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Univalent Type Theory (UTT)

Aims at providing a foundation for mathematics built on type theory

Founded by Vladimir Voevodsky around 2006–2009 and actively developed
in various proof assistants (Agda, Coq, Lean, ...) extended with the
univalence axiom (which implies both functional and propositional
extensionality)

Justified by semantics in spaces (Kan simplicial sets), inherently classical

Theorem (Cohen, Coquand, Huber, M. 2015)

Univalent Type Theory has a constructive model in Kan cubical sets

Based on this we developed a cubical type theory in which we can prove
and compute with the univalence theorem
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Homotopy (Type Theory) vs. (Homotopy Type) Theory

Type theory Homotopy theory

A Type A Space

a, b : A
p, q : a = b
α, β : p = q
Λ, Θ : α = β

...

a • • b..
.

p

q

α β

Θ

Λ
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Higher Inductive Types

HITs (∼ 2011) let us directly represent
topological spaces in type theory and do
synthetic homotopy theory

They also allow us to define quotient
types, truncations... that should be useful
for computer science applications

base•

loop

S1:

N•

. . .

Susp(A):

merid a

•
S
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Many impressive developments with HITs
using “book HoTT”:

Blakers-Massey

Homotopy groups of (higher) spheres

Serre spectral sequence
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Higher Inductive Types

HITs (∼ 2011) let us directly represent
topological spaces in type theory and do
synthetic homotopy theory

They also allow us to define quotient
types, truncations... that should be useful
for computer science applications

Want: type theories and proof
assistants with native support for
HITs, while ensuring consistency!
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Cubical Agda demo

https://github.com/Saizan/cubical-demo/tree/hits-transp

https://github.com/Saizan/cubical-demo/tree/hits-transp


Cubical Type Theory

What makes a type theory “cubical”?

Add a formal interval I:

r, s ::= 0 | 1 | i

Extend the contexts to include interval variables:

Γ ::= • | Γ, x : A | Γ, i : I
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Interval variables

i : I ` A corresponds to a line:

A(0/i) A(1/i)A

i : I, j : I ` A corresponds to a square:

A(0/i)(1/j) A(1/i)(1/j)

A(0/i)(0/j) A(1/i)(0/j)

A(1/j)

A

A(0/j)

A(0/i) A(1/i)
j

i

and so on...
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Cubical Type Theory: structural rules

Proof theory

Γ ` J
Γ, i : I ` J

weakening

Γ, i : I, j : I ` J
Γ, j : I, i : I ` J

exchange

Γ, i : I, j : I ` J
Γ, i : I ` J (j/i)

contraction

Semantics

Γ, i : I Γ
deg

Γ, j : I, i : I Γ, i : I, j : Isymm

Γ, i : I Γ, i : I, j : Idiag
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Cubical Type Theory: additional structure on I
We can also consider additional structure on I:

r, s ::= 0 | 1 | i | r ∧ s | r ∨ s | ¬r

Given i : I ` A

A(0/i) A(1/i)

A(0/i) A(0/i)

A(i/i)

A(i ∧ j/i)

A(0/j)

A(0/i) A(j/i) A(1/i) A(0/i)
A(¬i/i)

Axioms: distributive lattice, de Morgan algebra, Boolean algebra...

“Varieties of Cubical Sets” - Buchholtz, Morehouse (2017)
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Cubical Type Theory: Path types

Fix I and define
Path(A) := (i : I)→ A

We can also consider paths with fixed end-points (and more generally
cubes with fixed boundaries, “extension types”):

Pathi A a b := (i : I)→ A[(i = 0) 7→ a, (i = 1) 7→ b]
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Path types are great!

Given f : A→ B and p : Path A a b we can define:

ap f p := λ(i : I). f (p i) : Path B (f a) (f b)

satisfying definitionally:

ap id p = p
ap (f ◦ g) p = ap f (ap g p)

This way we get new ways for reasoning about equality: inline ap, funext,
symmetry... with new definitional equalities
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Cubical Type Theory: fibrant types

We also need to equip all types with transport operations:1

Γ, i : I ` A Γ ` a : A(0/i)

Γ ` transporti A a : A(1/i)

There are many different possibilities for how to do this! Which of these
give models of Univalent Type Theory with HITs?

