
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

JFP, pages, 2020. © Cambridge University Press 2020 1
doi:10.1017/xxxxx

Cubical Agda: A Dependently Typed
Programming Language with Univalence and

Higher Inductive Types

ANDREA VEZZOSI
IT University of Copenhagen, Denmark. e-mail: avez@itu.dk

ANDERS MÖRTBERG
Stockholm University, Sweden. e-mail: anders.mortberg@math.su.se

ANDREAS ABEL
Chalmers and Gothenburg University, Sweden. e-mail: andreas.abel@gu.se

Abstract

Proof assistants based on dependent type theory provide expressive languages for both programming
and proving within the same system. However, all of the major implementations lack powerful exten-
sionality principles for reasoning about equality, such as function and propositional extensionality.
These principles are typically added axiomatically which disrupts the constructive properties of these
systems. Cubical type theory provides a solution by giving computational meaning to Homotopy
Type Theory and Univalent Foundations, in particular to the univalence axiom and higher inductive
types. This paper describes an extension of the dependently typed functional programming language
Agda with cubical primitives, making it into a full-blown proof assistant with native support for
univalence and a general schema of higher inductive types. These new primitives allow the direct
definition of function and propositional extensionality as well as quotient types, all with compu-
tational content. Additionally, thanks also to copatterns, bisimilarity is equivalent to equality for
coinductive types. The adoption of cubical type theory extends Agda with support for a wide range
of extensionality principles, without sacrificing type checking and constructivity.

1 Introduction

A core idea in programming and mathematics is abstraction: the exact details of how an
object is represented should not affect its abstract properties. In other words, the implemen-
tation details should not matter. This is exactly what the principle of univalence captures
by extending the equality on the universe of types to incorporate equivalent types.1 This
then gives a form of abstraction, or invariance up to equivalence, in the sense that equiv-
alent types will share the same structures and properties. The fact that equality is proof
relevant in dependent type theory is the key to enabling this; the data of an equality proof

1 For the sake of this introduction, “equivalent” may be read as “isomorphic”. In Homotopy Type Theory
(HoTT), isomorphism coincides with equivalence for sets (in the sense of HoTT). Equivalence for types in
general is a refinement of the concept of isomorphism.

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

2

can store the equivalence, and transporting along this equality should then apply the func-
tion underlying the equivalence. In particular, this allows programs and properties to be
transported between equivalent types, hereby increasing modularity and decreasing code
duplication. A concrete example are the equivalent representations of natural numbers in
unary and binary format. In a univalent system it is possible develop the theory of natural
numbers using the unary representation, but compute using the binary representation, and
as the two representations are equivalent they share the same properties.

The principle of univalence is the major new addition in Homotopy Type Theory and
Univalent Foundations (HoTT/UF) (Univalent Foundations Program, 2013). However,
these new type-theoretic foundations add univalence as an axiom which disrupts the good
constructive properties of type theory. In particular, if we transport addition on binary
numbers to the unary representation we will not be able to compute with it as the system
would not know how to reduce the univalence axiom. Cubical type theory (Cohen et al.,
2018) addresses this problem by introducing a novel representation of equality proofs and
thereby providing computational content to univalence. This makes it possible to construc-
tively transport programs and properties between equivalent types. This representation of
equality proofs has many other useful consequences, in particular function and propo-
sitional extensionality (pointwise equal functions and logically equivalent propositions
are equal), and the equivalence between bisimilarity and equality for coinductive types
(Vezzosi, 2017).

Dependently typed functional languages such as Agda (2018), Coq (2019),
Idris (Brady, 2013), and Lean (de Moura et al., 2015), provide rich and expressive envi-
ronments supporting both programming and proving within the same language. However,
the extensionality principles mentioned above are not available out of the box and need to
be assumed as axioms just as in HoTT/UF. Unsurprisingly, this suffers from the same draw-
backs as it compromises the computational behavior of programs that use these axioms,
and even make subsequent proofs more complicated.

So far, cubical type theory has been developed with the help of a prototype Haskell

implementation called cubicaltt (Cohen et al., 2015), but it has not been integrated
into one of the main dependently typed functional languages. Recently, an effort was
made, using Coq, to obtain effective transport for restricted uses of the univalence
axiom (Tabareau et al., 2018), because, as the authors mention, “it is not yet clear how
to extend [proof assistants] to handle univalence internally”.

This paper achieves this, and more, by making Agda into a cubical programming lan-
guage with native support for univalence and higher inductives types (HITs). We call this
extension Cubical Agda as it incorporates and extends cubical type theory. In addition to
providing a fully constructive univalence theorem, Cubical Agda extends the theory by
allowing proofs of equality by copatterns, HITs as in Coquand et al. (2018) with nested
pattern matching, and interval and partial pre-types. This paper aims to provide a for-
mal account of the extensions to the language of Agda and its type-checking algorithm
needed to accommodate the new features. In particular, as it requires the most care, we
will dedicate a large portion of this paper to the handling of pattern matching.

Contributions. The main contribution of this paper is the implementation of
Cubical Agda; a fully fledged proof assistant with constructive support for univalence and

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

3

HITs. This makes a variety of extensionality principles provable and we show how these
can be used for programming and proving in Sect. 2. We explain how Agda was extended
to support cubical type theory (Sect. 3); in particular, we describe how some primitive
notions of cubical type theory are internalized as pre-types: the interval (Sect. 3.1), partial
elements, and cubical subtypes (Sect. 3.3). The technical contributions are:

• We extend cubical type theory by records and coinductive types (Sect. 3.2.2).
• We add support for a general schema of HITs, and extend the powerful dependent

pattern-matching of Agda to also support pattern matching on HITs (Sect. 4).
• We include support for inductive families, which also requires extra care to handle

pattern matching definitions (Sect. 4).
• We describe an optimization to the algorithm for transport in Glue types (Sect. 5),

which gives a simpler proof of the univalence theorem compared to Cohen et al.
(2018) (Sect. 5.2).

Using the optimization to transport for Glue types we discuss an improved canonicity the-
orem for cubical type theory with HITs (Sect. 6). The paper finishes with some concluding
remarks and an overview of related and future work (Sect. 7).

A conference version of this article has appeared at the International Conference on
Functional Programming (Vezzosi et al., 2019). The support for inductive families (rather
than just inductive types) and the related examples are the novel contributions of the present
journal version of this article. At the time of writing the implementation of inductive fam-
ilies has not yet been merged into the main branch of Agda, but it is available through
https://github.com/agda/agda/tree/issue3733. The required extension
to the proof-relevant unifier (see Sect. 4.3.1) does not yet handle unification by injectivity
of constructors.

Acknowledgements. The authors are grateful to the anonymous reviewers for their help-
ful comments on earlier versions of the paper. The second author is also grateful for
the feedback from everyone in the Agda learning group at CMU and especially to Loı̈c
Pujet for porting the HIT integers from cubicaltt and Zesen Qian for the formaliza-
tion of set quotients. We would also like to thank Martı́n Escardó for encouraging us to
develop the agda/cubical library and everyone who has contributed to it since then.
Andrea Vezzosi was supported by a research grant (13156) from VILLUM FONDEN,
and by USAF, Airforce office for scientific research, award FA9550-16-1-0029. Anders
Mörtberg was supported by the Swedish Research Council (SRC, Vetenskapsrådet) under
Grant No. 2019-04545. Andreas Abel acknowledges support by the SRC under grants
621-2014-4864 and 2019-04216.

Conflicts of Interest. None.

https://github.com/agda/agda/tree/issue3733

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

4

2 Programming and proving in Cubical Agda

In this section, we show some examples of how the new cubical features in Agda enable
interesting and useful ways for both programming and proving in dependent type theory.
No expert knowledge of HoTT/UF is assumed. By using univalence and other ideas from
HoTT/UF we can:

1. Transfer programs and proofs between equivalent types. (Sect. 2.1.1)
2. Prove properties for proof-oriented datatypes using computation-oriented ones.

(Sect. 2.1.2)
3. Reason about dependently typed programs using inductive families. (Sect. 2.2)
4. Treat bisimilar elements of coinductive types as equal. (Sect. 2.3)
5. Define and reason about quotient types. (Sect. 2.4)
6. Represent topological spaces as datatypes and reason about them synthetically.

(Sect. 2.5)

The examples are taken from the open-source library agda/cubical hosted at https:
//github.com/agda/cubical.

2.1 Unary and Binary Numbers

An example of two equivalent types that are well-suited for different tasks are unary
and binary numbers. The unary representation is useful for proving because of its direct
induction principle and the binary representation is much better for computation as it
is exponentially more compact. By utilizing computational univalence, we can transfer
results between the two representations in a convenient way; this gives us the best of both
worlds without having to duplicate results.

The unary numbers, N, are built into Agda and are inductively generated by the
constructors zero and suc (successor). We encode binary numbers as:

data Bin : Set where

bin0 : Bin

binPos : Pos→ Bin

data Pos : Set where

pos1 : Pos

x0 : Pos→ Pos

x1 : Pos→ Pos

A binary number is hence either zero (bin0) or a positive binary number represented as
a list of zeroes and ones with no trailing zeroes. Least significant bits come first (little-
endian format), thus, the number 6 is binary 011 (binPos (x0 (x1 pos1))). This way,
every number has a unique binary representation, and it is straightforward to write maps
to and from the unary representation (Bin→N and N→Bin) with proofs that they cancel
(N→Bin→N and Bin→N→Bin). This means that the two types N and Bin are isomorphic
which implies that they are equivalent, in the sense of the terminology of Voevodsky (2015)

https://github.com/agda/cubical
https://github.com/agda/cubical

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

5

and Univalent Foundations Program (2013). Spelled out, a map f : A→ B is an equivalence
if the preimage of any point in B is a singleton type.

Given types A and B we write A ' B for the type of equivalences between them, the
univalence theorem2 then states that

(A ≡ B) ' (A ' B).

In particular there is a function ua : A ' B → A ≡ B, sending a proof that two types are
equivalent to an equality between these types. We use ua to turn the equivalence of N and
Bin into an equality.

N'Bin : N ' Bin

N'Bin = isoToEquiv (iso N→Bin Bin→N Bin→N→Bin N→Bin→N)

N≡Bin : N ≡ Bin

N≡Bin = ua N'Bin

In fact, the equality in N≡Bin is not the regular type-theoretic equality à la Martin-
Löf (in the sense of being inductively generated from constructor refl for reflexivity), but
rather a path equality. The core idea of HoTT/UF is the close correspondence between
proof-relevant equality, as in type theory, and paths, as in topology. The idea that equality
corresponds to paths is taken very literally in cubical type theory; by adding a primitive
interval type I, paths in a type A can be represented as functions I → A. Iterating these
function types lets us represent squares, cubes, and hypercubes; making the type theory
cubical.

The interval I has two distinguished endpoints i0 and i1. Since paths are functions,
we introduce them using λ -abstraction and eliminate them using function application; by
applying a path to i0 we get its left endpoint and by applying it to i1 we get the right one.
We often want to specify the endpoints of a path (or, more generally, the boundary of a
cube) in its type; in Cubical Agda, there is a special primitive for this:

PathP : (A : I→ Set `)→ A i0→ A i1→ Set `

we introduce these paths by lambda abstractions like so, λ i→ t :
PathP A (t[i0/ i]) (t[i1/ i]), provided that t : A i for i : I. Consequently, we can apply
p : PathP A a0 a1 to an r : I to obtain p r : A r. Also, no matter how p is given, we have that
p i0 reduces to a0 and p i1 reduces to a1.

The PathP types should be thought of as heterogeneous equalities since the two end-
points are in different types; this is similar to the dependent paths in HoTT (Univalent
Foundations Program, 2013, Sect. 6.2). We can define homogeneous non-dependent path
equality in terms of PathP as follows:

≡ : {A : Set `} → A→ A→ Set `

≡ {A = A} x y = PathP (λ → A) x y

In the previous definition, the syntax {A = A} tells Agda to bind the hidden argument A
of ≡ (the first A in {A = A}) to a variable A (the second A) that can be used on the right

2 As the univalence “axiom” is provable in Cubical Agda we refer to it as the univalence theorem.

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

6

hand side. Note also that some definitions are polymorphic in universe level ` which is
implicitly universally quantified. Further, from now we will omit the explicit quantification
over {A : Set `}.

Viewing equalities as functions out of the interval allows us to reason elegantly about
equality; for instance, the constant path represents a proof of reflexivity.

refl : {x : A} → x ≡ x
refl {x = x} = λ i→ x

We can also directly apply a function to a path in order to prove that dependent functions
respect path equality, as shown in the definition of cong below. Simply by computation
cong satisfies some new definitional equalities compared to the corresponding definition
for the inductive equality type à la Martin-Löf (1975). For instance, cong is functorial by
definition: we can prove congId and congComp by plain reflexivity (refl).

cong : ∀ {B : A→ Set `} (f : (a : A)→ B a) {x y} (p : x ≡ y)→
PathP (λ i→ B (p i)) (f x) (f y)

cong f p i = f (p i)

congId : ∀ {x y : A} (p : x ≡ y)→ cong (λ a→ a) p ≡ p
congId p = refl

congComp : ∀ (f : A→ B) (g : B→ C) {x y} (p : x ≡ y)→
cong (g ◦ f) p ≡ cong g (cong f p)

congComp f g p = refl

Path types also let us prove new things that are not provable in standard Agda

with Martin-Löf propositional equality. For example, function extensionality, stating that
pointwise equal functions are equal themselves, has an extremely simple proof:

funExt : {f g : A→ B} → ((x : A)→ f x ≡ g x)→ f ≡ g
funExt p i x = p x i

The proof of function extensionality for dependent and n-ary functions is equally direct.
Since funExt is a definable notion in Cubical Agda, it is, in contrast to Martin-Löf Type
Theory, not an axiom. This means that it has computational content: it simply swaps the
arguments to p.

The facts that paths can be manipulated as functions and that we have heterogeneous
path types makes many equality proofs simpler compared to the corresponding proofs in
standard Agda or HoTT. For instance, the equality of second projections of dependent pair
types is a simple instance of cong:

Σ−eq2 : ∀ {A : Set} {B : A→ Set} {p q : Σ[x ∈ A] (B x)} → (e : p ≡ q)→
PathP (λ i→ B (e i .fst)) (p .snd) (q .snd)

Σ−eq2 = cong snd

The corresponding result in regular type theory has to be stated with the homogeneous
notion of equality using transport, making equality in dependent pair types notoriously
difficult to work with.

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

7

2.1.1 Univalent Transport

One of the key properties of type-theoretic equality is transport.

transport : A ≡ B→ A→ B
transport p a = transp (λ i→ p i) i0 a

This is defined using another primitive of Cubical Agda called transp. It is a gener-
alization of the regular transport principle which lets us specify where the transport is
the identity function. In particular, when the second argument to transp is i1 it will
reduce to a, which let us prove that transp A r a is always path equal to a (cf. addp

later). A consequence is that whenever we have an equivalence e : A' B we have that
transport (λ i→ F (ua e i)) is an equivalence as well. This ability to lift equivalences
through arbitrary type operators F is an easily overlooked benefit of a language with
computational univalence.

The substitution principle is obtained as an instance of transport.

subst : (B : A→ Set `) {x y : A} → x ≡ y→ B x→ B y
subst B p b = transport (λ i→ B (p i)) b

Function subst invokes transport with a proof of B x≡ B y; this proof λ i→ B (p i) is an
inlining of cong, stating that families B respect equality p.

