
Constructive Algebra in Functional Programming and
Type Theory

Master of Science Thesis in the Programme Computer Science – Algorithms,
Languages and Logic

��������	�AB��C

DEF��������������������A��E������
��������������C��E��� ��
��!F����������D��! ������������F�"������������
C#������$��%�"��$���F��&'('

AE��� �E�����F�������DEF��������������������A��E�������F�"���������������C��E��� ���
�E�����)�*�� ��������E�����! ����E��E��+��,�����������F����F�"����F����)��������F��
! �!�����F,�����F��������������E��-�������.�
AE��� �E���%F��F�����EF��E�/�E������E��F �E�������E��+��,$�F�"�%F��F�����EF���E��+��,�
"������������F�����*�$�!��� ���������E����F����F���EF������F������!����E���F%.�

AE��� �E����EF��$�%E�����F�����������E�����E�������E��+��,����F��E��"�!F����0�����*F�!���F�
! ����E������F����!F��1$�F�,��%��"����E���E��"�!F����F�� ���E���F��������.�-���E��� �E���
EF�������"�F���!����E��F���������%��E�F��E��"�!F�������F�"�����E��+��,$��E��� �E���
%F��F����E�������EF��E�/�E��EF�����F���"�F���������F���!����������������E����E��"�!F�������
����DEF��������������������A��E�������F�"���������������C��E��� �����������E��+��,�
����������F����F�"��F,�����F��������������E��-�������.

Constructive Algebra in Functional Programming and Type Theory

Anders Mörtberg

© Anders Mörtberg, May 2010

Examiner: Prof. Thierry Coquand

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Cover:
An exact sequence defining that the module M is finitely presented. This is related to the
notion of coherent rings presented in chapter 3.

Department of Computer Science and Engineering
C#������$��%�"����F��&'('

Abstract

This thesis considers abstract algebra from a constructive point of view. The
central concept of study is coherent rings − algebraic structures in which it is
possible to solve homogeneous systems of linear equations. Three different alge-
braic theories are considered; Bézout domains, Prüfer domains and polynomial
rings. The first two of these are non-Noetherian analogues of classical notions.
The polynomial rings are presented from a constructive point of view with a
treatment of Gröbner bases. The goal of the thesis is to study the proofs that
these theories are coherent and explore how the proofs can be implemented in
functional programming and type theory.

Acknowledgments

First of all I would like to thank Thierry Coquand for all help and support
during the work on this thesis.

I would also like to thank Bassel Mannaa for interesting discussions and help
with the implementation. The comments presented during the opposition was
also very helpful.

Finally I would like to thank everyone that has read and given constructive
and helpful comments on this thesis.

Contents

1 Introduction 1

1.1 Background . 1
1.2 Method . 2
1.3 Previous work . 2
1.4 Outline . 3

2 Introduction to ring theory 5

2.1 Rings . 5
2.2 Ideals . 8
2.3 Discrete and strongly discrete rings 10
2.4 Noetherian rings and Dedekind domains 10

3 Coherent rings 11

3.1 Definition and properties . 11
3.2 Coherence and strongly discrete rings 14

4 Bézout domains 15

4.1 Definition . 15
4.2 Euclidean domains . 16
4.3 Coherence of Bézout domains . 17
4.4 Bézout domains and strong discreteness 18
4.5 GCD domains and fields of fractions 18

5 Prüfer domains 21

5.1 Definition . 21
5.2 Principal localization matrices . 22
5.3 Invertible ideals and coherence of Prüfer domains 25
5.4 Ideal arithmetic . 27
5.5 Examples of Prüfer domains . 27
5.6 Prüfer domains and strong discreteness 31

6 Polynomial rings 33

6.1 Monomials and monomial orderings 33
6.2 Polynomial rings . 34
6.3 Properties of ideals in k[x1, . . . , xn] 36
6.4 Gröbner bases . 36
6.5 Coherence of k[x1, . . . , xn] . 38
6.6 Strong discreteness of k[x1, . . . , xn] 39

i

7 Conclusions 41

7.1 Implementation . 41
7.2 Discussion . 45
7.3 Further work . 46

ii

Chapter 1

Introduction

1.1 Background

”It is important to keep in mind that constructive algebra is
algebra; in fact it is a generalization of algebra in that we do not
assume the law of excluded middle.” [16]

Why is it that elementary algebra is so full of algorithms while advanced algebra
is so full of nonconstructive arguments? Elementary algebra has factorization
of polynomials, equation solving and matrix inversion. Advanced algebra on
the other hand has notions such as arbitrary ideals of rings, prime and maximal
ideals and Noetherian assumptions on rings [4]. For example, both the existence
of maximal and prime ideals are usually proved using Zorn’s lemma. Zorn’s
lemma relies on the axiom of choice which in turn implies the law of excluded
middle [19].

Modern abstract algebra begun with the introduction of algebraic struc-
tures in the end of the 19th century. In the first half of the 20th century
nonconstructive methods dominated. In 1967 Erret Bishop published a book
called Foundations of Constructive Analysis which aimed to show that analysis
could be approached constructively. This, together with increasingly powerful
computers, led to a renaissance of constructive mathematics [16].

One of the main reasons to study constructive algebra is that it can give rise
to new algorithms and ways to explore algebra using computers. The notion of
computation is at the core of constructive mathematics. A constructive proof
of the existence of a mathematical object gives a way to construct the object
while a nonconstructive proof just proves the existence of such an object without
necessarily giving a way to construct it. For example, a constructive proof that
a polynomial can be factorized as a product of irreducible polynomials must
provide the factorization while a nonconstructive proof just have to prove the
existence of such a factorization without giving any witness of it.

Another reason to study constructive algebra is that it makes it possible to
represent advanced algebra in type theory and thus to verify the correctness of
mathematical proofs using computers. The reasons for this are the proofs-as-
programs correspondence and the Brouwer-Heyting-Kolmogorov interpretation
of intuitionistic logic which together give a way for representing mathematical
propositions as types and proofs as programs. Note that it is also possible to ver-

1

ify classical mathematics using computers, but the point is that in constructive
mathematics the proofs correspond to algorithms.

This thesis explores the question of how advanced algebra can be made con-
structive by considering classical structures where the assumptions of Noethe-
rianity has been dropped. This will be defined and discussed further in the
introduction to ring theory in chapter 2.

In linear algebra one of the main questions is how to solve homogeneous
systems of linear equations, but in linear algebra the central notion is vector
spaces which relies on the assumption that all nonzero elements has a multi-
plicative inverse. One main aim of this thesis is to look at what happens if this
assumption is dropped. The proofs of the results should be constructive and be
implemented in a functional programming language and eventually also verified
in a constructive proof system.

1.2 Method

The results presented in this thesis has been implemented in the pure lazy func-
tional programming language Haskell. The reason for using Haskell is that it has
a powerful type system and the features that makes it suitable for implementing
algebraic theories are mainly polymorphism and the type class system.

In order to specify the axioms of algebraic structures the automated test-
ing tool QuickCheck [2] is used, since the axioms are natural to represent as
QuickCheck properties and implementations of specific instances of the alge-
braic structures easily can be tested.

The final goal of the thesis is to represent the work in type theory, as an
implementation in a logical proof system based on intuitionistic type theory,
e.g. Agda1 or Coq2. Due to time limitations this has not been done yet.

1.3 Previous work

There has been some previous work on computational algebra systems in Haskell.
The HaskellForMaths3 project by David Amos implements many important al-
gorithms from combinatorics, group theory and commutative algebra. This
project does not have a representation of algebraic structures and instead it
uses the standard Haskell type classes. It also has an implementation of multi-
variate polynomials and the Buchberger algorithm.

A project that focuses on representing algebraic structures in Haskell is the
numeric-prelude project4. This library contains many different structures like
groups, rings, fields, modules, vector spaces, etc.

In type theory there are many examples of libraries for constructive algebra.
The main interest of this project has been in implementations in Agda and Coq.
The standard library of Agda contains representations of some basic algebraic
structures but as far as I know there has been no larger projects in constructive
algebra developed in Agda. The situation in Coq is quite different.

1http://wiki.portal.chalmers.se/agda/
2http://www.lix.polytechnique.fr/coq/
3http://hackage.haskell.org/package/HaskellForMaths
4http://www.haskell.org/haskellwiki/Numeric_Prelude

2

In [12] a framework for representing algebraic structures in Coq is presented.
This is done as part of a project to give a formalized proof of the fundamen-
tal theorem of algebra. This is a part of the Constructive Coq Repository at
Nijmegen5 which is a large library containing formalized mathematics focusing
mostly on constructive real numbers.

Another implementation of algebraic structures in Coq is the Mathematical
Components project6. This is based on the ssreflect extension to Coq which was
used in the formal proof of the Four-Color Theorem by Georges Gonthier [14].
In [11] possible ways to represent algebraic structures as part of this project is
discussed together with problems related to the complexity of the representation.

Both of the references on implementations of algebraic theories in Coq has
many further references to other work on representing constructive mathemat-
ics in type theory, but none of them implement neither Bézout domains nor
Prüfer domains. Polynomial rings, on the other hand, has been represented in
Coq together with a verified implementation of the Buchberger algorithm for
computing Gröbner bases [17].

All of the major computer algebra systems like Maple, Mathematica and
Matlab implement algorithms for solving systems of linear equations and com-
puting Gröbner bases. These systems are based on less general algorithms than
the algorithms presented in this thesis. Instead they focus on more specialized
algorithms in order to be able to do as much optimization as possible.

The results on Bézout domains and Prüfer domains is based on the work
presented in the PhD thesis of Maimouna Salou [18]. As part of it many of the
proofs has been represented in the Axiom computer algebra system.

A project that studies generalized linear algebra is the homalg project7. It
is a project that aims to translate as much homological algebra as possible
into computer programs. This project is implemented using object oriented
programming.

All of the web pages that has been referred to in this section has been visited
in May 2010.

1.4 Outline

In chapter 2 ring theory is introduced for a reader without a background in
abstract algebra. The most basic definitions that are necessary in order to read
the thesis are introduced. This chapter can be read very briefly by a reader who
is already familiar with ring theory. The discussions on implementation of the
concepts in functional programming and type theory are probably interesting
even if the reader already know the subject.

Chapter 3 presents coherent rings from a constructive point of view. Tra-
ditionally these are considered in terms of module theory but here they are
described in terms of solving equations à la linear algebra.

The following two chapters discusses Bézout domains and Prüfer domains
which are constructive analogies of principal ideal domains and Dedekind do-
mains. Just as in classical mathematics where principal ideal domains are a
subset of Dedekind domains are Bézout domains a subset of Prüfer domains.

5http://c-corn.cs.ru.nl/
6http://www.msr-inria.inria.fr/Projects/math-components
7http://homalg.math.rwth-aachen.de/

3

The high-point of these chapters are the proofs that the classes of rings are
coherent and thus that it is possible to solve homogeneous systems of equations
over them.

In chapter 6 polynomial rings are presented, these are rings of polynomials
with coefficients from an underlying ring. The theory of Gröbner bases is pre-
sented from a constructive point of view together with the famous Buchberger
algorithm used to compute these. In the end of the chapter there is a proof that
these rings are also coherent.

Finally the results of the implementation are presented together with some
examples and a discussion on limitations and further work.

4

Chapter 2

Introduction to ring theory

This chapter should serve as a short introduction to the concepts of ring theory
that are necessary in order to understand the thesis. It does not claim to be a
complete and thorough presentation of all concepts of basic ring theory. For a
good introduction to general abstract algebra see [9] and for an introduction to
some of the more advanced concepts see [1]. If the reader already has a good
understanding of ring theory this chapter can be read briefly. Most important
are the notes about how to define the concepts in functional programming and
type theory.

