 2016 29 / 38

Kan composition: example

With composition we can justify transitivity of path types:

Γ ` p : Path A a b Γ ` q : Path A b c

Γ ` 〈i〉 compj A [(i = 0) 7→ a, (i = 1) 7→ q j] (p i) : Path A a c

a c

a b
p i

a q j

Anders Mörtberg(jww C. Cohen, T. Coquand, and S. Huber)Cubical Type Theory February 23, 2016 30 / 38

Kan composition: transport and equality judgments

Composition for ϕ = 0F corresponds to transport:

Γ ` transporti A a = compi A [] a : A(i1)

Equality judgments for comp is defined by case on A, this is the main part
of the system

Anders Mörtberg(jww C. Cohen, T. Coquand, and S. Huber)Cubical Type Theory February 23, 2016 31 / 38

Glue

In order to be able to prove univalence we add a glueing operation:

t, u,A,B ::= . . .
| Glue [ϕ 7→ (T , f)] A
| glue [ϕ 7→ t] u
| unglue [ϕ 7→ (T , f)] u

Γ ` A Γ, ϕ ` T Γ, ϕ ` f : Equiv T A

Γ ` Glue [ϕ 7→ (T , f)] A

Anders Mörtberg(jww C. Cohen, T. Coquand, and S. Huber)Cubical Type Theory February 23, 2016 32 / 38

Glue: example

In the case ϕ = (i = 0) ∨ (i = 1) the glueing operation can be illustrated
as the dashed line in:

T0 T1

A(i0) A(i1)

f (i0) ∼ f (i1)∼

A

Composition for glueing is the most complicated part of the system

Anders Mörtberg(jww C. Cohen, T. Coquand, and S. Huber)Cubical Type Theory February 23, 2016 33 / 38

Universe and univalence

We can also add a universe U and define composition for it using
composition for Glue

For univalence we need to define a map:

(w : Equiv A B)→ Path U A B

Using glue we get:

A B

B B

w ∼ idB∼

1B

Anders Mörtberg(jww C. Cohen, T. Coquand, and S. Huber)Cubical Type Theory February 23, 2016 34 / 38

Higher inductive types

Higher inductive types generalize inductive types by allowing constructors
for not only points, but also for (higher) equalities

Examples:

Quotient types

Propositional truncation (squash types)

Topological spaces (circle, sphere, torus...)

Anders Mörtberg(jww C. Cohen, T. Coquand, and S. Huber)Cubical Type Theory February 23, 2016 35 / 38

Integers as a higher inductive types

data int = pos (n : nat)

| neg (n : nat)

| zeroP <i> [(i = 0) -> pos zero

, (i = 1) -> neg zero]

sucInt : int -> int = split

pos n -> pos (suc n)

neg n -> sucNat n

where sucNat : nat -> int = split

zero -> pos one

suc n -> neg n

zeroP @ i -> pos one

Anders Mörtberg(jww C. Cohen, T. Coquand, and S. Huber)Cubical Type Theory February 23, 2016 36 / 38

Summary and future work

We have an implementation in Haskell, try it:

https://github.com/mortberg/cubicaltt/

Future work:

metatheory (normalization, decidability of type checking...)

formalize correctness (wip of Mark Bickford in Nuprl)

general formulation and semantics of higher inductive types

Anders Mörtberg(jww C. Cohen, T. Coquand, and S. Huber)Conclusions February 23, 2016 37 / 38

https://github.com/mortberg/cubicaltt/

Thank you for your attention!

Anders Mörtberg(jww C. Cohen, T. Coquand, and S. Huber) (IAS) February 23, 2016 38 / 38