After this digression about path types, let us revisit the N≡Bin path. Using transport,
we can transfer zero along N≡Bin, and since univalence is a theorem with computational
content in Cubical Agda, this will reduce to bin0. In contrast, if we were working in
a system with axiomatic univalence, we could still define N≡Bin, but the transport of
zero along that equality would be stuck; the system would not know how to automatically
transport with the ua constant.

Having computational univalence lets us do a lot more than just transporting construc-
tors. We can for example transport the addition function from unary to binary numbers
in order to make it easier to prove properties about the more complex binary addition
function:

+Bin : Bin→ Bin→ Bin

+Bin = transport (λ i→ N≡Bin i→ N≡Bin i→ N≡Bin i) +

In this case, the path that we transport along is between the function types N→ N→ N
and Bin→ Bin→ Bin. This way, we obtain an addition function on binary numbers and
the fact that ua has computational content lets us run it:

: (binPos (x0 (x0 pos1))) +Bin (binPos pos1) ≡ binPos (x1 (x0 pos1))

= refl

In order to reduce the left hand side Cubical Agda will convert all of the arguments to
the unary representation, add them using + and then convert the result back to binary.
The main reason for defining +Bin like this is that it lets us transport results about the
unary addition function. For example, we transport the proof of associativity as follows:

addp : PathP (λ i→ N≡Bin i→ N≡Bin i→ N≡Bin i) + +Bin

addp i = transp (λ j→ N≡Bin (i ∧ j)→ N≡Bin (i ∧ j)→ N≡Bin (i ∧ j)) (~ i) +

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

8

+Bin−assoc : (m n o : Bin)→ m +Bin (n +Bin o) ≡ (m +Bin n) +Bin o
+Bin−assoc =

transport (λ i→ (m n o : N≡Bin i)→ addp i m (addp i n o)
≡ addp i (addp i m n) o)

+−assoc

In addp we utilize the interval operators minimum (∧) and reversal (~); further,
Cubical Agda features the maximum operator (∨). The intuition is that elements of I

correspond to points in the real unit interval [0, 1]. The ∧ and ∨ operations take the
minimum and maximum of i, j : I while the reversal operation computes 1− i. These oper-
ations satisfy the laws of a De Morgan algebra. This means, for one, that the min/max
operations form a bounded distributive lattice, with i0 and i1 as bottom and top elements.
Further, the reversal is a De Morgan involution, so, for instance, ~(i ∧ j) = ~i ∨ ~j. Note
that this is still not a Boolean algebra, since i ∧ ~i = i0 and i ∨ ~i = i1 are not valid for
points of the unit interval, except for the endpoints.

Let us assert the well-typedness of addp: When i is i0, the first argument to transp in
addp is constantly N→ N→ N, since i0 ∧ i is then just i0 and N≡Bin i0 reduces to N. The
second argument ~ i becomes i1 so that the left endpoint of the path is + , exploiting that
transp (...) is the identity function when applied to i1. On the other hand, when i is i1, then
addp i reduces to transp (λ j→N≡Bin j→N≡Bin j→N≡Bin j) i0 + which is exactly
the definition of +Bin . This establishes that addp indeed constitutes a path from + to
+Bin . Note that the path type of addp is heterogeneous as the two addition functions

have different types.
The desired result is then obtained by transporting the proof that unary addition is

associative along a path from

(m n o : N)→ m + (n + o) ≡ (m + n) + o

to

(m n o : Bin)→ m +Bin (n +Bin o) ≡ (m +Bin n) +Bin o .

The above proof might seem quite complex and the reader might rightfully question the
scalability to more involved examples. However, one can largely simplify things by using
subst in a suitable Σ-type:

T : Set→ Set

T X = Σ[+ ∈ (X→ X→ X)] ((x y z : X)→ x + (y + z) ≡ (x + y) + z)

TBin : T Bin

TBin = subst T N≡Bin (+ , +−assoc)

+Bin′ : Bin→ Bin→ Bin

+Bin′ = fst TBin

+Bin′−assoc : (m n o : Bin)→ m +Bin′ (n +Bin′ o) ≡ (m +Bin′ n) +Bin′ o
+Bin′−assoc = snd TBin

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

9

The operation +Bin′ is definitionally that same as +Bin . The user hence doesn’t have
to write the proof of +Bin−assoc by hand, but Cubical Agda can compute the addition
operation with its associativity proof for them. It is now easy to imagine automatic transport
of more complex operations and properties simply by modifying the type family T.

As discussed above, the +Bin operation is of course a very inefficient way of adding
binary numbers. However, we can also define an efficient addition function +B as
follows:

mutual

+P : Pos→ Pos→ Pos

pos1 +P y = sucPos y
x0 x +P pos1 = x1 x
x0 x +P x0 y = x0 (x +P y)
x0 x +P x1 y = x1 (x +P y)
x1 x +P pos1 = x0 (sucPos x)
x1 x +P x0 y = x1 (x +P y)
x1 x +P x1 y = x0 (x +PC y)

+B : Bin→ Bin→ Bin

bin0 +B y = y
x +B bin0 = x
binPos x +B binPos y = binPos (x +P y)

-- Add with carry
+PC : Pos→ Pos→ Pos

pos1 +PC pos1 = x1 pos1

pos1 +PC x0 y = x0 (sucPos y)
pos1 +PC x1 y = x1 (sucPos y)
x0 x +PC pos1 = x0 (sucPos x)
x0 x +PC x0 y = x1 (x +P y)
x0 x +PC x1 y = x0 (x +PC y)
x1 x +PC pos1 = x1 (sucPos x)
x1 x +PC x0 y = x0 (x +PC y)
x1 x +PC x1 y = x1 (x +PC y)

This function is rather complicated as the helper function +P for adding positive num-
bers has to be defined mutually with an addition with carry operation +PC in order to
be efficient. We don’t expect the reader to understand the details, but it should be clear
that directly proving properties like associativity for this operation would be very compli-
cated as the deeply nested pattern-matching would quickly lead to an explosion of cases.
Luckily, we can take advantage of the naive addition operation +Bin which we know
share all properties of the unary addition + . The key lemma we need to prove is:

N→Bin−+B : (x y : N)→ N→Bin (x + y) ≡ N→Bin x +B N→Bin y

As this lemma is expressed by quantification over unary numbers we largely avoid the
explosion of cases. Combining function extensionality with the fact that N→Bin consti-
tutes one direction of an equivalence we can easily construct a path +B≡+Bin proving
that +B and +Bin are equal functions:

+B≡+Bin : +B ≡ +Bin

+B≡+Bin i x y = goal x y i
where

goal : (x y : Bin)→ x +B y ≡ N→Bin (Bin→N x + Bin→N y)
goal x y = (λ i→ Bin→N→Bin x (~ i) +B Bin→N→Bin y (~ i))

• sym (N→Bin−+B (Bin→N x) (Bin→N y))

The • operation is binary composition of paths which will be discussed in detail in
Sect. 3.4. Finally, as the functions are proved equal they share the same properties; for

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

10

example we can turn the proof of +Bin−assoc into a proof that +B is also associative as
follows:

+B−assoc : (m n o : Bin)→ m +B (n +B o) ≡ (m +B n) +B o
+B−assoc m n o = (λ i→ +B≡+Bin i m (+B≡+Bin i n o))

• +Bin−assoc m n o
• (λ i→ +B≡+Bin (~ i) (+B≡+Bin (~ i) m n) o)

This example shows how univalent transport can be used to reason conveniently about
efficient functions on computation-oriented types which would otherwise have been very
complicated to do directly. Another useful consequence of being able to transport proofs
between types is that we can prove some result by computation for binary numbers and
then transport the proof to the unary representation where the computation might have
been infeasible.

2.1.2 Univalent Program and Data Refinements

Sometimes concrete computations are necessary in proofs. For example one could imagine
a situation where one needs to check an equality between two terms that are expensive to
compute like:

220 · 210 = 25 · 215 · 210 .

When this is part of a proof, it is likely that one is using a unary representation of natural
numbers. However, that makes it impossible to verify the above equation by computation.
One way to resolve this dilemma would be to redo the formalization using binary numbers,
but that could involve a complete rewrite of the formalization. Another alternative would
be to use algebraic manipulations to prove the above equality manually. However, the latter
is sometimes not feasible as the computation might be very complicated.

Such issues can be resolved by what we call univalent program and data refinements
following Cohen et al. (2013). As binary numbers are equivalent to unary numbers we
can prove the property for binary numbers by computation and then transport the proof
to unary numbers. To this end, we define a “doubling structure” in which we can express
the above equation, and instantiate with unary and binary numbers. We omit the concrete
definitions, but as expected the doubling function is of linear complexity for unary numbers
and constant for binary.

record Double (A : Set) : Set where

constructor doubleStruct

field

double : A→ A
elt : A

DoubleN : Double N
DoubleN = doubleStruct doubleN 1024

DoubleBin : Double Bin

DoubleBin = doubleStruct doubleBin bin1024

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

11

The equality between binary and unary numbers lifts to an equality of doubling struc-
tures. We omit the details of this definition as they are quite technical, however the whole
definition is only 7 lines of code so it is not particularly difficult to write once one is
familiar with all of the features of Cubical Agda.

DoubleBin≡DoubleN : PathP (λ i→ Double (Bin≡N i)) DoubleBin DoubleN

We can now formulate the equation that we originally wanted to verify. We wrap the
equation in a record and use copattern matching when proving it for the Bin instance
(DoubleBin). This technical trick prevents Agda from eagerly unfolding the N instance
when we transport the proof over to unary numbers along the equality of doubling
structures. Sect. 3.2.2 discusses transport in record types.

doubles : {A : Set} (D : Double A)→ N→ A→ A
doubles D n x = iter n (double D) x

record propDouble {A : Set} (D : Double A) : Set where

field

proof : doubles D 20 (elt D) ≡ doubles D 5 (doubles D 15 (elt D))

propDoubleBin : propDouble DoubleBin

proof propDoubleBin = refl

propDoubleN : propDouble DoubleN
propDoubleN = transport (λ i→ propDouble (DoubleBin≡DoubleN i))

propDoubleBin

The fact that equivalences of types lift to equivalences of structures is called the structure
identity principle (SIP) in HoTT/UF (Univalent Foundations Program, 2013, Sect. 9.8).
Combining this with univalence lets us lift equalities of types to equalities of structures on
these types. This was originally formalized in Agda for algebraic structures and isomor-
phisms by Coquand & Danielsson (2013). Recently another variation of the SIP, due to
Escardó (2019), was implemented in Cubical Agda by Angiuli et al. (2020). This cubical
SIP extracts the pattern described here so that a user need not repeat this construction when
considering new structures. Using the cubical SIP, Angiuli et al. (2020) have developed a
variety of more substantial examples from computer science and mathematics, including
for example queues and finite multisets.

2.2 Inductive families

When programming with dependent types in Agda, it is very common to use inductive
families as they allow the programmer to encode various information using indices in the
type. The classic example is vectors—length indexed lists—which allow the programmer
to write for example a safe head function that extracts the first element of a non-empty list.
While such types are ubiquitous in dependently typed programming, they also cause some
headache when reasoning formally about the functions written using them. For instance,
one cannot naively state associativity of concatenation for vectors because the two ways
of associating concatenation lead to terms of different type. To even state the equation, we

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

12

need to substitute along the proof of associativity for addition of natural numbers. This
can quickly become complicated, making reasoning about dependently typed programs
rather bureaucratic. Cubical Agda offers a solution to this as the built-in PathP equality
is heterogeneous, making it more natural to express such equations. In this section, we
will show how this helps with dependently typed programming by developing some basic
results about vectors and size indexed matrices.

Another very important example of an inductive family is the equality type. With the
recently added support for inductive families to Cubical Agda we can work with equality
without loosing the benefits of dependent pattern-matching on the reflexivity constructor.
Furthermore, we can prove that the equality type is equivalent to the ≡ type, mak-
ing it possible to give computational meaning to functional extensionality and univalence
expressed using the equality type.

2.2.1 Vectors

It is straightforward to define vectors the same way as in for example the Agda standard
library. Here and in the following, we implicitly quantify over m n k : N.

data Vec (A : Set `) : N→ Set ` where

[] : Vec A zero

:: : (x : A) (xs : Vec A n)→ Vec A (suc n)

We can also easily define some operations like vector concatenation:

++ : Vec A m→ Vec A n→ Vec A (m + n)
[] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)

The fact that ++ is associative can be conveniently expressed using PathP and
+−assoc. The proof is just a direct use of pattern-matching and an inlined use of cong:

++−assoc : (xs : Vec A m) (ys : Vec A n) (zs : Vec A k)→
PathP (λ i→ Vec A (+−assoc m n k i))

(xs ++ (ys ++ zs)) ((xs ++ ys) ++ zs)
++−assoc {m = zero} [] ys zs = refl

++−assoc {m = suc m} (x :: xs) ys zs i = x :: ++−assoc xs ys zs i

2.2.2 Matrices

A common use of vectors is to define matrices; however it is quite difficult to prove prop-
erties about functions defined for matrices defined this way. Another representation that
is better suited for proving properties is to use functions out of a finite set of indices. To
define these, we need standard finite sets which is another example of an inductive family:

data Fin : N→ Set where

zero : Fin (suc n)
suc : (i : Fin n)→ Fin (suc n)

Using this we can define two different representations of matrices:

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

13

FinMatrix : (A : Set `) (m n : N)→ Set `

FinMatrix A m n = Fin m→ Fin n→ A

VecMatrix : (A : Set `) (m n : N)→ Set `

VecMatrix A m n = Vec (Vec A n) m

It is straightforward to define functions going between the two representations:

FinVec→Vec : (Fin n→ A)→ Vec A n
FinVec→Vec {n = zero} xs = []

FinVec→Vec {n = suc } xs = xs zero :: FinVec→Vec (λ x→ xs (suc x))

lookup : Fin n→ Vec A n→ A
lookup zero (x :: xs) = x
lookup (suc i) (x :: xs) = lookup i xs

Fin→VecMatrix : FinMatrix A m n→ VecMatrix A m n
Fin→VecMatrix M = FinVec→Vec (λ i→ FinVec→Vec (λ j→ M i j))

Vec→FinMatrix : VecMatrix A m n→ FinMatrix A m n
Vec→FinMatrix M i j = lookup j (lookup i M)

By using funExt we can prove that the functions between FinMatrix and VecMatrix can-
cel which gives us an equivalence of the two representations. This can then be transformed
into a path by applying ua:

FinMatrix≡VecMatrix : (A : Set `) (m n : N)→ FinMatrix A m n ≡ VecMatrix A m n
FinMatrix≡VecMatrix A m n = ua (FinMatrix'VecMatrix A m n)

We can now do the same kind of transport of properties that we did for unary and binary
numbers. Let us assume that we have a commutative ring R. We write + for the additive
operation of R and the proof that it is commutative is called commring+−comm. It is then
very easy to prove that addition of FinMatrix is commutative:

addFinMatrix : (M N : FinMatrix R m n)→ FinMatrix R m n
addFinMatrix M N k l = M k l + N k l

addFinMatrixComm : (M N : FinMatrix R m n)→
addFinMatrix M N ≡ addFinMatrix N M

addFinMatrixComm M N i k l = +−comm (M k l) (N k l) i

Note the inlined use of function extensionality for binary functions in
addFinMatrixComm. Following exactly the same recipe as for transporting addition
of unary numbers and the fact that it is associative to binary numbers we can now transport
addition of FinMatrix and the fact that it is commutative to VecMatrix:

T : Set `→ Set `

T X = Σ[+ ∈ (X→ X→ X)] ((x y : X)→ x + y ≡ y + x)

TVecMatrix : T (VecMatrix R m n)
TVecMatrix {m} {n} = subst T (FinMatrix≡VecMatrix R m n)

(addFinMatrix , addFinMatrixComm)

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

14

addVecMatrix : (M N : VecMatrix R m n)→ VecMatrix R m n
addVecMatrix = fst TVecMatrix

addVecMatrixComm : (M N : VecMatrix R m n)→
addVecMatrix M N ≡ addVecMatrix N M

addVecMatrixComm = snd TVecMatrix

Note that there is really no added complexity here compared to the unary and binary
numbers example. However, just like we get a naive addition function on binary numbers
this way we get a naive one for VecMatrix as well. The addVecMatrix function transports
the input matrices to FinMatrix, add them using addFinMatrix and then transport the result
back. We can of course do better and define addition for VecMatrix more directly by:

addVec : Vec R m→ Vec R m→ Vec R m
addVec [] [] = []

addVec (x :: xs) (y :: ys) = x + y :: addVec xs ys

addVecMatrix′ : (M N : VecMatrix R m n)→ VecMatrix R m n
addVecMatrix′ [] [] = []

addVecMatrix′ (M :: MS) (N :: NS) = addVec M N :: addVecMatrix′ MS NS

Using the fact that addVecMatrix is just addFinMatrix with transports back and forth
we can prove that it is in fact equal to addVecMatrix′. The proof of this is a little bit more
involved so we refer the interested reader to the formalization, however the proof is only
about 10 lines of code so it is not that complex.

addVecMatrixPath : (M N : VecMatrix R m n)→
addVecMatrix M N ≡ addVecMatrix′ M N

Combining this with addVecMatrixComm we easily get the fact that the direct definition
of addition for vector matrices is commutative:

addVecMatrixComm′ : (M N : VecMatrix R m n)→
addVecMatrix′ M N ≡ addVecMatrix′ N M

This example shows that the kind of reasoning that we did for unary and binary numbers
also works for more complex datastructures like matrices. Furthermore, we can—without
too much effort—relate proof-oriented definitions with computation-oriented ones. In
proof assistants based on regular dependent theory, this is typically not as easy, since the
user has to choose a representation and then stick to it. Even further, the fact that we can
use paths to reason about equalities of FinMatrix makes it straightforward to use function
extensionality which also simplifies many proofs. If one wants to develop this in standard
Agda one instead has to resort to either using setoids or define a notion of finite functions
represented by their graphs which complicates the definition considerably. For more details
about various considerations when developing basic matrix operations in standard Agda we
refer the interested reader to a blog post by Wood (2019).

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

15

2.2.3 Equality

A very important inductive family is the equality type. This is also written ≡ in the Agda
standard library, but in order to avoid confusion we call it Eq here.

data Eq {A : Set `} (x : A) : A→ Set ` where

reflEq : Eq x x

With this definition we can define functions by pattern-matching on reflEq just like in
regular Agda:

ap : (f : A→ A′) {x y : A} → Eq x y→ Eq (f x) (f y)
ap f reflEq = reflEq

More interestingly we can define functions between Eq and paths:

eqToPath : {x y : A} → Eq x y→ x ≡ y
eqToPath reflEq = refl

pathToEq : {x y : A} → x ≡ y→ Eq x y
pathToEq {x = x} p = transport (λ i→ Eq x (p i)) reflEq

It’s straightforward to prove that these maps cancel so that we get a path between paths
and equalities:

Path≡Eq : {x y : A} → (x ≡ y) ≡ (Eq x y)
Path≡Eq = ua Path'Eq

This means that these types share all properties expressible in type theory. For example
we can prove function extensionality for equality by going back and forth between paths:

funExtEq : {B : A→ Set `′} {f g : (x : A)→ B x} →
((x : A)→ Eq (f x) (g x))→ Eq f g

funExtEq p = pathToEq (λ i x→ eqToPath (p x) i)

Similarly, we can also prove univalence and define higher inductive types using equal-
ities instead of paths. This way, we can replace the axioms from existing HoTT Agda

libraries with concrete terms. The fact that Cubical Agda now has proper support for
inductive families means that these developments should be able to compute closed terms
properly. We are currently experimenting with this and have written some basic examples
of computing winding numbers on the circle. For details see the Cubical.Data.Equality
file in the agda/cubical repository. One should also be able to apply the techniques
developed by Danielsson (2020).

2.3 Univalence for Coinductive Types

Coinductive types allow the direct manipulation of infinite structures without breaking
the consistency of the language. However, in their treatment in Coq and Agda, reason-
ing about them was impeded by the inability to prove two elements equal whenever they
have the same unfolding, rather than when they are the same by definition (McBride,

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

16

2009). Cubical Agda solves this by exploiting the interaction between path and projection
copatterns (Abel et al., 2013).

The prototypical example of a coinductive type are infinite streams, which can be
declared in Agda as a coinductive record type with two fields: .head and .tail. A func-
tion returning a stream is then defined by explaining how it computes when applied to the
projections. For example, here we define mapS which applies a function to every element
of a stream.

record Stream (A : Set) : Set where

coinductive; constructor ,

field

head : A
tail : Stream A

mapS : (A→ B)→ Stream A→ Stream B
mapS f xs .head = f (xs .head)

mapS f xs .tail = mapS f (xs .tail)

The result is that mapS f xs by itself will not unfold further. The termination checker is
happy to accept this definition as productive since it always reaches a weak head normal
form in finite time when applied to projections. As shown in the following proof of the
identity law for mapS, Cubical Agda extends the notion of productivity by allowing the
same recursion pattern also for paths between streams.

mapS−id : (xs : Stream A)→ mapS (λ x→ x) xs ≡ xs
mapS−id xs i .head = xs .head

mapS−id xs i .tail = mapS−id (xs .tail) i

To define a path between (mapS (λ x→ x) xs) and xs we introduce an interval variable
i and then are left to define (mapS−id xs i) of type Stream A, so we can proceed by
copatterns and corecursion.

To convince ourselves that mapS−id defines the required path, we note that if
mapS−id xs is supposed to be a path between mapS (λ x→ x) xs and xs, then the type
of (λ i→mapS−id xs i .head) should be mapS (λ x→ x) xs .head≡ xs .head. This type
in turn reduces to xs .head≡ xs .head, by definition of mapS, and so the constant path suf-
fices. A similar reasoning applies to the tail case, this time using the tail clause of mapS

to realize that we need a path between mapS (λ x→ x) (xs.tail) and xs.tail, which we pro-
vide with a corecursive call. We give a systematic description of how we compute such
boundary constraints from the left hand sides of clauses in Sect. 4.

More generally, we can define bisimilarity as a coinductive record and show that two
bisimilar streams are equal.

record ≈ (xs ys : Stream A) : Set where

coinductive

field

≈head : xs .head ≡ ys .head

≈tail : xs .tail ≈ ys .tail

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

17

bisim : ∀ {xs ys : Stream A} → xs ≈ ys→ xs ≡ ys
bisim xs≈ys i .head = xs≈ys .≈head i
bisim xs≈ys i .tail = bisim (xs≈ys .≈tail) i

Finally we note that bisim is actually an equivalence, and so equality of streams is indeed
bisimilarity.

path≡bisim : ∀ {xs ys : Stream A} → (xs ≡ ys) ≡ (xs ≈ ys)

The agda/cubical library contains the complete proof, as well as a proof of the universal
property of indexed M-types (Ahrens et al., 2015).

2.4 Quotient Types as Higher Inductive Types

Another major new addition in HoTT are higher inductive types (HITs). These are
datatypes in which we can specify “higher” constructors representing non-trivial paths of
the type (representing identifications of elements), in addition to the normal “point” con-
structors. These types enable many interesting constructions in type theory, in particular
quotient types.

The addition of HITs in systems like Agda or Coq is usually done by postulating their
existence, however this suffer from the same issues, in terms of computation, as postulating
the univalence axiom. Cubical Agda extends the datatype declarations of Agda to also
support a general schema of HITs so that it is not necessary to postulate their existence
axiomatically.

In this section, we illustrate how we can use HITs to define quotient types in
Cubical Agda. The first example of a quotient type is a very simple encoding of the
integers—while this example might seem rather trivial it will help us showcase quite
a few interesting possibilities of working with HITs. The second example is a general
formulation of quotient types and set quotients.

2.4.1 Integers as a HIT

The integers are often represented as N + N, however this has the drawback that there
are two zeroes (inl 0 and inr 0). This is usually resolved by shifting one of them by 1 (so
that for example inl 0 represents −1, etc.), however this can easily lead to confusion and
off-by-one errors. A better solution is to identify the two zeroes. This can be achieved with
the following HIT.

data Z : Set where

pos : (n : N)→ Z
neg : (n : N)→ Z
posneg : pos 0 ≡ neg 0

sucZ : Z→ Z
sucZ (pos n) = pos (suc n)
sucZ (neg zero) = pos 1

sucZ (neg (suc n)) = neg n
sucZ (posneg i) = pos 1

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

18

This type is similar to N + N, except that there is also a path constructor posneg which
identifies the two zeroes. For an element i of the interval type, posneg i is an integer which
reduces to pos 0 in case i = i0 and neg 0 in case i = i1. These so-called boundary conditions
of posneg have to be respected by any function on Z. For example, the successor function
on Z can be written as above. The final case maps the path constructor constantly to pos 1

which is accepted by Cubical Agda as the following equations hold definitionally:

sucZ (pos 0) = sucZ (neg 0) = pos 1.

It is direct to define an inverse to sucZ (i.e., the predecessor function) and hence get an
equivalence from Z to Z which, combined with ua, gives a non-trivial path from Z to Z.
Transporting along this path applies the successor function.

sucPathZ : Z ≡ Z
sucPathZ = isoToPath (iso sucZ predZ sucPredZ predSucZ)

We can also define addition and prove that addition with a fixed number is an equiva-
lence, however this takes a bit of work as we need to define subtraction and prove that it
is the inverse of addition. Using univalence we can take a shortcut and define an alterna-
tive addition function so that addition with a fixed number is automatically an equivalence.
Consider the following path equality that composes sucPathZ with itself n times.

addEq : N→ Z ≡ Z
addEq zero = refl

addEq (suc n) = addEq n • sucPathZ

Similarly we can define a path composing the predecessor path with itself n times. By
transporting along these paths we get an addition function.

addZ : Z→ Z→ Z
addZ m (pos n) = transport (addEq n) m
addZ m (neg n) = transport (subEq n) m
addZ m (posneg) = m

By using that transporting along a path is an equivalence we get that addition by a fixed
number is an equivalence.

isEquivAddZ : (m : Z)→ isEquiv (λ n→ addZ n m)

isEquivAddZ (pos n) = isEquivTransport (addEq n)
isEquivAddZ (neg n) = isEquivTransport (subEq n)
isEquivAddZ (posneg i) = isEquivTransport refl

2.4.2 General Quotient Types and Set Quotients

In Agda and other dependently typed programming languages, quotient type could so far
only be defined axiomatically. Here we show how to define them as a HIT in Cubical Agda.

A first attempt is the following definition.

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

19

data / (A : Set `) (R : A→ A→ Set `) : Set ` where

[] : A→ A / R
eq : (a b : A)→ R a b→ [a] ≡ [b]

This type has a constructor for mapping elements of A to the quotient by R and an equality
identifying the image of each pair of related elements. However this is not exactly what
we want because the resulting quotient type might have a too complex notion of equality.
For example, if we use this construction to quotient Unit by the total relation, then we will
get a type with a point [tt] and an identification of this point with itself. We would expect
this to be equivalent to Unit, however it is in fact equivalent to the HIT circle that we will
discuss in Sect. 2.5.1. As Unit and the circle do not satisfy the same properties, they are not
equivalent; the loop space of Unit, here the type of paths from the only element to itself,
is contractible, while the loop space of the circle is Z (Univalent Foundations Program,
2013).

We get the expected notion of quotients if we switch to set quotients. We add another
higher constructor that eliminates all of the higher-dimensional structure from the quotient
type, in other words, we set truncate the type.

data / (A : Set `) (R : A→ A→ Set `) : Set ` where

[] : A→ A / R
eq : (a b : A)→ (r : R a b)→ [a] ≡ [b]

trunc : (x y : A / R)→ (p q : x ≡ y)→ p ≡ q

This makes the quotient into a recursive HIT as the trunc constructor quantifies over
elements of the type that we are constructing. It forces the quotient to be a set in the sense
of satisfying the uniqueness of identity proofs (UIP) principle, in other words, any two
proofs of equality of members of A / R are equal. Thanks to trunc, we can prove the
universal property of set quotients:

setQuotUniversal : {A B : Set `} {R : A→ A→ Set `} → isSet B→
(A / R→ B) ' (Σ[f ∈ (A→ B)] (∀ a b→ R a b→ f a ≡ f b))

This says that maps out of the set quotient is the same as maps sending related ele-
ments to equal elements in the quotient (assuming that the image satisfies UIP). If we
furthermore assume that R is a propositional equivalence relation then the set quotients are
effective, in the sense that if [a]≡ [b] then also R a b. As an interesting application, we
could for example define the positive fractions as a quotient of N × N by relating (n1, d1)

and (n2, d2) if (n1 · (1 + d2)≡ n2 · (1 + d1)).

2.5 Synthetic Homotopy Theory in Cubical Agda

One of the main applications of HITs in HoTT is the ability to reason synthetically about
topological spaces inside type theory. This means that we can define topological spaces
(like spheres, tori, etc.) as datatypes and reason about them using functional programming.
The semantic justification for this is the standard model in Kan simplicial sets, a combi-
natorial representation of topological spaces (Kapulkin & Lumsdaine, 2012; Lumsdaine
& Shulman, 2017). We will discuss how cubical type theory relates to Kan simplicial

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

20

sets in Sect. 6. In this section, we illustrate how we can do synthetic homotopy theory in
Cubical Agda by proving that the torus is equivalent to two circles.

2.5.1 The Torus and Two Circles

We can define circle and torus as the following higher inductive types.

data S1 : Set where

base : S1

loop : base ≡ base

data Torus : Set where

point : Torus

line1 : point ≡ point

line2 : point ≡ point

square : PathP (λ i→ line1 i ≡ line1 i) line2 line2

The idea is that the circle, S1, is generated by a base point and a non-trivial path con-
structor loop connecting base to itself. The Torus on the other hand also has a base point

with two non-trivial path constructors connecting it to itself and a square relating the two
paths. This square can be illustrated by:

point point

point point

square

line1

line2 line2

line1

The idea is that the square constructor identifies line2 with itself over an identification of
line1 with itself. This has the effect of identifying the opposite sides of the square, making
it into a torus (imagine the square being a sheet of soft paper that one folds so that the
opposite sides match).