2.1 Rings

The most fundamental concept of this thesis is the concept of rings. These can
be defined compactly in terms of groups and monoids, but here the definition
is a bit more verbose in order to give a summary of all the properties of rings
in one place.

Definition 2.1. A ring is a set R equipped with two binary operations called
addition and multiplication written +, • : R×R → R respectively. The axioms
that the triple (R,+,•) must satisfy are

1. Closure under addition: ∀a b ∈ R. a+ b ∈ R

2. Associativity of addition: ∀a b c ∈ R. (a+ b) + c = a+ (b+ c)

3. Existence of additive identity: ∃0 ∈ R. ∀a ∈ R. 0 + a = a+ 0 = a

4. Existence of additive inverse: ∀a ∈ R. ∃b ∈ R. a+ b = b+ a = 0

5. Commutativity of addition: ∀a b ∈ R. a+ b = b+ a

6. Closure under multiplication: ∀a b ∈ R. a • b ∈ R

7. Associativity of multiplication: ∀a b c ∈ R. (a • b) • c = a • (b • c)d

8. Existence of multiplicative identity: ∃1 ∈ R. ∀a ∈ R. 1 • a = a • 1 = a

9. Left distributivity of multiplication over addition:

∀a b c ∈ R. a • (b+ c) = (a • b) + (a • c)

5

10. Right distributivity of multiplication over addition:

∀a b c ∈ R. (a+ b) • c = (a • c) + (b • c)

First some conventions. Multiplication is often not written explicitly, so a•b
is written ab. The additive inverse is often written a− b which means a+ (−b)
where (−b) is the additive inverse of b. The set of nonzero elements of a ring is
written as R∗.

Examples of rings include (Z,+, ·) where + and · denote the ordinary addi-
tion and multiplication for the integers. Other examples are Q,R,C with the
ordinary definitions of addition and multiplication.

Note on implementation. In Haskell this can be represented as a type-class:

class Ring a where

(<+>) :: a → a → a

(<∗>) :: a → a → a

neg :: a → a

zero :: a

one :: a

The ring axioms can also be represented in Haskell. The axioms are repre-
sented as functions which should be used to test that an implementation satisfies
the laws. For example the property that multiplication is left distributive over
addition can be specified as:

propLeftDist :: (Ring a, Eq a) ⇒ a → a → a → Bool

propLeftDist a b c = a <∗> (b <+> c) ≡ (a <∗> b) <+> (a <∗> c)

In type theory the axioms would be possible to represent at the type level
using dependent records. Then the structure would also contain the axioms and
the user would have to prove that a structure satisfies them in order to construct
an instance. This is better since the implementation would be proved correct
and not just randomly tested.

Definition 2.2. A commutative ring is a ring (R,+,•) satisfying the axiom that
multiplication is commutative:

∀a b ∈ R. a • b = b • a

Note on implementation. Commutative rings can be represented as an empty
type class in Haskell since they do not introduce any new operations to the
structure. But since there is one more axiom that also has to be represented.

class Ring a ⇒ CommutativeRing a

propMulComm :: (CommutativeRing a, Eq a) ⇒ a → a → Bool

propMulComm a b = a <∗> b ≡ b <∗> a

This thesis will only consider commutative rings. All of the above examples
of rings are commutative.

An example of a ring that is not commutative is the ring of n× n matrices,
written Mn(R), where R is the ring of the elements. Here addition and multi-
plication are the standard operations on matrices and it is easy to construct an
example to show that matrix multiplication is non-commutative.

6

The previous examples have all been infinite, but there are also many finite
rings. A fundamental class of finite rings are the ring of integers modulo n,
written Zn

1. This corresponds to the elements a ∈ Z in the same congruence
class modulo n, for example Z3 ≃ {0, 1, 2} since there are three congruence
classes modulo 3. Addition and multiplication are defined by using the addition
and multiplication of Z and then computing modulo n.

Note on implementation. To implement Zn the power of dependent types
would be desirable to have. The compiler would then be able to distinguish
elements from different rings and verify that they are for instance not multiplied.
The reason is that the type of Zn depends on the value of n. It is possible to
represent integers at the type level in Haskell but it is a bit cumbersome and
having real dependent types is preferable.

Another example of rings is polynomial rings, written R[x1, . . . , xn] where R
is the ring of the coefficients and x1, . . . , xn are variables. It is easy to see that
these rings are commutative if R is. A concrete example of an element of Z[x, y]
is 3x+7y2. This special class of rings has many applications and are considered
in more detail in chapter 6.

Definition 2.3. An integral domain is a commutative ring satisfying:

∀a b ∈ R. (ab = 0 → a = 0 ∨ b = 0)

All of Z,Q,R,C form integral domains with the usual definitions of addition
and multiplication. For Zn things is a bit more complicated. For example Z6

is not an integral domain since 2 · 3 = 0 modulo 6. In fact Zn is an integral
domain iff n is prime.

Note on implementation. Representing integral domains is a bit more diffi-
cult. Just as commutative rings they do not introduce any new operations, but
how should the property be tested?

One way to do it is to test if ab = 0 and then check that either a or b are
zero and also test the axioms for commutative rings. If ab 6= 0 it should only be
checked that the axioms for commutative rings are satisfied.

Here type theory would be superior to functional programming, because the
probability to generate a random counter example can be fairly small, since the
product of most elements probably will not be zero. So having a proof that this
holds would be much better.

The fact that Zn is only an integral domain iff n is prime is another motiva-
tion that this structure is best captured by type theory. Using a representation
of integers at the type level in Haskell it is possible to define primality test-
ing, but this is hard and terribly slow. So having a language designed to do
computation at the type level would be much better.

Definition 2.4. A field is an integral domain in which all nonzero elements has
a multiplicative inverse:

∀a ∈ R∗. ∃b ∈ R∗. ab = 1

1Often written Z/nZ.

7

This is often written using standard division notation, so a/b or a
b

actually
means a • (b−1) where b−1 is the multiplicative inverse of b.

Some of the infinite rings that presented so far are fields, these are Q, R, C.
Some finite fields have also been presented. These are, just as for integral
domains, Zn where n is a prime number.

Note on implementation. The representation of fields is very similar to the
representation of rings. The new operation that fields add is the ability to
compute multiplicative inverses. This can be implemented and specified as:

class IntegralDomain a ⇒ Field a where

inv :: a → a

propMulInv :: (Field a, Eq a) ⇒ a → Property

propMulInv a = a 6= zero =⇒ inv a <∗> a ≡ one

This is the final definition of this section. It is possible to make these def-
initions more fine-grained by having several intermediate structures like semi
rings with and without a one or starting from monoids and groups to construct
rings. The reason not to do this is simply that the concepts presented here is
sufficiently complex for the following chapters. For a general abstract algebra
library the approach of having more structures would be much more sensible.

2.2 Ideals

The concept of ideals is very important in commutative algebra. They are
generalizations of many concepts of the integers like ”even number” or ”prime
number”. Since this thesis only consider commutative rings are all ideals two-
sided, that is left ideals are equal to right ideals. For non-commutative rings it
would have been possible to define left and right ideals instead.

Definition 2.5. For a commutative ring (R,+, •) and ideal I is a subset I ⊆ R
such that:

1. Closure of addition: ∀a b ∈ I. a+ b ∈ I

2. Closure of multiplication by an element of R: ∀a ∈ I. ∀b ∈ R. ab ∈ I

In short the ideals can be described as the additive subgroups of R which are
closed under multiplication by any element of R. The two canonical ideals are
the zero-ideal {0} and the whole ring R. A more interesting example is the even
integers, 2Z, which form an ideal of Z since the addition of two even numbers
is even and the result of multiplying any number with an even number is even.

This defines arbitrary ideals of rings and is not suited for constructive alge-
bra. The interesting ideals are instead the ideals which are finitely generated.

Definition 2.6. An ideal I of a ring R is finitely generated if there exist a finite
subset X ⊆ I such that all elements of I can be written as a linear combination
of the elements of X = {x1, . . . , xn} and R. That is:

∀a ∈ I. ∃r1, . . . , rn ∈ R. a = x1r1 + · · ·+ xnrn

8

The ideal generators are not written using the standard set notation but
with 〈. . . 〉. Examples of finitely generated ideals are both of the canonical
ideals where the zero ideal is generated by 〈0〉 and the whole ring is generated
by 〈1〉. The even integers are generated by 〈2〉, but they are also generated by
〈2, 4〉. So 〈2〉 and 〈2, 4〉 generate the same subset in Z and are thus equal. One
important property of the ideals in Z is that they all can be generated by one
element. This property of ideals have a special name.

Definition 2.7. A principal ideal is an ideal generated by only one element.

Rings like Z in which all ideals are principal are classically called principal
ideal domains. But constructively this definition is not suitable. Instead we
would only want to consider rings in which all finitely generated ideals are
principal. These rings are called Bézout domains and are considered in chapter
4.

Note on implementation. Finitely generated ideals can be represented by
its set of generators. In Haskell this can be written as:

data CommutativeRing a ⇒ Ideal a = Id [a]

In type theory it would also be possible to consider the ideals that are not
finitely generated, since in type theory it would be possible to represent ideals
by their logical properties.

Now some some operations on ideals and fundamental properties of ideals
will be considered.

Definition 2.8. The sum of two ideals I and J is the set of all x + y where
x ∈ I and y ∈ J .

So if I = 〈x1, . . . , xn〉 and J = 〈y1, . . . , ym〉 then

I + J = 〈x1, . . . , xn, y1, . . . , ym〉

Definition 2.9. The product of two ideals I and J is the ideal IJ generated
by all products xy where x ∈ I and y ∈ J .

The intersection of two ideals is also an ideal. But there is no general method
for computing the set of generators for the intersection of two ideals in arbitrary
rings. In chapter 3 it will be established that if the intersection of two finitely
generated ideals is finitely generated, the ring is coherent.

In fact the ideals form a complete lattice with respect to inclusion with the
sum and intersection operations. A lattice is a partially ordered set where every
pair of elements have a least upper bound and a greatest lower bound. This
lattice need not be distributive, that is the operators need not distribute over
each other, but in chapter 5 it will be proved that one way to define Prüfer
domains is by this property.

Now an example of ideal operations. Consider 〈4〉 and 〈6〉 in Z, that is the
sets generated by all multiples 4 and 6. The sum 〈4〉 + 〈6〉 = 〈4, 6〉 = 〈2〉 since
2 = 4 · (2)+6 · (−1). The product is 〈4〉 〈6〉 = 〈24〉 and the intersection 〈4〉 ∩ 〈6〉
is the set generated by the lowest common multiple which will be proved in the
next chapter. Thus the intersection of 〈4〉 and 〈6〉 is 〈12〉.

9

2.3 Discrete and strongly discrete rings

This section will consider some rings that are especially relevant for constructive
mathematics.

Definition 2.10. A ring is called discrete if equality is decidable.

All of the rings studied in the thesis will be discrete. But there are many
examples of rings that are not discrete. For example R is not discrete since it is
not possible to decide if two irrational numbers are equal in finite time. Another
example of rings that do not need to be discrete are formal power series rings;
rings of polynomials with and infinite number of terms.

Definition 2.11. A ring is called strongly discrete if ideal membership is de-
cidable.

This property is very strong. Many of the rings we have seen so far are
strongly discrete, this is in fact tightly connected to whether division is decidable
in the ring. In section 3.2 we will see that strong discreteness and coherence
give us the possibility of solving arbitrary systems of the type AX = B.

2.4 Noetherian rings and Dedekind domains

This section will establish some classical notions that will play an important
rôle throughout the thesis.

Definition 2.12. A ring is called Noetherian if every ideal is finitely generated.