1 BCH: substructural I (no contraction), transport for open boxes

2 CCHM: all structural rules and de Morgan (or distributive lattice)
structure on I, transport for generalized open boxes

3 Cartesian: all structural rules, but no additional structure, on I and
generalized transport for generalized open boxes

1For technical reasons we need to consider more general “composition” operations...
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HITs in Cubical Type Theory: the circle

One of the things that make the cubical setting so natural for HITs is that
we can directly use interval variables:2

Γ `
Γ ` base : S1

Γ ` r : I
Γ ` loop r : S1

Γ ` loop 0 = base : S1 Γ ` loop 1 = base : S1

Note: loop introduces an element of S1, not its Id-type!

2We also need “homogeneous compositions”, more about this later...
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HITs in Cubical Type Theory: the circle

Elimination:

Γ, x : S1 ` C
Γ ` b : C(base) Γ ` l : PathiC(loop i) b b Γ ` u : S1

Γ ` S1-elimx.C b l u : C(u)

The judgmental computation rules for S1-elimx.C b l u by cases on u

Γ ` S1-elimx.C b l base = b : C(base)

Γ ` S1-elimx.C b l (loop r) = l r : C(loop r)

The last equation is simpler than in book HoTT because of the builtin
“path-over” types (i.e. no need for apdS1-elim (loop) = l)
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HITs in Cubical Type Theory: suspensions

Γ ` A
Γ ` N : Susp(A)

Γ ` A
Γ ` S : Susp(A)

Γ ` a : A Γ ` r : I
Γ ` merid a r : Susp(A)

Γ ` a : A

Γ ` merid a 0 = N : Susp(A)

Γ ` a : A

Γ ` merid a 1 = S : Susp(A)

N•

. . . merid a

•
S
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HITs in Cubical Type Theory: suspensions

Elimination:

Γ, x : Susp(A) ` C Γ ` n : C(N) Γ ` s : C(S)

Γ ` m : (a : A)→ PathiC(merid a i) N S Γ ` u : Susp(A)

Γ ` Susp-elimA
x.C n smu : C(u)

The judgmental computation rules are defined by cases on u:

Susp-elimA
x.C n smN = n

Susp-elimA
x.C n sm S = s

Susp-elimA
x.C n sm (merid a r) = mar
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HITs in cubicaltt: suspensions, Susp(A)

Transport: Defined by cases:

transi (Susp(A)) N = N

transi (Susp(A)) S = S

transi (Susp(A)) (merid a r) = merid (transiAa) r

Note: directly structurally recursive!3

3Transport for more complicated HITs (e.g. pushouts) is a bit more involved...
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Categorical Semantics

On Higher Inductive Types in Cubical Type Theory

Coquand, Huber, M. - LICS 2018



Constructive cubical semantics of HITs

We describe a constructive semantics with good properties of:

The circle and spheres (Sn),

suspensions (Susp(A)),

two versions of the torus (T, TF),

propositional truncation (‖A‖), and

pushouts

These illustrate many of the difficulties that one encounters when trying to
give a general categorical semantics of HITs (we sketch a schema)
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Constructive semantics of HITs

Expressed in the internal language of a presheaf topos Ĉ: “extensional”
Martin-Löf type theory (equality reflection, UIP...) extended with:

Formal interval type I
Type of cofibrant propositions F ↪→ Ω

Standard example: C = category of CCHM cubes

I: 0 1 i r ∧ s r ∨ s ¬r
F: 0F 1F (i = 0) (i = 1) ϕ ∧ ψ ϕ ∨ ψ

Axioms for Modelling Cubical Type Theory in a Topos

Orton, Pitts - CSL 2016
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Constructive semantics of HITs

A dependent type A over Γ is given by A : Γ→ Un, together with
α : Fib(Γ, A), where:

Fib(Γ, A) = Set of fibration structures on A

= (γ : I→ Γ) (ϕ : F) (u : [ϕ]→ Π(i : I)Aγ(i))