As we demonstrate in the following, a torus is equivalent to the product of two circles.

t2c : Torus→ S1 × S1

t2c point = (base , base)

t2c (line1 i) = (loop i , base)

t2c (line2 j) = (base , loop j)
t2c (square i j) = (loop i , loop j)

c2t : S1 × S1 → Torus

c2t (base , base) = point

c2t (loop i , base) = line1 i
c2t (base , loop j) = line2 j
c2t (loop i , loop j) = square i j

The functions back and forth are directly definable by pattern-matching. As a conse-
quence, proving that they are mutually inverse is trivial, and we get an equality between
the two types.

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

21

c2t−t2c : (t : Torus)→ c2t (t2c t) ≡ t
c2t−t2c point = refl

c2t−t2c (line1) = refl

c2t−t2c (line2) = refl

c2t−t2c (square) = refl

t2c−c2t : (p : S1 × S1)→ t2c (c2t p) ≡ p
t2c−c2t (base , base) = refl

t2c−c2t (base , loop) = refl

t2c−c2t (loop , base) = refl

t2c−c2t (loop , loop) = refl

Torus≡S1×S1 : Torus ≡ S1 × S1

Torus≡S1×S1 = isoToPath (iso t2c c2t t2c−c2t c2t−t2c)

This is a rather elementary result in topology. However, it had a surprisingly non-trivial
proof in HoTT because of the lack of definitional computation for higher constructors
(Sojakova, 2016; Licata & Brunerie, 2015). With the additional definitional computation
rules of Cubical Agda this proof is now almost entirely trivial.

2.5.2 Further Synthetic Homotopy Theory in Cubical Agda

The agda/cubical library contains several further results from synthetic homotopy the-
ory. For instance, we have a direct proof that the fundamental group of the circle is Z,
inspired by Licata & Shulman (2013). Combined with the above characterization of the
torus it proves that the fundamental group of the Torus is Z × Z. The fact that univalence
and HITs compute in Cubical Agda lets us then compute winding numbers of iterated
loops around the circle and torus.

The library also features more substantial results: a proof that S3, i.e., the four dimen-
sional sphere, is equivalent to the join of two circles, and a proof that the total space of the
Hopf fibration is S3 (Mörtberg & Pujet, 2020). We also have a definition of the “Brunerie
number”: a number n∈Z such that π4(S3)'Z/nZ.3 However, despite considerable efforts
we have not been able to reduce n to a normal form yet; even though the absolute value of
the expected result is just 2 as proved by Brunerie (2016).

3 Making Agda cubical

In the remainder of the paper we will describe how Agda was extended to become cubical.
The key additions to Agda are:

1. The interval and path types (Sect. 3.1).
2. Generalized transport, transp (Sect. 3.2).
3. Partial elements (Sect. 3.3).
4. Homogeneous composition, hcomp (Sect. 3.4).
5. Higher inductive types (Sect. 4).
6. Glue types (Sect. 5).

3 For details see https : //github.com/agda/cubical/blob/master/Cubical/Experiments/Brunerie.agda
.

https://github.com/agda/cubical/blob/c9fc29e4677002122f497de8618b886f0ba61898/Cubical/Experiments/Brunerie.agda#L268

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

22

We have already discussed the first two points in some detail in the examples, however,
the implementation of the transp operation is especially interesting as it is what makes
Cubical Agda compute. This operation is defined by cases on the type formers of Agda;
a contribution of this paper is the extension of these to types that are present in Agda but
not covered by Cohen et al. (2018), namely, record and coinductive types. Furthermore,
the way the hcomp operation works in Cubical Agda differs from Coquand et al. (2018)
in a subtle way which enables us to optimize the transp operation for Glue types. These
types are what allows us to give computational content to univalence. By optimizing how
their composition operation computes we obtain simpler and more efficient proofs of univa-
lence. As discussed in Sect. 6, this also has metatheoretical consequences for the canonicity
theorem for HITs.

3.1 The Interval and Path Types

The first thing Cubical Agda adds is an interval type I. Then, we add the PathP types
that behave like function types out of the interval, but with fixed endpoints. Note that the
interval in Cubical Agda is not inductively defined, so we cannot pattern match on it. This
follows from the intuition that path types are continuous functions from the interval into a
space so that they cannot provide arbitrarily different results for i0 and i1.

3.2 Generalized Transport

The next key thing that Cubical Agda adds is the generalized transport operation.

transp : (A : I→ Set `)→ I→ A i0→ A i1

Given a type line A : I→ Set ` and an element at end A i0, the transp operation gives an
element at A i1, the other end of the line. This is generalized compared to regular transport
in the sense that transp lets us specify where it should behave as the identity function. In
particular there is an additional side condition to be satisfied for transp A r a to type check,
which is that A should be a constant function whenever the constraint r = i1 is satisfied.
When r is equal to i1 the transp function will compute as the identity function,

transp A i1 a = a.

and this would not be sound in general if A was allowed to be a more complex line that
is non-constant when r = i1. In case r = i0 there is nothing to check, thus, transp A i0 a is
well-formed for any A, as in the definition of transport A a.

Internally, the transp operation computes differently for each of the type formers of
Agda. We will show how this works in the special case of transport, but the general
transp operation is not much more complicated. For a detailed type-theoretic presenta-
tion of these definitions see Huber (2017). This formulation of the computation rules for
cubical type theory is based on a variation of the comp operation of Cohen et al. (2018)
that was introduced in Coquand et al. (2018) in order to support HITs.

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

23

3.2.1 Function Types

Given two type lines A B : I → Set we seek to transport a function f : A i0 → B i0 to a
function A i1→ B i1. To this end, we compose backward transport A i1→ A i0 along A,
function f , and forward transport B i0→ B i1 along B.

transportFun : (A B : I→ Set)→ (A i0→ B i0)→ (A i1→ B i1)

transportFun A B f = transport (λ i→ B i) ◦ f ◦ transport (λ i→ A (~ i))

By evaluating transport (λ i→ A i→ B i) f we can see that the definition of transportFun

A B f is definitionally the same as the internal definition for how transp computes in
Cubical Agda.

transportFunEq : (A B : I→ Set)→ (f : A i0→ B i0)→
transportFun A B f ≡ transport (λ i→ A i→ B i) f

transportFunEq A B f = refl

The definition for dependent functions is very similar, except that some extra work is
required to correct the type in the outer transport. This definition clarifies why we need to
consider transp and not just the simpler transport operation.

transportPi : (A : I→ Set) (B : (i : I)→ A i→ Set)

→ ((x : A i0)→ B i0 x)
→ ((x : A i1)→ B i1 x)

transportPi A B f = λ (x : A i1)→
transport (λ j→ B j (transp (λ i→ A (j ∨ ~ i)) j x))

(f (transport (λ i→ A (~ i)) x))

If we would have used the same definition as for non-dependent functions the outer
transport would have been ill-typed. The reason is that f has a dependent type, meaning
that f x′ has type B x′ for x′ := transport (λ i→ A (~ i)) x. The first argument of the outer
transport must hence be a line between B i0 x′ and B i1 x. This line is constructed by
abstracting over j and considering B j (transp (λ i→ A (j ∨ ~ i)) j x). When j is i0 this is
indeed B i0 x′ and when j is i1 this is B i1 x by virtue of transp being the identity function
when applied to i1.

3.2.2 Records and Coinductive Types

For record types, the transport operation is computed pointwise, i.e. independently for
every field. The only subtlety is when the record is dependent, in which case a similar type
correction has to be done as for dependent functions.

As coinductive types in Agda are just record types these are handled the same way. In this
case, however, we have to consider the issue of productivity, which is taken care of by how
transport for record types unfolds only when projected from. Analogously to the Stream

example from Sect. 2.3, we have that transport (λ i→ Stream A) xs will not reduce further,
while if we apply .tail to it we get transport (λ i→ Stream A) (xs .tail).4 Such controlled
unfolding generally leads to smaller normal forms so Cubical Agda adopts it for record

4 Productivity for the case of dependent records then relies on the type of later fields only being able to depend
on earlier fields.

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

24

types in general. The same kind of controlled unfolding is also implemented for other
“negative” types like function and path types.

3.2.3 Datatypes

The transport operation for inductive datatypes without parameters, for instance, the
natural numbers, is trivial as they cannot vary along the interval.

transport (λ i→N) x = x

This would not work for inductive types with parameters like the disjoint union A + B for
which the transport operation would need to reduce to the transport operation in A or B
depending on the argument.

transportSum : (A B : I→ Set)→ A i0 + B i0→ A i1 + B i1

transportSum A B (inl x) = inl (transport (λ i→ A i) x)
transportSum A B (inr x) = inr (transport (λ i→ B i) x)

The transp operation for HITs is a bit more involved. It also computes by cases
on the argument, but for the higher constructors some extra care has to be taken. In
particular, complicated parameterized HITs, like pushouts, require additional endpoint
corrections (Coquand et al., 2018, Sect. 3.3.5).

3.2.4 Inductive Families

In the case of inductive families we have an extra complication: constructors only
target specific indexes. For example it is not clear how to proceed when reducing
transport (λ i→Vec A (p i)) [], as [] might not fit the expected result type of Vec A (p i1).
Moreover, we not only have to care about the endpoint, but we should also keep track of
the path p, as it might contain computationally relevant information.

To address this problem we adapt the strategy of Cavallo & Harper (2019a), adding a
constructor to each inductive family to represent a residual index transport. In the case
of vectors we have a constructor5 transpXVec p r u0 : Vec A (p i1) for p : I→N, r : I
and u0 : Vec A (p i0), such that p is constant when r = i1. Like for transp, we have that
transpXVec p i1 u0 reduces to u0. We can then transport constructors like so:

transport (λ i→Vec (A i) (p i)) [] = transpXVec (λ i→ p i) i0 []

transport (λ i→Vec (A i) (p i)) (x :: xs) = transpXVec (λ i→ p i) i0

(transport (λ i→ A i) x :: transport (λ i→Vec (A i) m) xs)

In the clause for [] the typing lets us assume that p i0 is equal to 0, while in the second
clause the typing implies p i0 is equal to suc m where m is the length of xs : Vec (A i0) m.
In both cases transpXVec lets us produce a result at the desired index by storing the path
p. The full reduction algorithm for transp on inductive families is an adaptation of the one
for the coercion operator from Cavallo & Harper (2019a).

In Sect. 4 we will show how definitions by pattern matching can be extended to cover
the extra transpX constructor, without the user needing to specify a clause for it.

5 The X in transpX stands for “indeX”.

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

25

3.2.5 Path Types

For path types we will need a new operation to provide the computation rules for transport

as we need some way to record the endpoints of the path after transporting it. Indeed,
consider the following naı̈ve definition:

transportPath : (A : I→ Set) (x y : (i : I)→ A i)→ x i0 ≡ y i0→ x i1 ≡ y i1

transportPath A x y p = λ i→ transport (λ j→ A j) (p i)

This might look plausible as a definition, but the resulting path does not have the cor-
rect boundary. When i is i0, for instance, the left boundary is transport (λ j → A j) (x
i0) and not just x i1. Note that these elements are equal up to a path (using
λ k → transp (λ j → A (j ∨ k) k (x k)), so what we need is a way to compose the
result with this path in order to correct the endpoints. To do this we introduce the homo-
geneous composition operation (hcomp) that generalizes binary composition of paths to
n-ary composition of higher dimensional cubes.

3.3 Partial Elements

In order to describe the homogeneous composition operation we need to be able to write
partially specified n-dimensional cubes, i.e., cubes where some faces are missing. Given an
element of the interval r : I there is a new primitive predicate IsOne r which represents the
constraint r = i1. This comes with a proof 1=1 that i1 is in fact equal to i1, i.e., 1=1 : IsOne

i1. The type IsOne (i ∨ ~ i) corresponds to the formula (i = i1)∨ (i = i0) which represents
the two endpoints of the line specified by i, so by considering formulas made out of more
variables we can specify the boundary of cubes. The type IsOne r is also proof-irrelevant,
meaning that any two of its elements are definitionally equal.

Building on IsOne we have extended Cubical Agda with partial cubical types, written
Partial r A. The idea is that Partial r A is the type of cubes in A that are only defined when
IsOne r holds.6 Concretely, Partial r A is a special version of the function space IsOne r→
A with a more extensional equality: two of its elements are considered judgmentally equal
if they represent the same subcube of A. Concretely they are equal whenever they reduce to
equal terms for all the possible assignment of variables that make r equal to i1. An example
of where this much extensionality is useful is the definition of hfill in Sect. 3.4.

Elements of these partial cubical types are introduced using pattern matching lambdas.
For this purpose Cubical Agda supports a new form of patterns, here (i = i0) and (i = i1),
that specify the cases where IsOne (i∨ ~ i) is true. Similarly to pattern matching on an
inductive family, some variables from the context might get refined, in this case i, even if
otherwise we would not be able to pattern match on them.

partialBool : ∀ i→ Partial (i ∨ ~ i) Bool

partialBool i = λ { (i = i0)→ true ; (i = i1)→ false }

The term partialBool should be thought of as a boolean with different values when i is
i0 and when i is i1. This is hence just the endpoints of a line and there is no way to connect

6 Partial is somewhat analogous to constrained set P⇒ A = {a∈ A | P} where P = IsOne r, only that the proof
of P matters.

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

26

them, since true is not equal to false. The pattern-matching cases must match the interval
expression in the type (under the image of IsOne) and if there are overlapping cases then
they must agree up to definitional equality. Furthermore, IsOne i0 is actually absurd and
lets us define an empty partial element, also known as an “empty system” (Cohen et al.,
2018, Sect. 4.2).

empty : Partial i0 A
empty = λ { () }

Cubical Agda also has cubical subtypes as in Cohen et al. (2018); given A : Set ` and
r : I and u : Partial r A we can form the type A [r 7→ u]. A term v of this type is a term
of type A that is definitionally equal to u when IsOne r is satisfied.7 Any term u : A can be
seen as a term of type A [r 7→ u] that agrees with itself when IsOne r. This observation is
incarnated in the introduction principle inS:

inS : {r : I} (a : A)→ A [r 7→ (λ → a)]

We can also forget that a partial element agrees with u when IsOne r holds. This insight is
manifest in the subsumption principle outS:

outS : {r : I} {u : Partial r A} → A [r 7→ u]→ A

We have that both outS (inS v) = v and inS (outS v) = v hold if well typed. Moreover,
outS {r} {u} v will reduce to u 1=1 when r = i1.

With all of this cubical infrastructure we can now describe the hcomp operation.

3.4 Homogeneous Composition

The homogeneous composition operation generalizes binary composition of paths so that
we can compose multiple composable cubes.

hcomp : {r : I} (u : I→ Partial r A) (u0 : A [r 7→ u i0])→ A

When calling hcomp u u0, Cubical Agda makes sure that u0 agrees with u i0 on r; this
is specified in the type of u0. The idea is that u0 is the base and u specifies the sides of
an open box where the side opposite of u0 is missing. The hcomp operation then gives us
the missing side opposite of u0, which we refer to as the lid of the open box. For example
binary composition of paths can be written as:

• : {x y z : A} → x ≡ y→ y ≡ z→ x ≡ z
• {x = x} p q i = hcomp (λ j→ λ { (i = i0)→ x ; (i = i1)→ q j }) (inS (p i))

Pictorially we are given p : x ≡ y and q : y ≡ z, and the composite of the two paths is
obtained by computing the dashed lid at the top of the following square.

x z

x y

x q j

inS (p i)

j

i

7 In the set-theoretic analogy, A [r 7→ u] = {a∈ A | if r then (a = u)} ⊆ A, given u∈ {a∈ A | r}. We have a∈
A [r 7→ λ →a] always for a∈ A.