This notion is not suitable for constructive mathematics since it relies on
quantification over arbitrary subsets of the ring. It is not possible to formulate
in first-order logic [4]. One of the goals of this thesis is to consider structures
that are non-Noetherian analogues to classical notions.

Definition 2.13. A Dedekind domain is an integral domain in which every
fractional ideal is invertible.

An ideal is invertible if there exists another ideal such that the product
of the ideals is principal. Dedekind domains imply Noetherianity and is thus
not suitable for constructive mathematics. Instead one consider Prüfer domains
which are non-Noetherian analogues of Dedekind domains. These and invertible
ideals will be considered in chapter 5.

10

Chapter 3

Coherent rings

All rings in this section are integral domains. One of the main aims of the
following sections will be to prove that different rings are coherent. That means
that it is possible to solve systems of equations in them.

3.1 Definition and properties

An elementary application of linear algebra is to solve systems of linear equa-
tions in many variables. But in linear algebra the central concept of study is
vector spaces which implies that the underlying structures are fields. So when
computing the solution of a system of equations one is free to use the assumption
that the elements are invertible. But what happens if you drop the assumption
of invertibility and just look at integral domains? This is one of the motivations
to study coherence.

Definition 3.1. A ring R is coherent if every finitely generated ideal is finitely
presented. This means that given a matrix M ∈ R1×n there exist a matrix
L ∈ Rn×m for m ∈ N such that ML = 0 and

MX = 0 ↔ ∃Y ∈ Rm×1. X = LY

This means that it is possible to compute a set of generators for solutions
of equations in a coherent ring. In other words that the module of solution for
MX = 0 is finitely generated.

Note on implementation. The property of coherence is quite hard to capture
in Haskell. The content that can be captured is that it is possible to compute
the matrix L given M such that ML = 0. This can be represented as:

class IntegralDomain a ⇒ Coherent a where

solve :: Vector a → Matrix a

propCoherent :: (Coherent a, Eq a) ⇒ Vector a → Bool

propCoherent m = isSolution m (solve m)

Here isSolution just check that all elements in the product ML are zero. The
logical aspects of coherence is harder to represent. But in type theory this would
be possible and it would be interesting to see what this would give compared to
what the Haskell approach gives.

11

Not only is it possible to solve equations in a coherent ring, but in fact it
is possible to compute generators for any homogeneous system of equations in
a coherent ring. The proof of this proposition is a translation of the proof of
proposition 1.2 in [18].

Proposition 3.2. In a coherent ring it is possible to solve a system MX = 0
where M ∈ Rm×n and X ∈ Rn×1.

Proof. Let Mi ∈ R1×n be the rows of M . By coherence it is possible to solve
M1X = 0 and get L1 ∈ Rn×p1 such that

M1X = 0 ↔ ∃Y ∈ Rp1×1. X = L1Y

Now replace X in M2X = 0 by L1Y and get M2L1Y = 0. By coherence we now
obtain a new matrix L2 ∈ Rp1×p2 such that

M1X = M2X = 0 ↔ ∃Y ∈ Rp1×1. X = L1Y and M2L1Y = 0

↔ ∃Z ∈ Rp2×1. X = L1L2Z

By iterating this method the solution X = L1L2 . . . LmZ with Li ∈ Rpi−1×pi ,
p0 = n and Z ∈ Rpm×1 can be computed.

Now we will consider the intersection of finitely generated ideals in coherent
rings. This gives another way of characterizing coherent rings in terms of the
intersection of ideals. For the more general formulation of this in terms of
modules, that is vector spaces over arbitrary rings and not just fields, see
theorem 2.4 on page 82 in [16].

Proposition 3.3. The intersection of two finitely generated ideals in a coherent
ring R is finitely generated.

Proof. Let I = 〈a1, . . . , an〉 and J = 〈b1, . . . , bm〉 be two finitely generated ideals
in R. Consider the system

AX −BY = 0

where A is the 1×n matrix (a1, . . . , an) and B is the 1×m matrix (b1, . . . , bm).
Since the ring is coherent it is possible to compute a finite number of generators
(X1, Y1), . . . , (Xp, Yp) of the solution. This mean

AX1 = BY1

...

AXp = BYp

To say that α ∈ I ∩ J means that α ∈ I ∧ α ∈ J . This means that there
exist xi and yi such that α = a1x1 + · · · + anxn and α = b1y1 + · · · + bmym.
Which means that a1x1+ · · ·+ anxn = b1y1+ · · ·+ bmym which is exactly what
the generators above give. Thus are one set of generators for the intersection
AX1, . . . , AXp and another set of generators are BY1, . . . , BYp.

In fact this statement can be turned around to give the other direction also.
The following proposition is the most important in this section and all of the
coherence proofs will rely on this.

12

Proposition 3.4. If R is an integral domain such that the intersection of two
finitely generated ideals is finitely generated then R is coherent.

Proof. The proof is by induction on the length of the system to solve. First
consider

ax = 0

Here the only solution is the trivial solution. Now assume that it is possible
to solve a system in n− 1 variables and consider the case with n ≥ 2 variables:

a1x1 + . . .+ anxn = 0

If a1 = 0 one set of solutions to the system is generated by (1, 0, . . . , 0),
but it is also possible to use the induction hypothesis and get the generators
vi2, . . . , vin for the system with x2, . . . , xn and the solutions of the system with
n unknowns are generated by (0, vi2, . . . , vin) and (1, 0, . . . , 0).

If a1 6= 0 the set (0, vi2, . . . , vin) of solutions can be found by the induction
hypothesis again. Further, by hypothesis it is possible to find t1, . . . , tp such
that

〈a1〉 ∩ 〈−a2, . . . ,−an〉 = 〈t1, . . . tp〉
where ti = a1wi1 = −a2wi2 − . . .− anwin. So if a1x1 + . . .+ anxn = 0 then

a1x1 = −a2x2 − . . .− anxn. We also have ui such that

a1x1 = −a2x2 − . . .− anxn =

p
∑

i=1

uiti

This implies that a1x1 =
∑p

i=1 uiti =
∑p

i=1 uia1wi1 which by the cancella-
tion property give that x1 =

∑p
i=1 uiwi1. Similarly

−a2x2 − . . .− anxn =

p
∑

i=1

uiti =

p
∑

i=1

ui(−a2wi2 − . . .− anwin)

Some reorganization gives

a2

(

x2 −
p
∑

i=1

uiwi2

)

+ . . .+ an

(

xn −
p
∑

i=1

uiwin

)

= 0

This gives that (wi1, . . . , win) and (0, vi2, . . . , vin) generate the module of
solution.

This gives a method for proving that rings are coherent. Now the ”only” thing
to prove is how to compute the intersection of finitely generated ideals and
then this will imply that the ring is coherent. This also shows that coherent
rings can be characterized only in terms of the intersection of finitely
generated ideals.

Note on implementation. One thing worth emphasizing here is the depen-
dence on the witnesses of the intersection. That is given two finitely generated
ideals I = 〈x1, . . . , xn〉 and J = 〈y1, . . . , yn〉 the functions that compute the in-
tersection must also give a set of witnesses. If the intersection I∩J = 〈z1, . . . , zl〉
then the function should give aij and bij such that

zk = ak1x1 + . . .+ aknxn

= bk1y1 + . . .+ bkmym

13

Note that this only gives the witnesses in one direction, that is if x ∈ I ∩ J
then x ∈ I and x ∈ J .

3.2 Coherence and strongly discrete rings

The property of strong discreteness is very strong (as indicated by the name).
If the ring is strongly discrete and coherent, not only is it possible to solve
systems like MX = 0 but it is also possible to solve general systems of the kind
MX = A. For ideal membership to be decidable constructively there has to be
a method to test if x ∈ 〈x1, . . . , xn〉 which also should give a witness if this is
the case. The witness should be a list of wi such that

∑

i wixi = x. In other
words, it should be possible to write x as a linear combination of the wi.

Proposition 3.5. If R is a strongly discrete coherent integral domain then it
is possible to solve arbitrary linear systems. Given MX = A it is possible to
compute X0 and L such that ML = 0 and

MX = A ↔ ∃Y.X = LY +X0

Proof. The solution L to the system MX = 0 can be computed by proposition
3.2. The particular solution X0 can be computed using the same method as in
that proof. The base case when M has only one row is clear since R is strongly
discrete. That is if M = (x1, . . . , xn) and A = (a) then the decidability of
ideal membership give that if a ∈ 〈x1, . . . , xn〉 one get witnesses wi such that
x1w1 + · · ·+ xnwn = a.

This section establishes the properties of the rings to be studied throughout
the thesis. One of the goals of the rest of the thesis is to give constructive proofs
that different rings are coherent. This means that in the end there will be many
examples of rings in which it is possible to solve systems of linear equations.

14

Chapter 4

Bézout domains

This section will consider a class of integral domains called Bézout domains.
These are non-Noetherian analogues of principal ideal domains. Examples of
Bézout domains are Z and k[x]. The goal of this section is to give some moti-
vation and examples of Bézout domains and then prove that they are coherent.
Finally there will be some discussion on what is required for them to be strongly
discrete.

4.1 Definition

One interesting class of integral domains is principal ideal domains, that are
integral domains in which all ideals are principal. This means that all principal
ideal domains are Noetherian, but as mentioned in chapter 2 is Noetherianity
not suitable for constructive mathematics. Thus are principal ideal domains not
suitable and we instead introduce Bézout domains.

Definition 4.1. An integral domain R is a Bézout domain iff every finitely
generated ideal is principal.

Note on implementation. This definition means that it is possible to com-
pute t such that 〈a1, . . . , an〉 = 〈t〉. The method should also compute witnesses
that 〈a1, . . . , an〉 ⊆ 〈t〉 and 〈a1, . . . , an〉 ⊇ 〈t〉. This can be represented in Haskell
as

class IntegralDomain a ⇒ BezoutDomain a where

toPrincipal :: Ideal a → (Ideal a,[a],[a])

Here the first list is the witness that there exists ui such that

t = a1u1 + · · ·+ anun

The second list is the witness that there exists vi for each ai such that

ai = tvi

15

4.2 Euclidean domains

Many examples of Bézout domains are Euclidean domains. These are rings with
additional structure, namely an Euclidean function. This allows a generalization
of the Euclidean algorithm on integers.

Definition 4.2. An Euclidean domain is an integral domain R with a function
f : R∗ → N with the property that for a, b ∈ R there exist q, r ∈ R such that
a = bq + r where either r = 0 or f(r) < f(b).

Euclidean domains are integral domains where it is possible to perform divi-
sion with remainder. Examples include Z with the absolute value function and
the ring of polynomials k[x] with the degree function.

In order to show that Euclidean domains are Bézout domains some lemmas
are needed. In Euclidean domains the Euclidean algorithm for computing the
greatest common divisor of two elements can be applied. There is a generalized
version which computes the greatest common divisor of more than two elements.

Lemma 4.3. The generalized greatest common divisor (ggcd) of n elements can
be computed by recursively applying the algorithm for computing the gcd of two
elements. More specifically:

ggcd(a1, . . . , an) = gcd(a1, gcd(a2, . . . gcd(an−1, an) . . .))

Proof. Consider the case with a, b, c ∈ R. Let d = ggcd(a, b, c) then we have
that d|b and d|c by the definition of gcd, so gcd(b, c) = kd for some k. We also
have that d|a, so a = jd for some j. Now let u = gcd(k, j), by the construction
of u we have that ud|a, b, c, but since d is the greatest common divisor u must
be a unit. Thus d = gcd(a, gcd(b, c)). By induction the other cases follow
directly.

In Euclidean domains it is also possible to compute the extended Euclidean
algorithm; given a, b ∈ R it is possible to compute x, y ∈ R such that ax+ by =
gcd(a, b). This algorithm can also be generalized.