(u0 : Aγ(0)[ϕ 7→ u tt 0])(i : I)→
Aγ(i)[ϕ ∨ (i = 0) 7→ u ∨ u0]

One gets a (constructive) model of Univalent Type Theory, with universes

Internal Universes in Models of Homotopy Type Theory

Licata, Orton, Pitts, Spitters - FSCD 2018
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Semantics of HITs

For every HIT that we consider we need to:

1 Prove the dependent elimination principle

2 Prove that it is fibrant

Circle example: We define a notion of S1-algebra and construct the
initial such algebra (externally):

(S1, base, loop)
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base•

loop
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Fibrancy in general

For an arbitrary HIT A we add homogeneous composition operations:4

hcomp : Π(ρ : Γ)→ Fib(1, Aρ)

This can be seen as “fiberwise fibrant replacement”, but having this
structure does not generally imply that we have Fib(Γ, A)!

Theorem (Coquand, Huber, M.)

Fib(Γ, A) is inhabited iff we have hcomp : (ρ : Γ)→ Fib(1, Aρ) and

Trans(Γ, A) = (ϕ : F) (γ : {p : I→ Γ | ϕ⇒ ∀(i : I).p i = p 0})
(u0 : Aγ(0))→ Aγ(1)[ϕ 7→ u0]

4We need to do this in the type theory as well...
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Semantics of suspension: Susp(A)

For Susp(A) we assume existence of initial algebra

(Susp(A),N, S,merid, hcomp)

N•

. . . merid a

•
S

We then assume that we have Fib(Γ, A) and construct

Trans(Γ,Susp(A))

so that we get Fib(Γ,Susp(A)) and Susp : Un → Un

Key idea: decompose Fib into pointwise fibrancy and transport
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Semantics of general HITs

For every HIT A that we consider we:

1 Define A-algebra structure
2 Assume the existence of an initial A-algebra α and

1 Prove dependent elimination principle
2 Construct Fib(Γ, α)

3 Construct the initial A-algebra structure α (externally)
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Summary: semantics of HITs

We have a semantics of a large class of HITs with good properties:

1 Closure under universe levels:

Susp : Un → Un

2 Commute strictly with substitution:

(Susp(A))σ = Susp(Aσ)

3 Satisfy judgmental/strict computation rules for all constructors

This hence proves consistency of HoTT as used in many proof assistants
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Semantics in spaces?

For synthetic homotopy theory it is very important that we also have a
semantics in topological spaces (i.e. Kan simplicial sets)

Recent partial solution (very general, but e.g. Susp not an operation on
the same universe):

Semantics of higher inductive types
Lumsdaine, Shulman - Preprint 2017

Our arguments in cubical sets generalize to Kan simplicial sets:

Coquand-Sattler-Swan:5 any provable statement about homotopy groups
of spheres in CCHM cubical type theory corresponds to one in Kan
simplicial sets

5In various comments on the HoTT Google group, short notes and preprints
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Meta-theory of Cubical Type Theories with HITs

The categorical semantics gives consistency, but other meta-theoretic
properties have also been established:

1 Huber (Ph.D. Thesis, 2016): Canonicity for CCHM Cubical Type
Theory with spheres and propositional truncation

2 Cavallo, Harper (Preprint, 2018): Canonicity6 for Cartesian Cubical
Type Theory with general schema for HITs

3 Coquand (Note, last week): Homotopy canonicity for a variation of
CCHM Cubical Type Theory

The final result also gives a solution to Voevodsky’s computability
conjecture for a variation of Cubical Type Theory!

6Based on NuPRL style computational type theoretic semantics
A. Mörtberg Meta-theory October 8, 2018 28 / 29



Proof assistants based on Cubical Type Theory with HITs

Experimental real proof assistants:

1 Cubical Agda: https://github.com/Saizan/cubical-demo

2 redtt: https://github.com/RedPRL/redtt

3 RedPRL: http://www.redprl.org/

Experimental proof checkers:

1 cubicaltt (hcomptrans/pi4s3 branches):
https://github.com/mortberg/cubicaltt

2 yacctt: https://github.com/mortberg/yacctt

Thank you for your attention!
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