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

27

As we are constructing a path from x to z along i we have i : I in context and put inS (p
i) as bottom line. The direction j is abstracted in the first argument to hcomp and we use
pattern-matching to specify the sides.

We can also define homogeneous filling of open boxes as

hfill : {r : I} (u : I→ Partial r A) (u0 : A [r 7→ u i0])→ I→ A
hfill {r = r} u u0 i =

hcomp (λ j→ λ { (r = i1)→ u (i ∧ j) 1=1 ; (i = i0)→ outS u0 })
(inS (outS u0))

When i is i0 this is just outS u0 and when i is i1 it is hcomp (λ j→ λ { (r = i1)→ u j
1=1 }) u0 because the absurd face (i0 = i1) gets filtered out. By the extensionality of partial
elements, this gives a line along i between outS u0 and hcomp u u0 which geometrically
corresponds to the filling of an open box as it connects the base with the lid computed using
hcomp. The elimination followed by introduction in inS (outS u0) might look redundant,
but it is necessary because the sides of this composition are defined on r ∨ ~i = i1, while
u0 belongs to a subtype specified on r. In the special case when q is refl the filler of the
above square gives us a direct cubical proof that composing p with refl is p.

compPathRefl : {x y : A} (p : x ≡ y)→ p • refl ≡ p
compPathRefl {x = x} {y = y} p j i =

hfill (λ → λ { (i = i0)→ x ; (i = i1)→ y }) (inS (p i)) (~ j)

This way, we can do even more equality reasoning by directly working with higher
dimensional cubes.

By combining hcomp and transp we can define the heterogeneous composition opera-
tion of Cohen et al. (2018).

comp : (A : I→ Set `) {r : I} (u : (i : I)→ Partial r (A i)) (u0 : A i0 [r 7→ u i0])→ A i1

comp A {r = r} u u0 =

hcomp (λ i→ λ { (r = i1)→ transp (λ j→ A (i ∨ j)) i (u 1=1) })
(inS (transport (λ i→ A i) (outS u0)))

With the comp operation we can then finally give the definition of transp for path types.

transportPath : (A : I→ Set) (x y : (i : I)→ A i)→ x i0 ≡ y i0→ x i1 ≡ y i1

transportPath A x y p =

λ i→ comp A (λ j→ λ { (i = i0)→ x j ; (i = i1)→ y j}) (inS (p i))

The computation rules for hcomp are also defined by cases on the type formers of Agda,
just like for transp. These are all quite direct to define and we refer the interested reader
to Huber (2017) for details. We will note, however, that for HITs and inductive families
hcomp (λ i→ λ { (r = i1)→ u}) u0 only reduces to u[i1/ i] when r = i1, and is to be con-
sidered a canonical element otherwise. Therefore, functions defined by pattern matching
on a HIT also have to make progress when provided an element built with hcomp. We
will often refer to such an element as hcomp r u u0 for ease of notation. The next section
describes how this can be achieved, in the context of a core type theory for Cubical Agda.

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

28

4 Pattern Matching with Higher Inductive Types and Inductive Families

Our main technical contribution is an elaboration algorithm for (co)pattern matching defi-
nitions in the presence of HITs and path applications. Following Cockx & Abel (2018) we
formulate our algorithm as a translation from (co)pattern matching clauses to case trees.
The main challenges are generating the computational behavior on hcomp elements of
HITs, transpX elements of inductive families, and making sure clauses for path construc-
tors agree with what the function does at the endpoints of the path. We will consider the
equality type as our only inductive family to simplify the presentation of the algorithm,
while still being able to illustrate the relevant issues.

4.1 Elaboration by Example

Here we illustrate by example how we can handle the cases for hcomp and transpX.
Consider the function c2t from Sect. 2.5.1, it is defined by four clauses, which pattern

match on a pair of elements of the circle. Recalling that hcomp r u u0 is also a canonical
element of the circle, we can see that we additionally have to cover the following cases:

c2t (hcomp r u u0 , y) = ?0
c2t (base , hcomp r u u0) = ?1
c2t (loop i , hcomp r u u0) = ?2

We can cover the first by setting

?0 := hcomp (λ{j (r = i1)→ c2t (u j 1=1, y)}) (c2t (u0, y))

which not only produces an element of the right type, but also satisfies ?0 = c2t (u i 1=1, y)
when r = i1, which is required to preserve the equality hcomp i1 u u0 = u i 1=1. The case
?1 can be solved analogously, while ?2, since it matches on loop, has additional constraints:
?2 should be equal to c2t (base, hcomp r u u0) whenever i = i0 or i = i1. We can satisfy all
of these constraints at once by including them in the composition, i.e. setting

?2 := hcomp (λ j→ λ


(r = i1)→ c2t (loop i, u j 1=1)

(i = i0)→ c2t (base, hcomp r u u0)

(i = i1)→ c2t (base, hcomp r u u0)

) (c2t (loop i, u0))

where all the components of the partial element match up because they are all different
specializations of c2t (loop i, hcomp r u u0) under the different boundary conditions. In
the general case the return type of the function can depend on the HIT argument, so a
heterogeneous composition will be necessary.

To illustrate how to handle transpX elements, let us look at an artificially constrained
proof of symmetry:

sym0 : (x : N)→ Eq x 0→ Eq 0 x
sym0 .0 reflEq = reflEq

Ideally we would only have to handle the following extra clause involving transpX:

sym0 x (transpX p r t) = ?0

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

29

However we find ourselves stuck, because t has type Eq x (p i0) so we cannot recurse with
sym0 x t, as that is not well typed. To get around this, we can match with reflEq against t,
which gives us this clause:

sym0 x (transpX p r reflEq) = ?0

Now we know from the typing that p is a path connecting x to 0, so we can use it to solve
our goal with a transport:

?0 := transp (λ i→ Eq 0 (p (~ i))) r (sym0 0 reflEq)

It is not by chance that we were able to rely on the value of sym0 at reflEq to solve this
goal, but rather an instance of the specialization by unification technique which is used
to translate, under certain conditions, definitions by clauses into functions defined solely
by eliminators (Cockx & Devriese, 2018). We refer to the algorithm in Sect. 4.3.3 for the
general case, including how to handle remaining patterns transpX p r (hcomp s w w0) and
transpX p r (transpX q s t1).

4.2 Syntax of the Core Type Theory

We recall some definitions from Cockx & Abel (2018), extended to allow for the new
cubical primitives.

Expressions (Fig. 1) are given in spine-normal form, so that the head symbol of an appli-
cation is easily accessible. Rather than adding the cubical types and operations described
in Sect. 3 as new expression formers, we subsume them under f ē and c ēc. This happens
also in the implementation of Agda, thanks to the pre-existing support for builtins and
primitives.

We include a universe level ω for types like I which do not support transp or hcomp.
Eliminations e include, beyond function application to u and projections .π , path appli-
cations @u0,u1 v. Path applications to interval element v are annotated by the endpoints u0

and u1 used for reduction, in case v becomes i0 or i1.
In contrast to ordinary applications, path applications of stuck terms can reduce; for

instance, x @u0,u1 i0 reduces to u0. Thus, variable eliminations x ē are not necessarily
in weak head normal form. Thanks to HITs, this is not even the case for constructor
applications; c ē might also reduce!

Binary application u e is defined as a partial function on the syntax, by β reduction
(λx.u) v = u[v/x] in case of abstractions, or by accumulating eliminations (x ē) e = x (ē, e),
(f ē) e = f (ē, e), (c ē) ec = c (ē, ec), and otherwise it is undefined.

Patterns are augmented with path application copatterns, also in the spine for construc-
tors.

p ::= x variable pattern
| c q̄c fully applied constructor pattern
| bcc q̄c forced constructor pattern
| buc forced argument
| /0 absurd pattern

q ::= qc copattern for constructors
| .π projection copattern

qc ::= p application copattern
| @u0,u1 i path application copattern

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

30

x, i variables
` ::= n |ω universe levels
A, B, u, v ::= w weak head normal form

| f ē defined function or primitive applied to eliminations
| x ē variable applied to eliminations
| c ēc constructor applied to eliminations

W, w ::= (x : A)→ B dependent function type
| Set` universe `

| D ū datatype fully applied to parameters
| R ū record type fully applied to parameters
| λx. u lambda abstraction

e ::= ec elimination for constructors
| .π projection

ec ::= u application
| @u0,u1 v path application

Fig. 1: Syntax of Terms.

Note that we retain the boundary annotations of path applications even in patterns, since
we convert copatterns to eliminations, denoted as dqe, during type and coverage checking
for case trees.

We write PV(q̄) for the set of variables appearing as variable patterns x or as i in a path
application copattern. We will also often drop the subscript from ec and qc.

s ::= 	 status: unchecked
| ⊕ status: checked

decls ::= data D ∆ : Setn where con datatype declaration
| record self : R ∆ : Setn where field record declaration
| definition f : A where clss function declaration

con ::= c ∆ [ī | b] constructor declaration
b ::= ε | (u0, u1) b boundary terms

field ::= π : A field declaration

cls	 ::= q̄ ↪→ rhs unchecked clause
cls⊕ ::= ∆ ` q̄ ↪→ u : B checked clause

rhs ::= u clause body: expression
| impossible empty body for absurd pattern

Σ ::= decl⊕ signature

Fig. 2: Declarations.

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

31

The theory is parameterized by a list of declarations Σ whose grammar is shown in Fig. 2.
Declaration forms are due to Cockx & Abel (2018) except for datatype constructors c ∆ [ī |
b]. These take a telescope of arguments ∆, i.e. a list of variable typings (x : A), but now also
a boundary [ī | b], which specifies the dimensions ī and endpoints b of path constructors.
For example, posneg from Sect. 2.4.1 would be specified by posneg ε [i | (pos 0, neg 0)].
We will write ∆[ī | b]→ A for the iterated function and path type defined by the following
equations:

[]→ A = A

[i ī | (u0, u1) b]→ A = PathP (λ i. [ī | b]→ A) (λ ī. u0) (λ ī. u1)

(x : B)∆[ī | b]→ A = (x : B)→ ∆[ī | b]→ A

Further, we write ∆̂[ī | b] for the appropriate sequence of function and path applications. A
constructor c ∆′ [ī | b] for a datatype D ∆ will then have type ∆∆′[ī | b]→D ∆̂.

The core definition of Cockx & Abel (2018) is the elaboration judgment for func-
tion definitions Σ; Γ ` P | f q̄ := Q : C Σ′ which performs type and coverage checking
for the user supplied clauses of f given to the judgment as P. It further computes the
corresponding case tree Q and checked clauses cls⊕ in Σ′. Case trees Q are previously
specified by a typing judgment Σ; Γ ` f q̄ := Q : C Σ′ which follows the same struc-
ture but takes the case tree as input. Whenever the elaboration judgment succeeds, the
typing judgment will also hold. In particular, given a signature Σ, a function declaration
definition f : C where q̄′ ↪→ rhs is elaborated by a call to the elaboration judgment where
Γ = ε , q̄ = ε and P = {q̄′i ↪→ rhsi | i = 1 . . . k}. In the following, we only present the rules
for the case tree typing judgement and refer to the supplemental material for the elaboration
judgement.

4.3 Case Trees

Figures 3 and 5 describe the case tree typing judgment Σ; Γ ` f q̄ := Q : C |Θ Σ′ . In
our version, the judgment takes an extra input Θ which is a possibly empty list of boundary
assignments α , which in turn are lists of assignments of interval variables to either i0 or
i1. We denote with [α] the substitution implied by the equalities in α itself. The list Θ is
used to keep track of which faces of the current definition have accumulated some bound-
ary constraints, due to the rules to introduce a path (CTINTROPATH), a partial element
(CTSPLITPARTIAL), or to pattern match on an higher inductive type (CTSPLITCONHIT).

In the following, we comment on the individual rules of Figure 3:

CTDONE A leaf of a case tree consists of a term v of the expected type C. Moreover
v has to fulfill the boundary constraints on the faces specified by Θ: for every αi we
require that f q̄ and v agree when substituted with [αi], i.e., when restricted to the
face in question. Note that we impose the boundary constraints in the signature Σ

where we have not added the clause f q̄ ↪→ v yet, so they are non-trivial to satisfy.
We use Γα to denote the context obtained by removing the variables in α from Γ

and substituting their occurrences with the specified values.

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

32

Σ; Γ ` f q̄ := Q : C |Θ Σ′ Presupposes: Σ; Γ ` f dq̄e : C and dom(Γ) = PV(q̄) and
Θ = α1; . . . ; αn where α ::= ε | (i = i0) α | (i = i1) α such that Σ; Γ ` i : I.
Checks case tree Q and outputs an extension Σ′ of Σ by the clauses represented by
“f q̄ ↪→Q”.

Σ; Γ ` v : C Θ = α1; . . . ; αn

(Σ; Γαi ` f q̄[αi] = v[αi] : C[αi])i=1...n

Σ; Γ ` f q̄ := v : C |Θ Σ, (clause Γ ` f q̄ ↪→ v : C)
CTDONE

Σ; Γ ` C = (x : A)→ B : Set` Σ; Γ(x : A) ` f q̄ x := Q : B |Θ Σ′

Σ; Γ ` f q̄ := λx. Q : C |Θ Σ′
CTINTRO

Σ; Γ ` C = PathP B u0 u1 : Setn Θ′ = (i = 0); (i = 1); Θ

Σ; Γ(i : I) ` f q̄ @u0,u1 i := Q : B i |Θ′ Σ′

Σ; Γ ` f q̄ := λ i. Q : C |Θ Σ′
CTINTROPATH

Σ0; Γ ` C = PartialP r A : Setω Σ0; Γ ` r =
∨

i
∧

αi : I
(Σi−1; Γαi ` (f q̄[αi] b1=1c) := Qi : (A 1=1) | (α1; . . . ; αi−1; Θ)[αi] Σi)i=1...n

Σ0; Γ ` f q̄ := split{α1 7→Q1; . . . ; αn 7→Qn} : C |Θ Σn
CTSPLITPARTIAL

Σ0; Γ ` C = R v̄ : Setn record self : R ∆ : Setn where πi : Ai ∈ Σ0

σ = [v̄ / ∆, f dq̄e / self] (Σi−1; Γ ` f q̄ .πi := Qi : Aiσ |Θ Σi)i=1...n

Σ0; Γ ` f q̄ := record{π1 7→Q1; . . . ; πn 7→Qn} : C |Θ Σn
CTCOSPLIT

Σ0; Γ1 ` A = D v̄ : Setn data D ∆ : Setn where ci ∆i []∈ Σ0

(∆′i = ∆i[v̄ / ∆])i=1...n (ρi = 1Γ1] [ci ∆̂′i / x] ρ ′i = ρi] 1Γ2)i=1...n

(Σi−1; Γ1∆′i(Γ2ρi) ` f q̄ρ ′i := Qi : Cρ ′i |Θ Σi)i=1...n

Σ0; Γ1(x : A)Γ2 ` f q̄ := casex{c1 ∆̂′1 7→Q1; . . . ; cn ∆̂′n 7→Qn} : C |Θ Σn
CTSPLITCON

Σ0; Γ1 ` A = D v̄ : Setn Γ = Γ1(x : A)Γ2

data D ∆ : Setn where ci ∆i [j̄i | bi]∈ Σ0 ∃k. [j̄k | bk] 6= []
∆′i = ∆i(j̄i : I)[v̄ / ∆] q̄i = ∆̂i[j̄i | bi][v̄ / ∆]

ρi = 1Γ1] [ci q̄i / x] ρ ′i = ρi] 1Γ2

Θi = BOUNDARY(j̄i); Θ

Σi−1; Γ1∆′i(Γ2ρi) ` f q̄ρ ′i := Qi : Cρ ′i |Θi Σi


i=1...n

Σn; Γ1(x : D v̄)Γ2 ` f q̄ := casex{hcomp r u u0 7→Qhc} : C |Θ Σn+1

Σ0; Γ ` f q̄ := casex

{
c1 q̄1 7→Q1; . . . ; cn q̄n 7→Qn

hcomp r u u0 7→Qhc

}
: C |Θ Σn+1

CTSPLITCONHIT

Fig. 3: Typing rules for case trees (excluding Eq).