Lemma 4.4. Given a1, . . . , an ∈ R it is possible to compute x1, . . . , xn ∈ R
such that a1x1 + · · ·+ anxn = ggcd(a1, . . . , an)

Proof. Given a, b, c ∈ R we want to compute x, y, z ∈ R such that ax+by+cz =
ggcd(a, b, c). We can compute m,n ∈ R such that bm + cn = gcd(b, c). Then
there are l, k ∈ R such that ak+ gcd(b, c) · l = gcd(a, gcd(b, c)) which by lemma
4.3 is equal to ggcd(a, b, c). So we get that ak + bml + cnl = ggcd(a, b, c) and
thus x = k, y = ml and z = nl. The equations for more than three variables
follow by induction.

Now it is possible to show that all Euclidean domains are Bézout domains.
This gives a rich source of examples of Bézout domains.

Proposition 4.5. Euclidean domains are Bézout domains.

Proof. Follow directly from lemma 4.4. Given 〈a1, . . . , an〉 we can compute
t = ggcd(a1, . . . , an) such that t = a1x1 + · · · + anxn and thus we have that
〈a1, . . . , an〉 = 〈ggcd(a1, . . . , an)〉.

16

Note on implementation. The implementation of this proof will have to
compute the witnesses also. One direction follow directly from the proof since
the extended Euclidean algorithm is used. The other direction is also direct
since division is decidable and t divides all ai.

4.3 Coherence of Bézout domains

The coherence of Bézout domains can be proved by considering the intersection
of ideals. Since all finitely generated ideals are principal it is sufficient to consider
only principal ideals.

Proposition 4.6. Given two ideals I = 〈a〉 and J = 〈b〉 the intersection is
I ∩ J = 〈lcm(a, b)〉. Where lcm is the lowest common multiple of a and b.

Proof. The equality is proved by considering both inclusions.
⊆: If f ∈ 〈a〉 ∩ 〈b〉 then f ∈ 〈a〉 and f ∈ 〈b〉. So a|f and b|f . But there

exist a lowest common multiple of a and b, lcm(a, b), such that a|lcm(a, b) and
b|lcm(a, b) so f must be a multiple of the lowest common multiple and thus
f ∈ 〈lcm(a, b)〉.

⊇: If f ∈ 〈lcm(a, b)〉 then lcm(a, b)|f . Since lcm(a, b) is a multiple of both
a and b f must be a multiple of a and b also. This means that f ∈ 〈a〉∩ 〈b〉.

This is what we need in order to know that Bézout domains are coherent.

Theorem 4.7. Bézout domains are coherent.

Proof. Direct consequence of propositions 3.4 and 4.6.

Note on implementation. The implementation of this proof relies on the
computation of the witnesses. Again it is sufficient to only consider the case
where the ideals are principal. Given a and b we should compute lcm(a, b), u
and v such that

lcm(a, b) = au

lcm(a, b) = bv

using the knowledge that we can compute gcd(a, b) = g, u1, u2, v1 and v2
such that

g = au1 + bu2

a = gv1

b = gv2

To compute lcm(a, b) use that

lcm(a, b) =
ab

gcd(a, b)

So lcm(a, b) can be computed as

lcm(a, b) = gv1v2 = g

(

a

g
· b
g

)

=
ab

g
(∗)

17

Now that the lowest common multiple has been computed the witnesses has
to be computed. But this is easy since by (∗) we get that

u = b
g
= v2

v = a
g
= v1

4.4 Bézout domains and strong discreteness

Recall that a ring is called strongly discrete if ideal membership is decidable.
In order to decide ideal membership for Bézout domains we need to be able to
decide divisibility.

Proposition 4.8. A Bézout domain R is strongly discrete if division is decid-
able in R.

Proof. To test if x ∈ 〈x1, . . . , xn〉 we need to find wi such that x =
∑

wixi.
Since R is a Bézout domain we can find g such that 〈g〉 = 〈x1, . . . , xn〉.

Now, since divisibility is decidable, test if g|x and if this is the case we
know that x ∈ 〈g〉. This should also give us q such that x = qg and since
〈g〉 ⊆ 〈x1, . . . , xn〉 we have ui such that g =

∑

uixi.
The witness that x ∈ 〈x1, . . . , xn〉 can now be computed by

x = qg = q
∑

uixi =
∑

(qui)xi

and thus wi = qui.

This means that we can solve arbitrary linear systems MX = A for Bézout
domains with decidable division and in particular over Z and k[x].

4.5 GCD domains and fields of fractions

In classical mathematics a structure that is studied is called unique factorization
domains (UFD) which are integral domains in which all elements can be written
uniquely as a product of irreducible elements. For example Z is an UFD by the
fundamental theorem of arithmetic. But as for principal ideal domains (PIDs)
this relies on Noetherianity. In classical mathematics we have the following
chain of inclusions.

Euclidean domains ⊂ PIDs ⊂ UFDs ⊂ Integral domains

But without the Noetherian assumption we get Bézout domains instead of
PIDs. One can show that an integral domain in which any two nonzero elements
have a greatest common divisor is a non-Noetherian analogue of the UFDs.
These rings are called greatest common divisor (GCD) domains and complete
the corresponding chain of inclusions in constructive mathematics.

Euclidean domains ⊂ Bézout domains ⊂ GCD domains ⊂ Integral domains

The inclusion Bézout domains ⊂ GCD domains is easy to see. But note that
not all GCD domains are coherent.

18

One reason to look at GCD domains is that they provide a good setting in
which to implement the field of fractions for an integral domain. As the name
indicates it is a field in which the integral domain can be embedded.

Definition 4.9. The field of fractions of an integral domain R is the set of
equivalence classes of pairs (a, s) where a, s ∈ R and s 6= 0 under the equivalence
relation:

(a, s) ≡ (b, t) iff at = bs

An integral domain can be embedded by the map a 7→ (a, 1). Addition and
multiplication can be defined as

(a, s) + (b, t) = (at+ bs, st)

(a, s)(b, t) = (ab, st)

The inverse of (a, s) where a, s 6= 0 is (s, a). It is easy to verify that this satisfies
the conditions for a field.

The equivalence classes can be viewed as fractions. Thus is the construction
of fields of fractions a generalization of the construction of Q from Z to arbitrary
integral domains. Another special construction is the field of fractions for k[x]
(k discrete field) which is called the field of rational functions and is denoted
by k(x). This is the field where the elements are fractions of polynomials in one
variable which will be important in section 5.5.2 when looking at an example
of a Prüfer domains that is not a Bézout domains. This can be generalized to
multivariate polynomials and one then get the field of rational functions of a
polynomial ring k[x1, . . . , xn] denoted by k(x1, . . . , xn).

The reason that GCD domains are a good setting for constructing the field of
fractions is that it is possible to restrict the equivalence classes to those in which
gcd(a, b) = 1. So all fractions will be in normal form. This is a generalization
of the fact that 4

2 can be simplified to 1
2 in Q to arbitrary fields of fractions.

Note on implementation. To implement GCD domains just follow the usual
method without forgetting the witnesses. Given nonzero a, b ∈ R we should
compute gcd(a, b), x and y such that

a = gcd(a, b)x

b = gcd(a, b)y

1 = gcd(x, y)

This makes it very easy to represent the field of fractions over a GCD domain.
It can be represented by a pair where the second element always should be
nonzero.

The reduction to normal form of a pair (a, b) works by computing gcd(a, b)
and if it is 1 everything is fine. If it is not equal to 1 then return (x, y).

Using this it is trivial to implement Q with the help of a suitable imple-
mentation of Z and if one also have an implementation of k[x] it is trivial to
implement k(x). This method could be used as a basis for implementing the
rational numbers in type theory. For instance this is how it is implemented in
the C-CORN library mentioned in the section on previous work.

19

In this section we have seen that Bézout domains are coherent and given
some examples of them. But the assumption that all finitely generated ideals
are principal is quite strong and there are many examples of coherent rings in
which this assumption does not hold. The next section will look at a superset of
Bézout domains that also are coherent. These rings are called Prüfer domains
and there will be some examples of Prüfer domains that are not Bézout domains
for which it is not clear that it is possible to solve systems of equations over.

20

Chapter 5

Prüfer domains

This chapter describes another class of coherent rings called Prüfer domains.
First one of the many characterizations of Prüfer domains will be presented
followed by some constructions leading up to the coherence proof. Next there
will be some examples of what can be done in terms of ideal arithmetic in Prüfer
domains and finally there will be some examples of Prüfer domains that are not
Bézout domains. This whole section follow [8, 18].

5.1 Definition

The classical definition of Prüfer domains is that they are non-Noetherian gen-
eralization of Dedekind domains. Just as Bézout domains inherit many proper-
ties from principal ideal domains Prüfer domains inherit many properties from
Dedekind domains. A first observation is that Prüfer domains allow many dif-
ferent classifications concerning aspects like: localization, structural and arith-
metical properties of ideals and polynomial rings. The classification that will
be considered in this thesis is a simple first-order condition.

Definition 5.1. An integral domain R is a Prüfer domain iff

∀x y. ∃u v w. ux = vy ∧ (1− u)y = wx (∗)

Note on implementation. As for the other algebraic structures this can be
represented in the Haskell type class system as

class IntegralDomain a ⇒ PruferDomain a where

calcUVW :: a → a → (a,a,a)

propCalcUVW :: (PruferDomain a, Eq a) ⇒ a → a → Bool

propCalcUVW x y = u <∗> x ≡ v <∗> y && (one <-> u) <∗> y ≡ w <∗> x

where (u,v,w) = calcUVW x y

In type theory this would be possible to represent as a dependent record with
the properties as part of the structure.

A commutative ring satisfying (∗) is called arithmetical. In fact many proper-
ties can be proved at the level of arithmetical rings (discussed further in [8, 18]).

As mentioned above are Bézout domains a subset of Prüfer domains. The
following proposition will give a way of finding examples Prüfer domains.

21

Proposition 5.2. Bézout domains are Prüfer domains.

Proof. Since we have Bézout domain we can compute g, a and b such that

g = gcd(x, y)

x = ag

y = bg

We can also compute c and d such that

ca+ db = 1

Now let u = db . Then we shall find v such that

dbx = vy

Which simplifies to
dbag = vbg

Take
v = ad

Now we want to compute w such that

wx = (1− u)y

= (1− db)y

= cay

= cagb

Since x = ag we get that
w = bc

Now we have found u, v and w satisfying the Prüfer condition and thus the
proof is complete.

Now that we have found a source of examples of Prüfer domains we will
continue to look at some useful constructions possible in Prüfer domains which
will lead to the coherence proof.

5.2 Principal localization matrices

A key concept in the proof of coherence for Prüfer domains are principal local-
ization matrices.

Definition 5.3. A principal localization matrix for a finitely generated ideal
〈x1, . . . , xn〉 is a matrix A = (aij) such that

{

∑

aii = 1

aljxi = alixj ∀i, j, l ∈ {1, . . . , n}

Before considering how to compute the principal localization matrix in a
Prüfer domain first consider how to do it for the simpler case of Bézout domains.

22

Proposition 5.4. Let R be a Bézout domain and let I = 〈x1, . . . , xn〉 be an
ideal in R. Then I has a principal localization matrix.

Proof. Since R is a Bézout domain we can compute g, ui and vi such that

〈g〉 = 〈x1, . . . , xn〉

g =
n
∑

i=1

xiui

xi = gvi ∀i ∈ {1, . . . , n}

Let aij = uivj , this give for all i, j, l ∈ {1, . . . , n}

aljxi = ulvjgvi = ulvigvj = alixj

We also have

g =

n
∑

i=1

xiui =

n
∑

i=1

gviui = g

n
∑

i=1

aii

So 1 =
∑

aii and thus (aij) is principal localization matrix for I.

The next step is to generalize this to Prüfer domains and thus show that
principal localization matrices for ideals are computable in Prüfer domains.

Proposition 5.5. Let R be a Prüfer domain and let I = 〈x1, . . . , xn〉 be a
finitely generated ideal of R. Then I has a principal localization matrix.

Proof. First an alternative equivalent condition on Prüfer domains

∀x y. ∃u v w t. u+ t = 1 ∧ ux = vy ∧ wx = ty

Now the proof proceeds by induction on n. For the case of n = 2 let the matrix
be

[

u v
w t

]

This obviously satisfies the requirements for being a principal localization
matrix. For n > 2 assume that it holds for n − 1 and thus there is a principal
localization matrix B = (bij)1≤i,j≤n−1 such that

n−1
∑

i=1

bii = 1

bljxi = blixj

It is possible for (xi, xn) where i ∈ {1, . . . , n − 1} to compute (ui, vi, wi, ti)
such that

uixn = vixi

wixn = tixi

ui + ti = 1

Using this we will proceed by showing how aii and ann, aij where i 6= j ∈
{1, . . . , n− 1} and finally ani and ain can be computed using B.

23

• aii and ann: We have

1 =

n−1
∑

i=1

bii =

n−1
∑

i=1

bii(ui + ti) =

n−1
∑

i=1

biiui +

n−1
∑

i=1

biiti

Now we can let aii = biiui and ann =
∑n−1

i=1 biiti and get that
∑n

i=1 aii = 1.

• aij where i 6= j ∈ {1, . . . , n− 1}: We have

aiixj = biiuixj = ui(biixj) = uibijxi

This give aij = uibij .

• ani: For i ∈ {1, . . . , n− 1} we have

annxi =
n−1
∑

j=1

bjjtjxi =
n−1
∑

j=1

tj(bjjxi) =

n−1
∑

j=1

tjbjixj =

n−1
∑

j=1

wjbjixn

Now let ani =
∑n−1

j=1 bjiwj .

• ain: Finally for i ∈ {1, . . . , n− 1} we have

aiixn = biiuixn = biivixi

Let ain = biivi.

This gives a matrix (aij) satisfying aijxi = aiixj . It is necessary to verify that
this indeed satisfies the properties of a principal localization matrix, that is
akjxi = akixj . Assume that it is true for n− 1 and let i, j, k be distinct. There
are then three cases to verify:

1. For i, j, k ∈ {1, . . . , n− 1} we have

akjxi = (ukbkj)xi = uk(bkixj) = (ukbki)xj = akixj

2. When i = n and j, k ∈ {1, . . . , n− 1}

akjxn = (ukbkj)xn = (vkxk)bkj = vk(bkkxj) = aknxj

3. Finally k = n and i, j ∈ {1, . . . , n− 1}

anjxi =

(

n−1
∑

l=1

bljwl

)

xi =

n−1
∑

l=1

blixjwl =

(

n−1
∑

l=1

bliwl

)

xj = anixj

1-3 verifies that (aij) in fact is a principal localization matrix.

One of the reasons to study principal localization matrices is that they can
be used to invert ideals in Prüfer domains, more about this in the next section.

The following proposition describe one of the many things that can be done
with ideals and principal localization matrices, see proposition 2.6 in [8] for more
results.

24

Proposition 5.6. Let I = 〈x1, . . . , xn〉 be a finitely generated ideal in a Prüfer
domain and let A = (aij) be a principal localization matrix for this ideal. Then
the following holds:

〈x1, . . . , xn〉 〈a1j , . . . , anj〉 = 〈xj〉

Proof. Recall that the result of multiplying two finitely generated ideals is the
ideal generated by all products of the generators. Thus

〈x1, . . . , xn〉 〈a1j , . . . , anj〉 = 〈x1a1j , . . . , x1anj , . . . , xna1j , . . . xnanj〉

Since (aij) is a principal localization matrix we have aljxi = alixj . So all
aljxi can be rewritten to alixj . This give

〈x1a1j , . . . , x1anj , . . . , xna1j , . . . xnanj〉 = 〈xj〉 〈aij〉
= 〈xj〉

The last equality follow by 〈aij〉 = 〈1〉 since
∑n

i=1 aii = 1.

This result is one of the things that is needed in order to prove that Prüfer
domains are coherent which is the aim of the next section.

5.3 Invertible ideals and coherence of Prüfer do-

mains

The previous section mentioned that it is possible to invert ideals in Prüfer
domains. The following definition clarifies this.

Definition 5.7. An ideal I in a ring R is called invertible if there exist an ideal
I−1 in R such that II−1 is principal.

So how can invertible ideals be used to prove that Prüfer domains are co-
herent?

Lemma 5.8. Let R be a Prüfer domain and let I and J be finitely generated
ideals of R. Then the following equality hold:

IJ = (I ∩ J)(I + J)

For a proof of this see lemma 2.10 in [8].

Lemma 5.9. Let R be a Prüfer domain. It is possible to compute the inverse
of a finitely generated ideal I in R.

Proof. This follow directly from propositions 5.5 and 5.6. Since it possible to
compute a principal localization matrix for the ideal and then multiply one of
the columns with the ideal and get a principal ideal.

Now we are ready to prove the main result for Prüfer domains.

25

Theorem 5.10. Prüfer domains are coherent.

Proof. Combine lemmas 5.8 and 5.9 to get

IJ(I + J)−1 = 〈a〉 (I ∩ J)

Where 〈a〉 = (I + J)(I + J)−1. So the intersection of ideals is computable
and now proposition 3.4 is applicable in order to get the desired result.

Note on implementation. The implementation of this require some more
work. The reason is that one need to ”factor out” 〈a〉 from IJ(I + J)−1. To do
this algorithmically consider the following finitely generated ideal

I = 〈x1, . . . , xn〉
J = 〈y1, . . . , ym〉

This give

I + J = 〈x1, . . . , xn, y1, . . . , ym〉 = 〈z1, . . . , zk〉

with k = n+m. Now compute a principal localization matrix for I + J and
pick the first column which give

(I + J)−1 = 〈a11, . . . , ak1〉

such that

(I + J)(I + J)−1 = 〈x1〉 = 〈z1〉
This give

IJ(I + J)−1 = 〈z1〉 (I ∩ J)

In terms of generators J(I + J)−1 are

〈y1, . . . , ym〉 〈a11, . . . , ak1〉 = 〈zn+1, . . . , zk〉 〈a11, . . . , ak1〉
= 〈zn+1a11, . . . , zn+1ak1, . . . , zka11, . . . , zkak1〉
=

〈

z1a1(n+1), . . . , z1ak(n+1), . . . , z1a1k, . . . , z1akk
〉

= 〈z1〉
〈

a1(n+1), . . . , ak(n+1), . . . , a1k, . . . , akk
〉

Let

K =
〈

a1(n+1), . . . , ak(n+1), . . . , a1k, . . . , akk
〉

This gives
IK = I ∩ J

Using this an algorithm can be implemented to compute the generators of
the intersection.

Thus it is possible to solve homogeneous linear systems over any Prüfer
domain. Note that for Bézout domains this gives another way of solving systems.
Next it would be interesting to see some examples of Prüfer domains that are
not Bézout domains, but first we will look at what Prüfer domains give us in
terms of ideal arithmetic.

26

5.4 Ideal arithmetic

Recall the definition of a lattice. A lattice is a partially ordered set where every
pair of elements has a lowest upper bound (join) and a greatest lower bound
(meet). For more information on this see any basic book on algebra, for example
[9]. For finitely generated ideals we have that the join of two ideals correspond
to the sum of them and the meet is the intersection, so the set of ideals in a
Prüfer domain form a lattice with ⊆.

For ideals I, J,K in a Prüfer domain the following property hold

I ∩ (J +K) = (I ∩ J) + (I ∩K)

So ∩ distributes over + and thus the set of ideals in a Prüfer domain form
a distributive lattice. In fact this is one of the different ways to classify Prüfer
domains that were mentioned in the beginning of this chapter. For a proof that
this property is sufficient to be a Prüfer domain see theorem 1.1 in [10].

Another interesting property of the ideals in Prüfer domains is that they
satisfy the cancellation property. That is given finitely generated ideals I, J,K,
if

IJ = IK

then J = K or I = 0.

5.5 Examples of Prüfer domains

The proposition to be proved will give a way to find Prüfer domains that are
not Bézout domains. First some definitions are necessary.

Definition 5.11. Let B be a ring and A a subring of B. An element x ∈ B is
called integral over A if it satisfies an equation of the form

xn + a1x
n−1 + · · ·+ a1x+ an = 0

where ai ∈ A.

The elements of B that are integral over A form a subring of B, for a proof
of this see corollary 5.3 in [1]. This ring is called the integral closure of A in B.

This is what is necessary in order to formulate the following important result.

Proposition 5.12. Let R be a Bézout domain and L an algebraic extension of
its field of fractions K. The integral closure S of R inside L is a Prüfer domain.

Proof. Let x, y ∈ R be nonzero and integral over R. The element

s =
x

y

is integral over K and hence satisfies an equation on the form

a0s
n + a1s

n−1 + · · ·+ an = 0 (∗)

with a0, . . . , an ∈ R. Since R is a Bézout domain it is safe to assume that
〈a0, . . . , an〉 = 1. The first step is to show that the following elements are in S,
i.e. show that they are integral over R. First a0s ∈ S since

(a0s)
n + a0a1(a0s)

n−1 + · · ·+ an0an = 0

27

So aos+ a1 ∈ S also. Now (∗) can be rewritten as

(aos+ a1)s
n−1 + · · ·+ an = 0

It follows that (a0s+ a1)s ∈ S. This process can be repeated and finally we
get that

a0, a0s, a0s+ a1, (a0s+ a1)s, (a0s+ a1)s+ a2, . . .

are all in S. Thus we have in S

〈a0, a0s, a0s+ a1, (a0s+ a1)s, (a0s+ a1)s+ a2, . . . 〉 = 〈a0, . . . , an〉 = 1

This means that there exists m0,m1, . . . such that

m0a0 +m1a0s+m2(a0s+ a1) +m3(a0s+ a1)s+ · · · = 1

The final step in the proof is to find u, v, w such that
{

ux = vy

(1− u)y = wx

Let

u = m0a0 +m2(a0s+ a1) + . . .

This give

(m0a0 +m2(a0s+ a1) + . . .)x = vy

So we can let v = us. Finally we have

1− u = m1a0s+m3(a0s+ a1)s+ . . .

= s(m1a0 +m3(a0s+ a1) + . . .)

This give (1− u)y = x(m1a0 +m3(a0s+ a1) + . . .) and thus

w = m1a0 +m3(a0s+ a1) + . . .

Both the proposition and the proof are quite abstract. To make this more
concrete we will consider two examples of rings which are not Bézout domains
but can be shown to be Prüfer domains using the method just described. The
first example is an extension of the integers and the second is an algebraic curve.

5.5.1 Z[
√
−5]

This is the set where all elements are of the type a + b
√
−5 where a, b ∈ Z.

This ring is an example of an quadratic integer ring. These has been studied by
number theorists for a long time, since quadratic integers are related to many
important problems in number theory, for example Fermat’s last theorem.

Addition and multiplication can be defined as

(a+ b
√
−5) + (c+ d

√
−5) = (a+ c) + (b+ d)

√
−5

(a+ b
√
−5)(c+ d

√
−5) = (ac− 5bd) + (ad+ bc)

√
−5

It is easy to verify that this forms a ring. To see that it is not a Bézout
domain we need to find a finitely generated ideal that is not principal.

28

Proposition 5.13. The ideal generated by
〈

2, 1 +
√
−5
〉

in Z[
√
−5] is not prin-

cipal.