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

33

Σ; Γ ` f q̄ := casex{hcomp r u u0 7→Q} : C |Θ Σ′ Presupposes: (x : A)∈ Γ where A
is a type supporting hcomp, and the presuppositions made by the typing of case trees
judgment (Figure 3).
Checks case tree Q can be used for the hcomp case of a split on x.

∆hc = (r : I)(u : I→ Partial r A)(u0 : A [r 7→ u i0])

ρhc = 1Γ1] [hcomp r u u0 / x] ρ ′hc = ρhc] 1Γ2

Σ; Γ1∆hc(Γ2ρhc) ` f q̄ρ ′hc := Q : Cρ ′hc | (r = i1); Θ Σ′

Σ; Γ1(x : A)Γ2 ` f q̄ := casex{hcomp r u u0 7→Q} : C |Θ Σ′

Fig. 4: Typing a match against hcomp.

Σ; Γ1 ` A = EqB u v : Set` Σ; Γ1 `r
p u =? v : B⇒ YES(Γ′1, ρ, τ,)

ρ ′ = (ρ] [refl / x])] 1Γ2 τ ′ = τ] 1Γ2

Σ; Γ′1(Γ2(ρ] [refl / x])) ` f q̄ρ ′ := Qrefl : Cρ ′ Σ1

Σ1; Γ1(x : EqB u v)Γ2 ` f q̄ := casex{hcomp r t t0 7→Qhc} : C Σ2

∆tX = (b : B)(r : I)(p : Pathr B b v)(t0 : EqB u b)
ρtX = 1Γ1] [transpX p r t0 / x] ρ ′tX = ρtX] 1Γ2

Σ2; Γ1∆tX(Γ2ρtX) ` f q̄ρ ′tX := QtX : Cρ ′tX | (r = i1); Θ Σ′

Σ; Γ1(x : A)Γ2 ` f q̄ := casex


refl 7→τ ′ Qrefl

hcomp r t t0 7→Qhc

transpXb p r t0 7→QtX

 : C Σ′

CTSPLITEQ

Σ; Γ1 ` A = EqB u v : Set` Σ; Γ1 `r
p u =? v : B⇒ NO

Σ; Γ1(x : A)Γ2 ` f q̄ := casex{} : C Σ
CTSPLITABSURDEQ

Fig. 5: Typing rules for case trees involving Eq.

CTINTROPATH If the expected type C is a path type PathP B u0 u1 then we can
extend the left hand side to f q̄ @u0,u1 i. We also extend the list of boundary assign-
ments to include the two faces (i = i0) and (i = i1), which will in CTDONE ensure
that Q produces an element that connects u0 and u1. To see this, note that u0 is judg-
mentally equal to expression f q̄ @u0,u1 i0 and u1 to f q̄ @u0,u1 i1, because of equality
for path applications.
CTSPLITPARTIAL If the expected type is equal to PartialP r A,8 then we can pro-
ceed by splitting on the faces α1, . . . , αn as long as they together cover all the ways
in which we can have r = i1. This is ensured by the premise r =

∨
i
∧

αi, where∧
α is defined by mapping (i = i1) to i and (i = i0) to ~ i, and combining the

resulting elements with ∧. For each face, the left hand side is first refined to f q̄[αi]

8 PartialP is a dependent version of Partial where A is a partial element as well, i.e., A : Partial r Setn.

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

34

so that the variables in the copatterns q̄ match their assignment, and then extended
by b1=1c which is the right elimination for PartialP r A as we have r = i1 in Γαi .
Additionally, since the faces αi can have overlaps we need to make sure that the
different case trees Qi agree on the intersections, this is accomplished by extending
Θ with the assignments of the previous cases. Finally when substituting into a list of
assignments, as in Θ[α] , any trivial equalities get removed and any contradictory
ones cause the whole assignment in which they appear to be removed.
CTSPLITCONHIT If the left-hand side f q̄ contains a variable x of a data type
D v̄, then we can pattern match on x, building a casex{. . .} node that covers all the
alternatives. Note that here, as well as CTSPLITCON, the datatype is not an indexed
family, so we do not require a clause for transpX. In this rule we deal with the case in
which D v̄ is an HIT, as at least one of the ci has a non-empty boundary. For each of
the constructors ci we check the case tree Qi. To do so we (1) refine f q̄ by replacing
x with ci fully applied to variable and path application copatterns according to its
type; and (2) expand the list of assignments with both (j = i0) and (j = i1) for each
j in j̄i, which is what BOUNDARY(j̄i) denotes. Moreover we need to consider the
case for hcomp r u u0 (see Figure 4): we check Qhc by (1) replacing x by the pattern
hcomp r u u0 in the left-hand side and (2) extending Θ with (r = i1) since that is the
face where hcomp r u u0 computes to u i1 1=1.

We discuss rule CTSPLITEQ in the next section, while the remaining rules do not directly
involve any of the new features of Cubical Agda, so we ask the reader to refer back to the
corresponding judgment in Cockx & Abel (2018).

4.3.1 Unification: splitting on the inductive equality type.

The rule CTSPLITEQ allows splitting on EqB u v only when u and v can be unified by
some substitution ρ , so that refl will be typeable at EqBρ uρ vρ . Cockx & Devriese (2018)
define a proof relevant notion of unification, where most general unifiers are equivalences
of the form Γ(x : IdB u v)' Γ′. Moreover they also define a notion of strong unifier which
requires additional definitional equalities to be satisfied by the equivalence, these guaran-
tee that reductions are preserved when a case tree is translated to eliminators. Cockx &
Abel (2018) adapt the notion of strong unifier to their specific setting, but they only pre-
serve the substitutions between the two contexts, as the proofs are guaranteed to specialize
to reflexivity when the element of EqB u v is refl, and they have no other canonical ele-
ments of that type. In our context, the arguments r and p of transpX p r t, when paired
together, correspond to the canonical elements of Swan’s Id type (Cohen et al., 2018),
which supports the same interface of the identity type used in Cockx & Devriese (2018)
to define their unifiers, as shown in Section 9.1 of Cohen et al. (2018). Accordingly, we
define Pathr A a0 a1 to be the type of paths a0 ≡A a1 that are refl when r = i1, so that
we can use a telescope like (r : I)(p : Pathr A a0 a1) to represent unification problems, and
the inputs to transpX. The notion of Pathr A a0 a1 has an extensional flavour, because an
assumption (p : Pathi1 A a0 a1) implies the definitional equality of a0 and a1. For this rea-
son we only introduce it as a bookkeeping notation in the typing context of case trees, and
merely regard it as an aid to express the metatheory developed here. To keep track of paths

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

35

between substitutions we define a substitution path between substitutions Γ ` σ0, σ1 : ∆ to
be a substitution Γ(i : I) ` η : ∆ such that Γ ` η [i0/ i] = σ0 : ∆ and Γ ` η [i1/ i] = σ1 : ∆. We
also say that a substitution path Γ(i : I) ` η : Γ is constant if it is equal to 1Γ weakened
by (i : I). We now have everything in place to give our definitions of strong unifier and
disunifier.

Definition 1 (Strong unifier). Let Γ be a well-formed context and u and v be terms
such that Γ ` u, v : A. A strong unifier (Γ′, σ , τ, η) of u and v consists of a context Γ′

and substitutions Γ′ ` σ : Γ(r : I)(p : Pathr A u v) and Γ(r : I)(p : Pathr A u v) ` τ : Γ′ and
a substitution path η between σ ; τ and 1Γ(r:I)(p:Pathr A u v) such that:

1. Γ′ ` rσ = i1 : I and Γ′ ` pσ = refl : Pathi1 Aσ uσ vσ (these imply the definitional
equality Γ′ ` uσ = vσ : Aσ).

2. Γ′ ` τ; σ = 1Γ′ : Γ′

3. For any Γ0 ` σ0 : Γ(r : I)(p : Pathr A u v) such that Γ0 ` rσ0 = i1 : I and Γ0 ` pσ0 =

refl : Pathi1 Aσ0 uσ0 vσ0, we have that Γ0 ` σ ; τ; σ0 = σ0 : Γ(r : I)(p : Pathr A u v)
and that η ; (σ0] 1i:I) is a constant substitution path.

The last condition about η ; (σ0] 1i:I) being a constant substitution path makes sure
that transporting along η will be the identity whenever r an p are solved by i1 and refl. It
corresponds to the analogous condition about isLinv in Definition 53 of Cockx & Devriese
(2018). Note that while η is not used in the CTSPLITEQ typing rule, it will be necessary
in Sect. 4.3.3.

Definition 2 (Disunifier). Let Γ be a well-formed context and Γ ` u, v : A. A disunifier of
u and v is a function Γ ` f : (u≡A v)→⊥ where ⊥ is the empty type.

Finally we can assume the existence of a proof relevant unification algorithm which we
specify through the following judgments:

• A positive success Σ; Γ `r
p u =? v : B⇒ YES(Γ′, ρ, τ, η) ensures that the tuple

(Γ′, ρ] [i1 / r, refl / p], τ, η) is a strong unifier.
• A negative success Σ; Γ `r

p u =? v : B⇒ NO ensures that there exist a disunifier of u
and v.

Note that ρ is a pattern substition, i.e., it contains only variables and forced arguments,
so that it can be applied to patterns. In general the algorithm might also fail to provide a
definitive answer, in which case no split on EqB u v is allowed.

Remark 3. Note that the unification rules from Cockx & Devriese (2018) that are specific
to datatypes will not apply to datatypes with path constructors, as properties like injectivity
and distinctness of constructors cannot be guaranteed to hold in that case. In principle
we could ask the user to provide suitable proofs of these properties, but there is no such
interface at the moment.

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

36

Σ; Γ(x : D v̄)∆ ` f q̄ : C |Θ⇒x HC-RHS(rhs)

Θ = α1; . . . ; αn ∆hc = (r : I)(u : I→ Partial r (D v̄))(u0 : D v̄ [r 7→ u i0])

∆i = ∆[hfill u u0 i / x]

δ i : ∆i = TRANSP-TEL (j. ∆~ j ∨ i) i ∆̂i1

sys = λ i.


(r = i1)→ f q̄[u i 1=1 / x, δ i / ∆i]

α1 → f q̄[hfill u u0 i / x, δ i / ∆i][α1]
...

αn → f q̄[hfill u u0 i / x, δ i / ∆i][αn]


rhs = comp (λ i.C[hfill u u0 i / x, δ i / ∆i]) sys (inS (f q̄[outS u0 / x, δ i0 / ∆]))

Derivable typing: Γ∆hc∆[hcomp u u0 / x] ` rhs : C[hcomp u u0 / x]

Σ; Γ(x : D v̄)∆ ` f q̄ : C |Θ⇒x HC-RHS(rhs)

Fig. 6: Computing the right hand side of a hcomp match.

4.3.2 Inferring Right-Hand Side of a hcomp r u u0 match

In the examples given in Sect. 2 we have never given a clause for the hcomp construc-
tor when pattern matching on an element of a higher inductive type. That is because
Cubical Agda generates a suitable clause for us during elaboration. How to deal with
the hcomp case was already explained in Cohen et al. (2018), but only for the respec-
tive induction principle, while in our case we have to deal with user clauses that include
multiple-argument and nested pattern matching.

Fortunately in the context of the rule CTSPLITCONHIT we have the right information
available to construct a term that would be suitable for Qhc. This is accomplished in Fig. 6
by the only rule of the judgment Σ; Γ(x : D v̄)∆ ` f q̄ : C |Θ⇒x HC-RHS(rhs). The term rhs
is supposed to be typable as

Γ∆hc∆[hcomp u u0 / x] ` rhs : C[hcomp u u0 / x]

while also satisfying the constraints implied by r = i1; Θ. The construction of rhs is fairly
involved, so we will build up to it with simpler cases.

First let us assume both ∆ and Θ are empty and that C = T where T does not depend on
x, which means we want Γ∆hc ` rhs : T . We already have Γ(x : D v) ` f q̄ : T , which we can
use with x replaced by elements of type D v obtained by u and u0, and build a composition
in T . Writing g(d) for f q̄[d / x], we define rhs as

Γ∆hc ` rhs := hcomp (λ{i (r = i1)→ g(u i 1=1)}) (inS(g(outS u0))) : T

Note that Γ∆hc, r = i1 ` rhs = f q̄[u i1 1=1 / x] as expected, while defining rhs as just
g(outS u0)) would not have satisfied this equality.

Slightly more complex is the case where T does depend on x, so that g(u i 1=1)

has type T [u i 1=1 / x] and g(outS u0) has type T [outS u0 / x], while rhs will have type
T [hcomp u u0/x]. What we need then is to use heterogeneous composition, comp, along
with a suitable family A : I→ Set` which matches the three types above in the respective

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

37

cases. We have already seen that hfill u u0 is a filler for the open box specified by u and u0

and with lid hcomp u u0, so taking A = λ i. T [hfill u u0 i / x] will do the job

Γ∆hc ` rhs := comp A (λ{i (r = i1)→ g(u i 1=1)}) (inS(g(outS u0))) : T [hcomp u u0 / x]

this definition also matches the behaviour of the eliminator for spheres in Sect. 9.2 of
Cohen et al. (2018).

Let us now consider that we have a single y of type Y : Set` in ∆:

Γ∆hc(y : Y [hcomp u u0 / x]) ` rhs : T [hcomp u u0 / x]

This case could be seen as a special case of the previous one, by replacing T with
(y : Y)→ T and having λy.g(d) in place of g(d). However, for the sake of consistency
with other cases, we write out explicitly how such a composition can be obtained.
Let g(d, v) = f q̄[d / x, v / y] and yi = transp (λ j.Y [hfill u u0 (~ j ∨ i) / x]) i y and A =

λ i. T [hfill u u0 i / x, yi / y], then

rhs = comp A (λ{i (r = i1)→ g(u i 1=1, yi)}) (inS(g(outS u0), yi0)) : T [hcomp u u0 / x].