Proof. Assume that it is generated by a single element, that is 〈x〉 =
〈

2, 1 +
√
−5
〉

.

Let x = a+b
√
−5 and y = a−b

√
−5 such that xy divide both 4 and (1+

√
−5)(1−√

−5) = 1− (
√
−5)2 = 6. Thus xy|2, but xy = a2 + 5b2 = 2 is impossible. This

means that xy = 1 and thus x = 1 or x = −1.
But 〈1〉 6=

〈

2, 1 +
√
−5
〉

which means that
〈

2, 1 +
√
−5
〉

cannot be generated
by a single element.

The proof that Z[
√
−5] is a Prüfer domain follow proposition 5.12. The

reason that the proof is so verbose is that this hopefully will clarify the proof
of proposition 5.12.

Proposition 5.14. Z[
√
−5] is a Prüfer domain.

Proof. Given x and y the goal is to compute u, v, w such that

{

ux = vy

(1− u)y = wx

Let a, b, c, d ∈ Z∗. Start with

s =
a+ b

√
−5

c+ d
√
−5

=
(a+ b

√
−5)(c− d

√
−5)

c2 + 5d2

Now s can be written on the form s = p+ q
√
−5 where p, q ∈ Q and

p =
ac+ 5bd

c2 + 5d2

q =
bc− ad

c2 + 5d2

We have

s = p+ q
√
−5 ⇒ s− p = q

√
−5

⇒ (s− p)2 = −5q2

⇒ s2 − 2sp+ p2 + 5q2 = 0

If we write this out with p and q we get

s2 − 2(ac+ 5bd)

c2 + 5d2
s+

a2 + 5b2

c2 + 5d2
= 0

Rewrite to a0s
2 + a1s + a2 = 0 where a0, a1, a2 ∈ Z. We can assume that

〈a0, a1, a2〉 = 〈1〉 since we can always divide with ggcd(a0, a1, a2) to get this.
By the same reasoning as in the proof of proposition 5.12 we get that

〈a0, a0s, a0s+ a1, (a0s+ a1)s〉 = 〈1〉

29

So we can find m0,m1,m2,m3 such that

m0a0 +m1a0s+m2(a0s+ a1) +m3(a0s+ a1)s = 1

This give

u = m0a0 +m2(a0s+ a1)

v = m0a0s+m2(a0s+ a1)s

w = m1a0 +m3(a0s+ a1)

Note on implementation. Z[
√
−5] can be represented in Haskell as a pair

where the first element correspond to a and the second to b in a+ b
√
−5. The

proof that the ring is a Prüfer domain follow proposition 5.14 and is straight
forward to implement now that most of the details has been worked out.

One important thing to keep in mind is that s lies in the field of fractions and
thus the type of s is different from the type of, for instance, a0. So to perform
the computations some conversions has to be made. First, elements has to be
embedded into the field of fractions. Then, elements has to be extracted and
the extraction should only be possible if the divisor is 1. But since the proof
tells us that all of a0s, a0s+ a1, (a0s+ a1)s lie in the integral closure of Z[

√
−5]

this is not a problem.

5.5.2 k[x, y] with y2 = 1− x4

This ring correspond to an algebraic curve where all elements are of the form
a+ b

√
1− x4 with a, b ∈ k[x].

Addition and multiplication can be defined as

(a+ b
√

1− x4) + (c+ d
√

1− x4) = (a+ c) + (b+ d)
√

1− x4

(a+ b
√

1− x4)(c+ d
√

1− x4) = (ac+ bd(1− x4)) + (ad+ bc)
√

1− x4

Again the proof that this is a Prüfer domain follow proposition 5.12.

Proposition 5.15. k[x, y] with y2 = 1− x4 is a Prüfer domain.

Proof. Let a, b, c, d be nonzero elements of k[x]. Start with

s =
a+ b

√
1− x4

c+ d
√
1− x4

=
(a+ b

√
1− x4)(c− d

√
1− x4)

c2 − d2(1− x4)

=
ac− bd(1− x4) + (bc− ad)

√
1− x4

c2 − d2(1− x4)

Now s can be written on the form s = p+ q
√
1− x4 where p, q ∈ k(x).

s2 − 2
(ac− bd(1− x4))

c2 − d2(1− x4)
s+

(ac− bd(1− x4))2 − (bc− ad)2(1− x4)

(c2 − d2(1− x4))2
= 0

30

This can be written in the form a0s
2 + a1s+ a2 = 0 where a0, a1, a2 ∈ k(x)

and 〈a0, a1, a2〉 = 〈1〉. By exactly the same reasoning as above we get

u = m0a0 +m2(a0s+ a1)

v = m0a0s+m2(a0s+ a1)s

w = m1a0 +m3(a0s+ a1)

Note on implementation. Again this ring can be represented in Haskell as a
pair where the first element correspond to a and the second to b in a+b

√
1− x4.

The proof that the ring is a Prüfer domain is straight forward to implement now
that most details has been worked out. Note that the field of fractions here will
be the field of rational functions for k[x].

This section has given two examples of rings that are not Bézout domains
but Prüfer domains. Hence they are coherent and it is possible to solve systems
of equations over them.

Another method for constructing Prüfer domains is considered in [6]. The
method shows that if k is a discrete field and f is a polynomial in k[x, y]. Then
the localization Rf

′

y
where R = k[x, y]/ 〈f〉 and f

′

y is the partial derivative

with respect to y is a Prüfer domain. Localization is a generalization of the
construction of fields of fractions from section 4.5. This method is also relevant
for proving that further algebraic curves are Prüfer domains.

Yet another method for proving that integral domains are Prüfer domains is
the Gilmer-Hoffmann theorem which states that if R is an integral domain, K
its field of fractions and S the integral closure of R in K. Then S is a Prüfer
domain iff every element of K is a root of a polynomial in R[x] where at least
one of the coefficients is a unit of R. For a constructive formulation and proof
of this see proposition 5.6 in [3].

5.6 Prüfer domains and strong discreteness

As for Bézout domains we have that Prüfer domains are strongly discrete if
division is decidable, but not all Prüfer domains have decidable division. The
reliance on divisibility is motivated by the following proposition.

Proposition 5.16. A Prüfer domain R is strongly discrete if division is decid-
able in R.

Proof. To decide if x ∈ I compute I−1 such that II−1 = 〈a〉. We want to test if
〈x〉 ⊆ I which means that 〈x〉 I−1 ⊆ 〈a〉. This can be decided if we can decide
if an element is divisible by a.

This give another proof that all Bézout domains are strongly discrete. Since
all Bézout domains are Prüfer domains and have decidable division.

31

The next chapter will study yet another class of rings which has many differ-
ent applications, these are polynomial rings. There have been a small taste of
special polynomial rings in this chapter and the next chapter will consider them
in general. Traditionally Dedekind domains has been of great interest in number
theory while polynomial rings has been of interest in algebraic geometry.

32

Chapter 6

Polynomial rings

Let k be a discrete field. The set of all multivariate polynomials in n variables
with coefficient in k, written k[x1, . . . , xn], form a commutative ring. The main
aim of this section is to study this ring and eventually prove that it is coherent.

This text is mainly based on [7] and many proofs has been omitted and
can be found there. But some of the most important proofs in it relies on a
nonconstructive version of Dicksons lemma, so these proofs contains a gap from
a constructive point of view. This is considered in greater detail in [15] and the
main results of it is presented here in order to fill in the gaps.

6.1 Monomials and monomial orderings

In order to develop the theory of multivariate polynomials the theory of mono-
mials and how to order them has to be considered. For example, what is the
greatest of x3y and x2y3 in k[x, y]? Later in the chapter we will see that many
algorithms on polynomials will rely on the monomial ordering.

Definition 6.1. A monomial in x1, . . . , xn is a product of the form xα1

1 · . . . ·xαn
n

where α1, . . . , αn ∈ N.

This can be simplified by just looking at α = (α1, . . . , αn) and letting xα =
xα1

1 · . . . · xαn
n . The total degree of a monomial α is |α| = α1 + . . . + αn.

Definition 6.2. A monomial ordering is any total relation > on Nn satisfying

1. If α > β and γ ∈ Nn then α+ γ > β + γ.

2. > is a well-ordering on Nn.

We can now define some different monomial orderings.

Definition 6.3. Lexicographical order : α >lex β if the left-most nonzero entry
is positive in α− β ∈ Zn.

This is a very simple ordering and it works exactly as lexicographical ordering
of words. This ordering can seem a bit weird. Consider for example x and y3z5

with x > y > z, then x >lex y3z5. The following ordering remedies this.

33

Definition 6.4. Graded lexicographical order : α >grlex β if

|α| > |β| , or |α| = |β| and α >lex β

Here the total degree of the monomials first decide which is the greatest and
lexicographical ordering is used to break ties. The following ordering is a bit
less intuitive, but can be more efficient when doing computations.

Definition 6.5. Graded reverse lexicographical order : α >grevlex β if

|α| > |β| , or |α| = |β|

and the right-most nonzero entry in α− β ∈ Zn is negative.

The last two orderings are best illustrated by an example. Consider x2z2

and xy2z. Since they have same total degree lexicographical ordering will have
to break the tie for graded lexicographical ordering, thus x2z2 >grlex xy2z. But
using graded reverse lexicographical order it will be the other way around, so
xy2z >grevlex x2z2.

Note on implementation. One way to represent monomials in Haskell is as a
list of integers denoting α = (α1, . . . , αn). The ordering can then be represented
as a phantom type in the type of monomials. The type class system can then be
used to make the monomial type indexed by a certain ordering an instance of the
Ord class. So for each ordering we will have a type of monomials with a special
Ord instance. This is an example where the Haskell type system captures the
mathematical definitions very well.

6.2 Polynomial rings

Using monomials we can now define what a polynomial is.

Definition 6.6. A polynomial f ∈ k[x1, . . . , xn] is a linear combination of
monomials, that is

f =
∑

α

aαx
α, aα ∈ k

For example f = 3x3y2 + z4 + 1
2xz is a polynomial in Q[x, y, z]. The to-

tal degree of a polynomial is the monomial with maximum total degree with
nonzero coefficient, for example deg(f) = 5. It is possible to prove that addi-
tion and multiplication of polynomials can be defined in a way which satisfy the
properties of commutative rings. Next some terminology.

Definition 6.7. Let f =
∑

α aαx
α be a polynomial in k[x1, . . . , xn] and let >

be a monomial order. Then

1. The multidegree of f (with respect to >) is

multideg(f) = max(α ∈ Nn : aα 6= 0)

2. The leading coefficient of f is

LC(f) = amultideg(f)

34

3. The leading monomial of f is

LM(f) = xmultideg(f)

4. The leading term of f is

LT (f) = LC(f) · LM(f)

Let f = 3x3y2 + z4 + 1
2xz be a polynomial in Q[x, y, z] ordered with graded

lexicographical order. Then

multideg(f) = (3, 2, 0)

LC(f) = 3

LM(f) = x3y2

LT (f) = 3x3y2

As mentioned above it is possible to define have addition, subtraction and
multiplication with expected behavior, but what about division? The case for
multivariate polynomials is quite different from the case of univariate poly-
nomials for which the standard division algorithm is applicable. The goal in
k[x1, . . . , xn] is to divide a polynomial f by a list of polynomials f1, . . . , fs such
that

f = q1f1 + · · ·+ qnfn + r

with q1, . . . , qn, r ∈ k[x1, . . . , xn].

Theorem 6.8. Every f ∈ k[x1, . . . , xn] can be written as

f = q1f1 + · · ·+ qnfn + r

with qi, r ∈ k[x1, . . . , xn] and either r = 0 or r is a linear combination of
monomials, none of which is divisible by LT (f1), . . . , LT (fn). We call r the re-
mainder on division by f1, . . . , fn. Furthermore if qifi 6= 0 then multideg(f) ≥
multideg(qifi).

There is a standard algorithm which is given in [7, 15]. Termination is proved
constructively in [15]. One important property of this is that uniqueness is not
necessary. For example, division of x2 by [x+ y, x] in k[x, y] give

x2 = (x− y)(x+ y) + 0 · x+ y2

but division of x² by [x, x+ y] give

x2 = x · x+ 0 · (x+ y) + 0

So the order of the divisors matter!

Note on implementation. The only thing that is difficult to represent in
Haskell is the order and naming of the variables. One way would be to represent
this at the type level using phantom types, but this is a bit cumbersome. It
would be easier to represent with dependent types since this requires that the
language has types depending on values.

35

6.3 Properties of ideals in k[x1, . . . , xn]

In section 4.2 it is proved that all ideals in Euclidean domains are principal and
this especially hold for k[x]. But this does not hold for k[x1, . . . , xn] if n ≥ 2.

Consider for example the ideal generated by 〈x, y〉 in k[x, y]. If it were to
be generated by a single element then this element would have to divide both x
and y. But then it must be a nonzero constant and the ideal contain no other
constant than zero. Thus it is not possible for the ideal to be generated by a
single element.

From here on this section deviates from [7] and is instead based on [15]. The
reason for this is that [7] builds the theory leading up to the Hilbert basis theo-
rem and the theory of Gröbner bases on a nonconstructive version of Dickson’s
lemma.

Definition 6.9. A poset (E,≤) is said to satisfy the ascending chain condition
(ACC) if for every non decreasing sequence (un)n∈N in E there exists n ∈ N

such that un = un+1.

This definition is to be read constructively. This means that there exist an
effective method for computing n. Section 3.1 in [15] contains a motivation
why it is so important that ACC is read and motivated constructively and not
classically.

The versions of Dickson’s lemma and the Hilbert basis theorem in [7] relies
on a classical interpretation of ACC and are thus not valid constructively.

Theorem 6.10. (Constructive) Dickson’s lemma: The poset finitely generated
monomial ideals in k[x1, . . . , xn], ordered with ⊆, satisfies ACC.

This can then be used to prove the termination of the Buchberger algorithm
for computing Gröbner bases. Another important application of this is in the
proof of the Hilbert basis theorem.

Theorem 6.11. (Constructive) Hilbert basis theorem: The poset of finitely
generated ideals of k[x1, . . . , xn], ordered with ⊆, satisfies ACC.

This shows that k[x1, . . . , xn] satisfies the constructive version of Noethe-
rianity. That is the set of finitely generated ideals in the ring satisfies the
constructive ACC.

6.4 Gröbner bases

In this section Gröbner bases will be defined and then the Buchberger algorithm
which computes a Gröbner basis for an ideal is presented.

Definition 6.12. Let I ⊂ k[x1, . . . , xn] be an ideal other than {0}. Then LT (I)
is the set of leading terms of elements

LT (I) = {cxα : ∃f ∈ I with LT (f) = cxα}

and 〈LT (I)〉 is the ideal generated by the elements of LT (I).

36

Definition 6.13. A Gröbner basis of an ideal I ⊆ k[x1, . . . , xn] is a list of
generators g1, . . . , gm of the ideal such that for all f ∈ I the division of f by
g1, . . . , gm leads to a zero remainder.

Gröbner bases are the ”well-behaved” ideals in k[x1, . . . , xn]. One important
property is that division no longer is dependent on the order of the divisors.

Definition 6.14. If f, g ∈ k[x1, . . . , xn]\{0} with multideg(f) = α and multideg(g) =
β. Let γ = (γ1, . . . , γd) where γi = max(αi, βi). Now define:

• The lowest common multiple: lcm(α, β) = γ

• The S-polynomial of f and g:

S[f, g] =
xγ

LT (f)
f − xγ

LT (g)
g

Note that the S-polynomials is constructed in a way such that leading terms
should be cancelled. This will be crucial to the algorithm for computing Gröbner
bases. This algorithm is the famous Buchberger algorithm.

Theorem 6.15. Let I = 〈f1, . . . , fs〉 be a nonzero polynomial ideal. Then
a Gröbner basis for I can be constructed in a finite number of steps by the
following algorithm:

Input: I = (f1,...,fs)

Output: A Gröbner basis G = (g1,...,gt) for I

G := I

REPEAT

G’ := G

FOR each pair (p,q), p 6= q in G’ DO

S := remainder (S_poly(p,q)) G’

IF S 6= 0 THEN G := G ∪ {S}

UNTIL G = G’

Termination and correctness of this algorithm is proved constructively in
[15]. The intuition behind the algorithm is that division with the generators
of the Gröbner basis should be zero. The algorithm iteratively compute the
remainder of the division of the S-polynomials with the generators of the basis.
If the result of this is zero nothing need to be added, but if the result is nonzero
the remainder should be added to the basis. This will force the basis to divide
all elements of the ideals.

This version of the algorithm is quite naive and it generates very large bases.
A simple trick to reduce the size of the Gröbner basis is given by the following
lemma.

Lemma 6.16. Let G be a Gröbner basis for the polynomial ideal I. Let p ∈ G
be a polynomial such that LT (p) ∈ 〈LT (G− {p})〉. Then G − {p} is also a
Gröbner basis for I.

Using this it is possible to define what a minimal Gröbner basis is.

37

Definition 6.17. A minimal Gröbner basis for a polynomial ideal I is a Gröbner
basis such that

∀p ∈ G. (LC(p) = 1 ∧ LT (p) /∈ 〈LT (G− {p})〉)

By multiplying with constant terms all leading coefficients can be made 1
and by applying lemma 6.16 a minimal Gröbner basis can be constructed.

Now consider an example, we saw earlier that division of x² by [x + y, x]
in k[x, y] give different results depending on the order, so [x + y, x] does not
form a Gröbner basis. Using the algorithm above together with the method for
computing minimal Gröbner bases we get the generators [x, y] as a Gröbner
basis for the ideal. It is clear that x2 divided by [x, y] will not depend on the
order of the divisors.

Note on implementation. In Haskell this is quite straight forward to imple-
ment. But in type theory it would require more effort since all of the proofs
would have to be formalized. This has been done using a combination of Agda
and Coq in [17].

Another thing worth emphasizing is that the algorithm presented is not
optimized in any way, so it will be unrealistic to use it on larger examples.
A lot of effort has been put into optimizing the Buchberger algorithm. One
approach to optimize the algorithm is not to try all pairs of polynomials but try
to find the ”best” pairs, for more details see [13]. Some of the optimizations has
been implemented in Haskell in the HaskellForMaths library by David Amos
mentioned in the section on previous work.

6.5 Coherence of k[x1, . . . , xn]

The proof of coherence will be proved as for Bézout domains and Prüfer domains,
that is by considering the intersection of ideals. An alternative proof can be
found in [15].

Definition 6.18. Let I be a finitely generated ideal in k[x1, . . . , xn]. The r:th
elimination ideal of I is Ir = I ∩ k[xr+1, . . . , xn] where 1 ≤ r ≤ n.

The computation of elimination ideals can be done by choosing the lexico-
graphical ordering with x1 > · · · > xn and computing a Gröbner basis for I.
Then the generators containing any of the xl where l < r are thrown away.
Using this the intersection can be computed using the following trick.

Proposition 6.19. Let I and J be ideals in k[x1, . . . , xn]. Then

I ∩ J = (tI + (1− t)J) ∩ k[x1, . . . , xn]

where t is greater than all x1, . . . , xn.

Now coherence follow directly.

Theorem 6.20. The polynomial ring k[x1, . . . , xn] is coherent.

Proof. Direct consequence of propositions 3.4 and 6.19.

38

Note on implementation. In order to be able to test that the generated ideal
is in fact the intersection witnesses has to be computed.

In order to modify the algorithm to compute these some bookkeeping needs
to be done. At each time an element is added to the basis the algorithm would
have to store the witness that this can be written using the elements of the
initial ideal.

6.6 Strong discreteness of k[x1, . . . , xn]

This requires a version of the Buchberger algorithm that computes witnesses
that the basis generate the same ideal as the first ideal. Which means that
the generators for the first ideal should be able to be expressed as a linear
combination of the Gröbner basis and vice-versa.

Theorem 6.21. k[x1, . . . , xn] is strongly discrete, that is we can test f ∈
〈h1, . . . , hm〉 and find witnesses w1, . . . , wm such that

f = w1h1 + · · ·+ wmhm

Proof. We want to decide if f ∈ 〈h1, . . . , hm〉. To do this first compute a Gröb-
ner basis 〈g1, . . . , gl〉 for 〈h1, . . . , hm〉. Then compute f/[g1, . . . , gl] = (qs, r), if
r 6= 0 then we know that f /∈ 〈h1, . . . , hm〉. But if r = 0 we want to compute a
witness that this is in fact true.

What we have is q1, . . . , ql such that

f = q1g1 + · · ·+ qlgl

We also have a witness that 〈h1, . . . , hm〉 ⊇ 〈g1, . . . , gl〉 which consists of
a11, . . . , a1m, . . . , al1, . . . , alm such that

g1 = a11h1 + · · ·+ a1mhm

...

gm = al1h1 + · · ·+ almhm

To compute the witness insert this in the above expression for f

f = q1(a11h1 + · · ·+ a1mhm) +

...

ql(al1h1 + · · ·+ almhm)

= h1(q1a11 + · · ·+ qlal1) +

...

hm(q1a1m + · · ·+ qlalm)

39

The witnesses that f ∈ 〈h1, . . . , hm〉 are

w1 = q1a11 + · · ·+ qlal1
...

wm = q1a1m + · · ·+ qlalm

This means that it is possible to solve arbitrary linear systems MX = A
over k[x1, . . . , xn].

40

Chapter 7

Conclusions

The aim of this chapter is to tie together all the previous chapters by looking at
the result of the implementation and showing some examples of computations
using it. The results are discussed and finally further work and limitations of
the implementation are considered.

7.1 Implementation

The definitions and proofs in this thesis have been implemented in Haskell,
the implementation can be found at http://hackage.haskell.org/package/
constructive-algebra. This section will give a short overview of what can
be done with this implementation and motivate some of the design choices.
The algorithms has been implemented in the form of a library. One point of
implementing it as a library is that a user easily can extend it by adding new
algorithms and examples of rings.

The library is organized in three sections presented here with the most gen-
eral parts first. The most general part is the level of all algebraic structures
represented as type classes with QuickCheck properties to specify them. The
general proofs or algorithms that hold for the different structures are also rep-
resented at this level. For example are coherent rings together with the proof
that coherence implies that it is possible to solve systems of linear equations are
represented at this level.

Next there is a part which contain general notions that are neither structures
nor instances of the structures. Examples include ideals and the construction
of fields of fractions.

Finally there is the most concrete part which are concrete instances of the
structures. The rings that has been implemented are Z, Zn, Z[

√
−5], Q, k[x],

k(x), k[x, y] with y2 = 1− x4 and k[x1, . . . , xn]. All of these has been tested to
verify the different QuickCheck properties for the structures that they imple-
ment. This give some assurance that the implementation is in fact correct.

Both Q and k(x) has been implemented using the representation of fields
of fractions. Using this the implementation become more or less trivial. For
example the representation of Q looks like

type Q = FieldOfFractions Z

41

This relies on that Z is an instance the GCD domain type class. This is no
problem since Z is just a type synonym for the built-in arbitrary size integers of
Haskell. The implementation of fields of fractions then take care of all instance
declarations necessary for making it a field. It also implements equality and
pretty printing functionality for the structure, given that the underlying ring is
discrete and is an instance of the Show class. This illustrates the power of the
Haskell type class system very well. It is easy to write general code which leads
to modularity.