Compare this composition with the definition of transportPi in Sect. 3.2.1.
Alternatively, ∆ could be (k : I), with Θ = (k = i0); (k = i1), as might happen when q̄

contains a path application. Then rhs should have typing

Γ∆hc(k : I) ` rhs : T [hcomp u u0 / x]

and be equal to f q̄[hcomp u u0 / x, i0 / k] whenever k = i0, and likewise for i1. As in the
implementation of transporPath we can address these constraints by adding to the sides
of the composition. Let g(d, s) = f q̄[d / x, s / k], and A be as in the empty ∆ case, then we
define rhs as

sys = λ i.


(r = i1)→ g(u i 1=1, k)
(k = i0)→ g(hcomp u u0, i0)

(k = i1)→ g(hcomp u u0, i1)


rhs = comp A sys (inS(g(outS u0, k))) : T [hcomp u u0 / x]

Note that it does not matter from which part of the context k comes from for the definition
above to be well-typed, so the same strategy applies also when Θ refers to variables in Γ.

Finally, when we let ∆ and Θ contain multiple variables and equations we end up with
the definition given in Fig. 6. There we use a version of transp generalized to telescopes,
TRANSP-TEL , which covers both the cases like (k : I) where nothing is to be done, and
(y : Y) where transp for Y is used. It can also fail if the type does not support transp but it
is not closed, in which case elaboration fails.

During elaboration we can then run the algorithm expressed by this judgment and
generate internally a clause for hcomp r u u0.

4.3.3 Inferring case tree of a transpX p r t0 match

What we discussed in the previous section about a hcomp match also holds if we are
splitting on an inductive family like EqB u v. Additionally, however, we have to handle the
possbility that we are matching against an element built with transpX p r t0. In this case
we will produce a case tree that performs a further split on t0 so that we have to produce

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

38

Σ; Γ(x : EqA u v)∆ | (Γ′, ρ, τ, η) ` f q̄ : C |Θ⇒ TRXREFL(rhs)

Θ = α1; . . . ; αn ∆refl = (r : I)(p : Pathr B u v)

∆i = ∆[transpX p r refl / x][η]

δ i : ∆i = TRANSP-TEL (j. ∆~ j ∨ i) (i∨ r) ∆̂i1

sys = λ i.


(r = i1)→ f q̄[(ρ] refl / x)[τ]] δ i / ∆]

α1 → f q̄[transpX p r refl / x][η] δ i / ∆i][α1]
...

αn → f q̄[transpX p r refl / x][η] δ i / ∆i][αn]


base = inS (f q̄[(ρ] refl / x)[τ]] δ i0 / ∆])

rhs = comp (λ i.C[transpX p r refl / x][η] δ i / ∆i]) sys base

Derivable typing: Γ∆refl∆[transpX p r refl / x] ` rhs : C[transpX p r refl / x]

Σ; Γ(x : EqA u v)∆ | (Γ′, ρ, τ, η) ` f q̄ : C |Θ⇒ TRXREFL(rhs)

Fig. 7: Computing the right hand side of a transpX p r refl match.

right hand sides that fit the following clauses for the function f,

f q̄[transpX p r refl/x] = rhsrefl

f q̄[transpX p r (transpX q s t1)/x] = rhstX

f q̄[transpX p r (hcomp s w w0)/x] = rhshc

the term rhshc can be computed using the HC-RHS judgment from the previous section,
we only need to specialize the copatterns q̄ to q̄[transpX p r x / x] and update the other
arguments accordingly. Specifically, using the definitions from rule CTSPLITEQ,

Σ; Γ1∆tXΓ2ρtX ` f q̄ρ
′
tX : Cρ

′
tX | (r = i1); Θ⇒t0 HC-RHS(rhshc).

The other two terms, rhsrefl and rhstX, are obtained using the judgments in figures 7 and 8.
The judgment Σ; Γ(x : EqA u v)∆ | (Γ′, ρ, τ, η) ` f q̄ : C |Θ⇒ TRXREFL(rhs) in Figure 7

is where we make use of the η component of the strong unifier obtained from the judgment
Σ; Γ `r

p u =? v : A⇒ YES(Γ′, ρ, τ, η). [Andrea: TODO: explain specialization by match on
refl?] Let us focus on the case where ∆ and Θ are empty, then we want to construct a term
rhs with typing

Γ(r : I)(p : Pathr u v) ` rhs : C[transpX p r refl/x].

By the definition of strong unifier we have that σ := ρ] [i1/r, refl/ p] is an equivalence
between Γ(r : I)(p : Pathr u v) and Γ′, so we can use it to rewrite our goal to

Γ
′ `?0 : C[transpX p r refl/x]σ .

By simplifying substitutions and reducing transpX, the type of ?0 is equal to C[ρ] refl/x],
which is the type of f q̄[ρ] refl/x], so we can use that to conclude. Writing an explicit term

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

39

Σ; Γ(x : EqA u v)∆ ` f q̄ : C |Θ⇒ TRXTRX(rhs)

Θ = α1; . . . ; αn ∆tX = (b : B)(r : I)(p : Pathr B b v)

(b′ : B)(s : I)(q : Paths B b′ b)(t : EqB u b′)

eq0 = transpX (q •s,r p) (r ∧ s) t eq1 = transpX p r (transpX q s t)

Let eq : eq0 ≡ eq1 and eqs,r : PartialP (s∨ r) (λ (s∨ r = i1)→ eq≡ refl)

both constant when r ∧ s = i1.

∆′ = ∆[eq1 / x]

δ (r′, eq′, j) = TRANSP-TEL (i. ∆[eq′(~i∨ j) / x]) ((s∧ r)∨ r′ ∨ j) ∆̂′

f (r′, eq′, j) = f q̄[eq’(j) / x, δ (r′, eq′, j) / ∆]

C′(r′, eq′) = λ j→C[eq’(j) / x, δ (r′, eq′, j) / ∆]

sys(r′, eq′) = λ j→



α1 → f (r′, eq′, j)[α1]
...

αn → f (r′, eq′, j)[αn]

(r ∧ s = i1)→ f (r′, eq′, j)

(r′ = i1) → f (r′, eq′, j)


c(r′, eq′) = comp C′(r′, eq′) sys(r′, eq′) (inS (f (r′, eq′, i0)))

sys′ = λ i→



α1 → f q̄[eq0 / x][α1]
...

αn → f q̄[eq0 / x][α1]

(r = i1)→ c(i, eqs,r 1=1 i)

(s = i1) → c(i, eqs,r 1=1 i)


rhs = hcomp sys′ c(i0, eq)

Derivable typing: Γ∆tX∆′ ` rhs : C[eq1 / x]

Σ; Γ(x : EqA u v)∆ ` f q̄ : C |Θ⇒ TRXTRX(rhs)

Fig. 8: Computing the right hand side of a transpX p r (transpX q s t) match.

for the reasoning above we get

rhs = comp (λ i.C[transpX p r refl/x]η)

(λ{i (r = i1)→ f q̄[ρ] refl/x]τ})
(inS(f q̄[ρ] refl/x]τ)).

Finally, the judgment Σ; Γ(x : EqA u v)∆ ` f q̄ : C |Θ⇒ TRXTRX(rhs) in Figure 8 is
where we take care of the case f q̄[transpX p r (transpX q s t) / x] by making use of the
case f q̄[transpX (q •s,r p) (r ∧ s) t], which has one fewer transpX and so gets us closer to
the transpX refl base case. The expression (q •s,r p) is built with a transitivity operator
that makes use of the s and r argument to reduce to q when r = i1 and reduce to p when
s = i1, making eq0 and eq1 definitionally equal under either condition. Using connections
and transports we can define both eq and eqs,r as specified, and then we proceed to define

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

40

the required term rhs by nesting compositions inside an homogeneous composition. The
term obtained with c(i0, eq) would have the right type and satisfy the boundary conditions
from Θ, but it would not satisfy the ones imposed by (s = i1); (r = i1), the matching cases
of sys′ take care of that.

5 Glue Types in Cubical Agda

Glue types are the key contribution of Cohen et al. (2018) for equipping the univalence
principle with computational content. Given that a type in cubical type theory stands for a
higher dimensional cube, Glue types let us construct a cube where some faces have been
replaced by equivalent types. This is analogous to how hcomp lets us replace some faces
of a cube by composing it with other cubes, however for Glue types we can compose with
equivalences instead of paths. This implies the univalence principle and it is what lets us
transport along paths built out of equivalences.

5.1 Glue Types and Univalence

As everything in Cubical Agda has to work up to higher dimensions, the Glue types take
a partial family of types A that are equivalent to the base type B. The idea is then that these
types get glued onto B so that the equivalence data gets packaged up into a new datatype.

Glue : (B : Set `) {r : I} → Partial r (Σ[A ∈ Set `] (A ' B))→ Set `

When r is i1 the type Glue {r} B Ae reduces to Ae 1=1 .fst.
Using Glue types we can turn an equivalence of types into a path and hence define ua.

ua : {A B : Set `} → A ' B→ A ≡ B
ua {A = A} {B = B} e i = Glue B (λ { (i = i0)→ (A , e) ; (i = i1)→ (B , idEquiv B) })

The idea is that we glue A onto B when i is i0 using e and B onto itself when i is i1 using
the identity equivalence. The term ua e is a path from A to B as the Glue type reduces when
the face conditions are satisfied, so when i is i0 this reduces to A and when i is i1 it reduces
to B. Pictorially we can describe ua e as the dashed line in:

A B

B B

e ∼ ∼ idEquiv B

B

The transp operation for Glue types is the most complicated part of the internals of
Cubical Agda. The algorithm closely follows Huber (2017, Sect. 3.6), which is a variation
of the original algorithm from Cohen et al. (2018, Sect. 6.2). We will focus on the special
case of transport (λ i→ ua e i) a for simplicity. This will transport a from A to B by going
through the three fully filled lines in the above picture.

Unfolding ua gives

transport (λ i→ Glue B (λ { (i = i0)→ (A , e) ; (i = i1)→ (B , idEquiv B) }) a

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

41

By the boundary equations for Glue types we get that a : A (as it is in the i = i0 face
of the Glue type). The algorithm then applies the function of e (i.e., e .fst : A → B) to a
giving an element in B. As B is constant along i we could now be done, however for the
general algorithm there is no reason for the base to be constant along i; it could for example
be another Glue type! We must hence transport along (λ i → B) to get an element in the
bottom-right B in the diagram. In order to go up to the top-right corner we then use the
inverse of the identity equivalence.9 Since this is the identity function we end up with:

transport (λ i→ B) (e .fst a)

Using the same path as in the definition of transport for path types we can prove that
this is equal to e .fst a up to a path:

uaβ : {A B : Set `} (e : A ' B) (a : A)→ transport (ua e) a ≡ e .fst a
uaβ {B = B} e a = λ i→ transp (λ → B) i (e .fst a)

Transporting along the path that we get from applying ua to an equivalence is, thus,
the same as applying the equivalence. This makes it possible to use the univalence axiom
computationally in Cubical Agda: we can package up equivalences as paths, do equality
reasoning using these paths, and in the end transport along the paths to compute with the
equivalences. Furthermore, the combination of ua and uaβ is sufficient to prove that ua is
an equivalence which gives the full univalence theorem, i.e., an equivalence between paths
and equivalences.10

univalence : ∀{`}{A B : Set `}→ (A ≡ B) ' (A ' B)

5.2 General Case of transp for Glue Types and the ghcomp Operation

While the special case of transp for Glue types above is quite simple the general case is a
lot more complex. The reason is that the input might depend on many more variables than
just i. When considering

transport (λ i→ Glue B (λ { (r = i1)→ (A , e) }) a

the interval element r might be quite complex and its disjunctive normal form might con-
tain clauses that do not involve i. On these parts the transp function should compute like
the transp function for A by the boundary rules for Glue types. This in turn means that
additional corrections have to be made compared to the ua case. In Cohen et al. (2018) the
part of r that does not mention i is written ∀i.r (as this operation corresponds to universal
quantification on the interval).11

One of the modifications we have to do in the general case of transp for Glue types
is that the simple transport in B has to be a comp with suitable corrections for the ∀i.r
faces. While this is easily achieved it has some unfortunate consequences in the case of
transporting along ua. In this particular case r is i ∨ ~ i so that (∀i.r) = i0 as there is no

9 In general this might not be the identity function, thus, this step might actually do something.
10 https : //github.com/agda/cubical/blob/master/Cubical/Foundations/Univalence.agda#L63.
11 Technically speaking the ∀ operation in Cohen et al. (2018) is not an operation on the interval, but rather on

the face lattice F. However it is direct to define an analogous operation on the interval and it is this one we use
here.

https://github.com/agda/cubical/blob/b830d36d6e4c0fab027573cb8369f4f1244a5f13/Cubical/Foundations/Univalence.agda#L63

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

42

part that does not mention i. This means that the comp correction will introduce an empty
system which implies that our simple proof of uaβ does not work anymore. In order to fix
this we have to extend the proof of uaβ with a suitable hfill in order to compensate for the
additional empty system.

Luckily there is a simple trick in Cubical Agda that lets us adapt the correction to
eliminate the empty system. The problem with the above sketched definition is that the
comp does not reduce when ∀i.r is i0, however if we add a clause mapping to the base
for this case the issue with the empty system goes away. This relies on a subtle difference
between the hcomp operation in Cubical Agda and the one in Coquand et al. (2018).
In the latter the boundary constraints were elements of the face lattice F generated by
formal generators (i = i0) and (i = i1) subject to the relation (i = i0)∧ (i = i1) =⊥. In
Cubical Agda on the other hand the hcomp operation takes a family of partial elements
that are specified by some r : I. This means that we in Cubical Agda can add a face when
(r = i0) which was not possible in Coquand et al. (2018) as there is no corresponding
operation for F.

The reason that F in Coquand et al. (2018) does not admit such an operation is that while
every ϕ : F is expressible as r = i1 the choice of r is not unique. In particular for ϕ = 0F we
can choose either i0 or i∧¬i which would give different results when equated to i0. Using
r : I to specify boundaries in Cubical Agda avoids the need to make such a choice, and
in particular (r = i0) is represented by ¬r. It would be tempting to instead extend F with a
negation operation, however that would allow us to represent new kinds of boundaries, like
the open interval (0, 1] as ¬(i = i0), and it is not clear how they would impact decidability
of typechecking. Modifying hcomp and transp to take a r : I is semantically justified by the
fact that it is not necessary for boundaries to be specified by a subobject of the subobject
classifier Ω in the presheaf topos of cubical sets in order to obtain a model of univalent
type theory.12

Inspired by Angiuli et al. (2017, Page 53) we call the homogeneous version of this oper-
ation generalized homogeneous composition, ghcomp. The heterogeneous version used
above can be implemented by using ghcomp in the definition of comp. We can write the
ghcomp operation as:

ghcomp : {r : I} (u : I→ Partial r A) (u0 : A [r 7→ u i0])→ A
ghcomp {r = r} u u0 =

hcomp (λ j→ λ { (r = i1)→ u j 1=1 ; (r = i0)→ outS u0 })
(inS (outS u0))

By using this in all of the places where the ∀ correction has to be made in the general
algorithm for transp for Glue we obtain a better algorithm which does not produce any new
empty systems. This way the proof of uaβ can stay as simple as above and no additional
corrections has to be made. This is an improvement compared to the algorithm in Cohen
et al. (2018) (that is implemented in cubicaltt) which produced a surprisingly large
number of empty systems even in simple cases.