The hierarchy of algebraic structures is presented in figure 7.1.

Figur 7.1: Algebraic hierarchy

The following subsections will show some of the possible computations in
the three different classes of rings presented in the thesis.

7.1.1 Computations in Bézout domains

The two Bézout domains to be considered in this section are Z and k[x]. Since
all ideals are principal there exist a method for computing a principal ideal
given an arbitrary ideal. The following example show what that computation
can look like.

> toPrincipal (Id [4,6])

(<2>,[-1,1],[2,3])

42

> toPrincipal (Id [2,3])

(<1>,[-1,1],[2,3])

The witnesses for the first example means that

−1 · 4 + 1 · 6 = 2

2 · 2 = 4

2 · 3 = 6

The intersection of ideals can also be computed in Bézout domains.

> Id [2] ‘intersectionB‘ Id [3]

<6>

> Id [2,3] ‘intersectionB‘ Id [3]

<3>

This give that Bézout domains are coherent and that it is possible to solve sys-
tems of equation in them.

> solveMxN (M [Vec [1,3,-2], Vec [3,5,6]])

[7,0]

[-3,0]

[-1,0]

Finally Bézout domains are also strongly discrete, so it is possible to test ideal
membership in them.

> member 2 (Id [4,6])

Just [-1,1]

> member 3 (Id [4,6])

Nothing

7.1.2 Computations in Prüfer domains

The Prüfer domains to be considered in this section are Z, Z[
√
−5] and k[x, y]

with y2 = 1 − x4. The principal localization matrices for 〈2, 3, 4〉 in Z and
〈x, 1− y〉 in Q[x, y] with y2 = 1− x4 can be computed.

> computePLM_PD (Id [2,3,4])

[-2,-3, -4]

[-6,-9,-12]

[6, 9, 12]

> computePLM_PD (Id [C (x,zero),C (one,neg one)])

[1/2+1/2∗y, 1/2x^3]
[1/2x,1/2-1/2∗y]

43

The intersection of ideals can also be computed. First 〈2〉∩
〈

1−
√
−5
〉

in Z[
√
−5]

and then 〈x〉 ∩ 〈1− y〉 in Q[x, y] with y2 = 1− x4 are computed.

> Id [ZSqrt5 (2,0)] ‘intersectionPD‘ Id [ZSqrt5 (1,-1)]

<-6,4+2∗sqrt(-5)>

> Id [C (x,zero)] ‘intersectionPD‘ Id [C (one,neg one)]

<1/2x^4,1/2x-1/2x∗y>

The above notation means that

Id [ZSqrt5 (2,0)] = 〈2〉
Id [ZSqrt5 (1,-1)] =

〈

1−
√
−5
〉

in Z[
√
−5] and

Id [C (x,zero)] = 〈x〉
Id [C (one,neg one)] = 〈1− y〉

in Q[x, y] with y2 = 1 − x4. It should be possible to make the input format
more natural so that the user will not have to write all of the constructors.

The final result can be simplified by

〈x〉 ∩ 〈1− y〉 =

〈

1

2
x4,

1

2
x− 1

2
xy

〉

= 〈x〉
〈

x3, 1− y
〉

It should be possible to construct a function that does this kind of simplifi-
cations, but this has not yet been done.

7.1.3 Computations in polynomial rings

The ring under consideration here is Q[x, y, z] with the lexicographical ordering
on monomials. Once again the intersection of ideals is computable. The two
examples are

〈

x2y
〉

∩
〈

xy2
〉

and
〈

x2y, z2
〉

∩
〈

xy2, z
〉

.

> Id [x^2∗y] ‘intersectionMP‘ Id [x∗y^2]

<x^2y^2>

> Id [x^2∗y,z^2] ‘intersectionMP‘ Id [x∗y^2,z]

<z^2,x^2yz,x^2y^2>

It is also possible to solve equations. The equation to solve is:

(x3 − 2xy)t1 + (x2y − 2y2 + x)t2 + zt3 = 0

> solve (Vec [x^3-2∗x∗y,x^2∗y-2∗y^2+x,z])

[x^2y+x-2y^2, z, 0,0]

[-x^3+2xy, 0, z,0]

[0,-x^3+2xy,-x^2y-x+2y^2,0]

44

The algorithm find four generators for the solutions, including the trivial one.
The first one of these is

t1 = x2y + x− 2y2

t2 = −x3 + 2xy

t3 = 0

7.2 Discussion

The process of converting constructive proofs into computer programs is diffi-
cult. The reason is that many things are left out in the mathematical arguments.
For example are the computation of witnesses often taken for granted and not
considered at all, but it is often not completely trivial to compute them. This
is the case when computing the intersection in polynomial rings, here the Buch-
berger algorithm has to be modified in a nontrivial manner.

The mathematical arguments also often rely on notions where the computa-
tional content is implicit. One example is the proof of proposition 5.12. Most
proofs of this that I have seen are quite abstract and the steps to compute
u, v, w in the definition of Prüfer domains are left out. Thus some effort has to
be put into finding the computational content of the proofs even if the proofs
are constructive. Note that this is not the case for all proofs, for example are the
proofs that principal localization matrices are computable for Bézout domains
and Prüfer domains presented in a form that is easy to convert into programs.

The difficulty of converting proofs is the reason that an implementation of
the library in type theory would be good. All of the programs would then
have to be proved correct and not just randomly tested. This would give an
implementation that is proved correct for doing generalized linear algebra.

I am very satisfied with the choice of implementing the library in Haskell.
Two of the main advantages of Haskell are polymorphism and type classes. If
this would have been done in a language without polymorphism every algorithm
would have to be implemented for each specific instance. But using Haskell one
implementation is sufficient for all instances that implement the correct type
classes.

The type class system also make the implementation elegant. The types of
the programs capture the main aspects of the propositions. Just by looking at
a type it is clear to what kind of structure the algorithm is applicable. Haskell
is also quite compact in terms of the amount of code that need to be written,
so the programs quite literally follow the mathematical proofs which make the
implementation look appealing and easy to debug.

A traditional argument against Haskell is that it can be slow and that it is
hard to reason about the complexity of programs due to laziness. This is not
entirely true today. The GHC compiler does a very good work in optimizing
programs, so the speed is not much of an issue. A possibility to make the
implementation faster would be to use Haskell as a host language and then
convert the programs into a more optimized mathematical language specialized
in doing fast matrix computations.

The choice to use QuickCheck as the method to specify and test properties
of rings proved useful. It works very well with random testing most of the time,

45

but sometimes the computations can get too heavy. This is the case for poly-
nomial rings where the computation of Gröbner bases is very computationally
expensive. Thus some heuristics are needed in order to reduce the space of test
cases. Heuristics used in the project is to only use ideals of limited length and
only have polynomials with multidegree less than some value.

The most important aspects when it comes to implementing mathemati-
cal programs are in my opinion expressability and compactness. The program
should resemble the mathematical proofs as close as possible so that it is easy to
read and understand. With respect to this, Haskell makes a very good language
for developing mathematical programs.

7.3 Further work

The main limitations with the implementation is that most of the programs
generate very large sets of generators for the solutions for systems of equations.
This is not a problem for Bézout domains since they rely on that all finitely
generated ideals are principal. But for Prüfer domains this becomes a problem.
In rings that are both Bézout domains and Prüfer domains the methods give very
different sizes of solutions. One method to solve this problem for Prüfer domains
would be to implement a proof that all ideals in certain Prüfer domains can be
generated by two elements, see for example [5] for more information on this.
This would be both interesting and necessary for any practical implementation
for solving larger examples.

The case for polynomial rings is similar. The size of the Gröbner bases
can be very large and the computation very slow. For larger problems the
implementation become too slow, so for a practical implementation more effort
would be needed to optimize the algorithm that computes Gröbner bases. A
simple solution that could increase the speed for some parts of the coherence
proof is to use different orderings on the monomials in order to find one that
produces small bases and fast computations.

The main focus in the future should in my opinion be to implement the whole
theory of coherent rings and Prüfer domains in type theory, since this has not
been done before and that it would be very interesting. After this, it would be
possible to start focusing on optimizing the implementation and implementing
methods to reduce the size of ideals.

46

Bibliography

[1] M. Atiyah and I. MacDonald. Introduction to commutative algebra.
Addison-Wesley, 1969.

[2] Koen Claessen and John Hughes. Quickcheck: A Lightweight Tool for Ran-
dom Testing of Haskell Programs. International Conference of Functional
Programming, 2000.

[3] Thierry Coquand. Space of Valuations, 2008. http://www.cse.chalmers.
se/~coquand/val1.pdf.

[4] Thierry Coquand and Henri Lombardi. A logical approach to abstract
algebra. Math. Structures Comput. Sci, 16:885–900, 2006.

[5] Thierry Coquand, Henri Lombardi, and Claude Quitte. Generating non-
Noetherian modules constructively. Manuscripta Mathematica, 115(4):513–
520, 2004.

[6] Thierry Coquand, Henri Lombardi, and Claude Quitté. Curves and coher-
ent Prüfer rings. 2009.

[7] David Cox, John Little, and Donal O’Shea. Ideals, Varieties and Algo-
rithms: An introduction to Computational Algebraic Geometry and Com-
mutative Algebra. Springer, 2006.

[8] L. Ducos, H. Lombardi, C. Quitté, and M. Salou. Théorie algorithmique des
anneaux arithmétiques, des anneaux de Prüfer et des anneaux de Dedekind.
Journal of Algebra, 281(2):604 – 650, 2004.

[9] John R. Durbin. Modern Algebra: An Introduction. Wiley, 2004.

[10] László Fuchs and Luigi Salce. Modules ofer Non-Noetherian Domains, vol-
ume 84 of Mathematical Surveys and Monographs. American Mathematical
Society, 2001.

[11] François Garillot, Georges Gonthier, Assia Mahboubi, and Laurence
Rideau. Packaging Mathematical Structures. In TPHOLs ’09: Proceed-
ings of the 22nd International Conference on Theorem Proving in Higher
Order Logics, pages 327–342, Berlin, Heidelberg, 2009. Springer-Verlag.

[12] Herman Geuvers, Randy Pollack, Freek Wiedijk, and Jan Zwanenburg. A
Constructive Algebraic Hierarchy in Coq. Journal of Symbolic Computa-
tion, 34(4):271 – 286, 2002.

47

[13] Alessandro Giovini, Teo Mora, Gianfranco Niesi, Lorenzo Robbiano, and
Carlo Traverso. "One sugar cube, please" or Selection strategies in the
Buchberger algorithm. In Proceedings of the ISSAC’91, ACM Press, pages
49–54, 1991.

[14] Georges Gonthier. Formal Proof – The Four-Color Theorem. Notices of
the American Mathematical Society, 55(11), 2008.

[15] Henri Lombardi and Hervé Perdry. The Buchberger Algorithm as a Tool
for Ideal Theory of Polynomial Rings in Constructive Mathematics. 1998.

[16] Ray Mines, Fred Richman, and Wim Ruitenburg. A Course in Constructive
Algebra. Springer-Verlag, 1988.

[17] Henrik Persson. An Integrated Development of Buchberger’s Algorithm in
Coq. 2001.

[18] Maïmouna Salou Idi Malam. Théorie Algorithmique des Anneaux Arith-
métiques, des Anneaux de Prüfer et des Anneaux de Dedekind. PhD thesis,
2002.

[19] A.S. Troelstra and D. van Dalen. Constructivism in Mathematics. North-
Holland, 1988. 2 volumes.

48

	Master of Science Thesis in the Programme Computer Science – Algorithms, Languages and Logic
	ANDERS MÖRTBERG