12 This generalization has been formally verified in Agda in https://github.com/mortberg/
gen-cart/.

https://github.com/mortberg/gen-cart/
https://github.com/mortberg/gen-cart/

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

43

6 Metatheory of Cubical Type Theory and Cubical Agda

The original formulation of cubical type theory as in Cohen et al. (2018) has a model
in Kan cubical sets with connections and reversals, that is, presheaves on a suitable cube
category where types have structure corresponding to the comp operation. This model has
been formally verified in both the NuPRL proof assistant by Bickford (2018) and using Agda
as the internal language of the presheaf topos of cubical sets by Orton & Pitts (2016) and
Licata et al. (2018). This hence provides semantic consistency proofs for the cubical type
theory that Cubical Agda is based on. Applying Tait’s computability method, a syntactic
consistency proof for this cubical type theory was given in Huber (2016) by defining an
operational semantics and proving that any term of type N computes to a numeral.

A crucial property for synthetic mathematics, as in Sect. 2.5, is the existence of inter-
esting models of the theory. Ideally we would like to be able to interpret these results in
topological spaces or even any (Grothendieck) ∞-topos. Currently these questions have not
been fully resolved for the various cubical type theories that have been considered. In fact,
Sattler (2018) has shown that the standard model of Cubical Agda is not equivalent13 to
topological spaces. However, if one drops the reversal operation (~) from Cubical Agda

any internal result about homotopy groups of spheres corresponds to a result about the
homotopy groups of spheres in spaces.14 Furthermore, there has been recent progress on
an “equivariant” cubical set model that is equivalent to spaces (Riehl, 2019). We are hence
very optimistic that these issues will be resolved in the near future. Furthermore, as soon
as a satisfactory cubical type theory with a model in spaces has been developed we expect
it to be straightforward to adapt Cubical Agda and its library to that theory. Indeed, the
main features that we rely on—computational univalence and higher inductive types with
definitional computation rules for all constructors—should also be satisfied by that cubical
type theory.

The syntax and semantics of HITs in cubical type theory were studied in Coquand et al.
(2018). The canonicity proof has been shown to extend to the circle and propositional
truncation in Huber (2016, Sect. 5). One technical consequence of the way the system
in Coquand et al. (2018) is designed is that there are closed terms of the circle in an
empty context that are not base, for example hcomp (λ i→ empty) base. These degenerate
elements were a serious problem in cubicaltt as they complicated both programming
and proving, affecting the efficiency of the system.

These elements arose from the way comp reduces for Glue types in Cohen et al. (2018),
but with the optimization discussed in Sect. 5.2 using ghcomp we can eliminate them.
This requires us to impose a “validity” constraint on partial elements—following Angiuli
et al. (2018, Def. 12)—which says that Partial r A is valid if it cannot become empty from
a dimension substitution (a concrete condition is that r is a classical tautology). Validity
combined with ghcomp eliminates all of the ways that a partial element can become empty

in the system. As Cubical Agda implement the ghcomp optimization we expect it to be
possible to prove a refinement of the canonicity theorem stating that the point constructors
are the only elements of HITs in the empty context.

13 By “equivalent” we mean that the notion of fibration in the cubical set model gives rise to a model structure
that is Quillen equivalent to the classical Quillen model structure on spaces.

14 For further details and discussions about this result see: https://groups.google.com/forum/#!
topic/homotopytypetheory/imPb56IqxOI

https://groups.google.com/forum/#!topic/homotopytypetheory/imPb56IqxOI
https://groups.google.com/forum/#!topic/homotopytypetheory/imPb56IqxOI

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

44

While the comp operation is complicated a recent result by Coquand et al. (2019) shows
that for the Cohen et al. (2018) cubical type theory any implementation of the comp oper-
ation yield the same result for natural numbers up to a path. As Cubical Agda is based on
this cubical type theory the result also applies, so even though the implementation of comp

differs from the way comp was defined in Cohen et al. (2018), the result for closed terms
of type natural numbers will be the same up to a path.

7 Conclusion

In this paper we presented Cubical Agda, an extension of Agda with features from cubical
type theory. This brings to a proof assistant both a fully computational univalence princi-
ple and HITs. Moreover, induction on HITs and construction of paths are integrated into
Agda’s very expressive pattern matching, providing support for more idiomatic definitions
than direct use of eliminators. We expect that such a development environment will lead
to more widespread use and experimentation not only of cubical type theory but also of
HoTT/UF, in particular for programming applications.

7.1 Related Work

This work is based on the work on cubical type theory of Cohen et al. (2018) and
Coquand et al. (2018) and the cubicaltt prototype implementation (Cohen et al., 2015).
However, that implementation did not have support for many of the features of a mod-
ern proof assistant (implicit arguments, type inference, powerful pattern-matching, etc.)
so Cubical Agda can be seen as its successor. Additionally, the transport structure for
inductive families is based on the schema presented in Cavallo & Harper (2019b).

The most closely related cubical proof assistant to Cubical Agda is redtt (The
RedPRL Development Team, 2018), which also supports computable univalence and HITs.
It is based on a variation of cubical type theory called cartesian cubical type theory. This
has models in cartesian cubical sets (Angiuli et al., 2019) and cartesian cubical computa-
tional type theory (Angiuli et al., 2018; Cavallo & Harper, 2019b). The redtt system has
been developed from scratch in order to be a proof assistant for cubical type theory and it
has some features that are not in Cubical Agda yet, like pre-type universes and extension
types inspired by Riehl & Shulman (2017).

The work of Tabareau et al. (2018, 2020) extends Coq with the ability to transport
programs and properties along equivalences using what the authors call univalent para-
metricity. While this achieves some consequences of constructive univalence it does not
provide computational content to the full univalence axiom, in particular to neither function
nor propositional extensionality. There is also no support for HITs.

The computation rules for equality are also defined by cases on the type in Observational
Type Theory (OTT) (Altenkirch & McBride, 2006; Altenkirch et al., 2007). This type the-
ory also proves function and propositional extensionality without sacrificing typechecking
and constructivity, however it satisfies UIP. Recently, the XTT type theory has been devel-
oped (Sterling et al., 2019) to reconstruct OTT’s exact equality using cubical methods,
satisfying UIP rather than univalence. Languages like XTT and OTT can be used as an

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

45

extensional substrate for a two-level type theory (Voevodsky, 2013; Annenkov et al., 2017),
which would have both equality and path types.

Examples of ideas from HoTT/UF in computer science include Angiuli et al. (2016)
where the authors use univalence and HITs to model Darcs style patch theory. This work
envisioned what could be done if these notions were computing, but at the time it was
unknown how to make this happen. However, now that Cubical Agda supports this, it
would be interesting to redo the examples as the implementation would now compute.
Another example is HoTTSQL (Chu et al., 2017) which defines a formal SQL style language.
The use of HoTT/UF is restricted to reasoning about cardinal numbers and it is not clear
how much would be gained from doing this cubically.

Since the conference version (Vezzosi et al., 2019) of this article was published some
interesting formalizations have been performed using Cubical Agda. Forsberg et al.
(2020) implemented three equivalent ordinal notations systems and transported programs
and proofs between them. Altenkirch & Scoccola (2020) considered a higher inductive
version of the integers which differs from the one in Sect. 2.4.1. Veltri & Vezzosi (2020)
formalize the π-calculus using a guarded version of Cubical Agda (Birkedal et al., 2019).
Various results from synthetic homotopy theory, extending Sect. 2.5, were developed
by Mörtberg & Pujet (2020). Finally, Angiuli et al. (2020) explored consequences of
cubical type theory and Cubical Agda to traditional computer science applications like
program/proof transfer and representation independence.

7.2 Future Work

Interesting further directions would be to study meta-theoretical properties of cubical type
theory, including a proof of decidability of type-checking and a complete correctness proof
of the conversion checking algorithm with respect to a declarative specification of equality.
We believe this can be done by extending the canonicity proof of Huber (2016) using ideas
from Abel et al. (2017).

We would also like to extend Cubical Agda with more cubical features, like cubi-
cal extension types inspired by Riehl & Shulman (2017). An important open problem
in the area of constructive synthetic homotopy theory is to compute the Brunerie num-
ber (Brunerie, 2016) which so far has proved to be infeasible using cubicaltt and
Cubical Agda. It would hence be interesting to study compilation and efficient closed
term evaluators of cubical languages in order to be able to do this kind of computations.

References

Abel, A., Pientka, B., Thibodeau, D. and Setzer, A. (2013) Copatterns: Programming infinite
structures by observations. SIGPLAN Not. 48(1):27–38.

Abel, A., Öhman, J. and Vezzosi, A. (2017) Decidability of conversion for type theory in type theory.
Proc. ACM Program. Lang. 2(POPL):23:1–23:29.

Agda development team. (2018) Agda 2.5.4.2 documentation.
Ahrens, B., Capriotti, P. and Spadotti, R. (2015) Non-wellfounded trees in homotopy type theory.

CoRR abs/1504.02949.
Altenkirch, T. and McBride, C. (2006) Towards Observational Type Theory. Unpublished draft.

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

46

Altenkirch, T. and Scoccola, L. (2020) The Integers as a Higher Inductive Type. Proceedings of
the 35th Annual ACM/IEEE Symposium on Logic in Computer Science. LICS ’20, pp. 67–73.
Association for Computing Machinery.

Altenkirch, T., McBride, C. and Swierstra, W. (2007) Observational equality, now! PLPV ’07:
Proceedings of the 2007 workshop on Programming languages meets program verification pp.
57–68. ACM.

Angiuli, C., Morehouse, E., Licata, D. R. and Harper, R. (2016) Homotopical patch theory. Journal
of Functional Programming 26.

Angiuli, C., (Favonia), K.-B. H. and Harper, R. (2017) Computational Higher Type Theory III:
Univalent Universes and Exact Equality. Preprint arXiv:1712.01800v1.

Angiuli, C., Hou (Favonia), K.-B. and Harper, R. (2018) Cartesian Cubical Computational Type
Theory: Constructive Reasoning with Paths and Equalities. Ghica, D. and Jung, A. (eds), 27th
EACSL Annual Conference on Computer Science Logic (CSL 2018). Leibniz International
Proceedings in Informatics (LIPIcs) 119, pp. 6:1–6:17. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik.

Angiuli, C., Brunerie, G., Coquand, T., Hou (Favonia), K.-B., Harper, R. and Licata, D. R. (2019)
Syntax and Models of Cartesian Cubical Type Theory. Preprint.

Angiuli, C., Cavallo, E., Mörtberg, A. and Zeuner, M. (2020) Internalizing Representation
Independence with Univalence. Preprint arXiv:2009.05547v2 [cs.PL].

Annenkov, D., Capriotti, P. and Kraus, N. (2017) Two-Level Type Theory and Applications.
Bickford, M. (2018) Formalizing Category Theory and Presheaf Models of Type Theory in Nuprl.

CoRR abs/1806.06114.
Birkedal, L., Bizjak, A., Clouston, R., Grathwohl, H. B., Spitters, B. and Vezzosi, A. (2019) Guarded

Cubical Type Theory. Journal of Automated Reasoning 63(2):211–253.
Brady, E. (2013) Idris, a general-purpose dependently typed programming language: Design and

implementation. Journal of Functional Programming 23(5):552–593.
Brunerie, G. (2016) On the homotopy groups of spheres in homotopy type theory. PhD thesis,

Université de Nice.
Cavallo, E. and Harper, R. (2019a) Higher inductive types in cubical computational type theory.

Proc. ACM Program. Lang. 3(POPL).
Cavallo, E. and Harper, R. (2019b) Higher inductive types in cubical computational type theory.

Proc. ACM Program. Lang. 3(POPL):1:1–1:27.
Chu, S., Weitz, K., Cheung, A. and Suciu, D. (2017) Hottsql: Proving query rewrites with univalent

sql semantics. SIGPLAN Not. 52(6):510–524.
Cockx, J. and Abel, A. (2018) Elaborating dependent (co)pattern matching. Proc. ACM Program.

Lang. 2(ICFP):75:1–75:30.
Cockx, J. and Devriese, D. (2018) Proof-relevant unification: Dependent pattern matching with only

the axioms of your type theory. Journal of Functional Programming 28:e12.
Cohen, C., Dénès, M. and Mörtberg, A. (2013) Refinements for Free! Gonthier, G. and Norrish,

M. (eds), Certified Programs and Proofs. Lecture Notes in Computer Science 8307, pp. 147–162.
Springer International Publishing.

Cohen, C., Coquand, T., Huber, S. and Mörtberg, A. (2015) Cubicaltt. https://github.com/
mortberg/cubicaltt.

Cohen, C., Coquand, T., Huber, S. and Mörtberg, A. (2018) Cubical Type Theory: A Constructive
Interpretation of the Univalence Axiom. Types for Proofs and Programs (TYPES 2015). LIPIcs
69, pp. 5:1–5:34.

Coquand, T. and Danielsson, N. A. (2013) Isomorphism is equality. Indagationes Mathematicae
24(4):1105–1120.

Coquand, T., Huber, S. and Mörtberg, A. (2018) On higher inductive types in cubical type theory.
Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science. LICS ’18,
pp. 255–264. ACM.

Coquand, T., Huber, S. and Sattler, C. (2019) Homotopy canonicity for cubical type theory. Preprint
available at http://www.cse.chalmers.se/ simonhu/papers/can.pdf.

https://github.com/mortberg/cubicaltt
https://github.com/mortberg/cubicaltt

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

47

Danielsson, N. A. (2020) Higher Inductive Type Eliminators Without Paths. http://www.cse.
chalmers.se/˜nad/publications/danielsson-hits-without-paths.html.

de Moura, L., Kong, S., Avigad, J., van Doorn, F. and von Raumer, J. (2015) The lean theo-
rem prover. Automated Deduction - CADE-25, 25th International Conference on Automated
Deduction, Berlin, Germany, August 1-7, 2015, Proceedings.

Escardó, M. H. (2019) Introduction to univalent foundations of mathematics with Agda.
Forsberg, F. N., Xu, C. and Ghani, N. (2020) Three Equivalent Ordinal Notation Systems in Cubical

Agda. Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs
and Proofs. CPP 2020, pp. 172–185. Association for Computing Machinery.

Huber, S. (2016) Canonicity for Cubical Type Theory. Preprint arXiv:1607.04156.
Huber, S. (2017) A Cubical Type Theory for Higher Inductive Types.
Kapulkin, C. and Lumsdaine, P. L. (2012) The Simplicial Model of Univalent Foundations (after

Voevodsky). Preprint arXiv:1211.2851v4.
Licata, D. R. and Brunerie, G. (2015) A cubical approach to synthetic homotopy theory. 30th Annual

ACM/IEEE Symposium on Logic in Computer Science, LICS’15 pp. 92–103. ACM.
Licata, D. R. and Shulman, M. (2013) Calculating the Fundamental Group of the Circle in Homotopy

Type Theory. Proceedings of the 2013 28th Annual ACM/IEEE Symposium on Logic in Computer
Science. LICS’13, pp. 223–232.

Licata, D. R., Orton, I., Pitts, A. M. and Spitters, B. (2018) Internal universes in models of homotopy
type theory. Kirchner, H. (ed), 3rd International Conference on Formal Structures for Computation
and Deduction, FSCD 2018, July 9-12, 2018, Oxford, UK. LIPIcs 108, pp. 22:1–22:17. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik.

Lumsdaine, P. L. and Shulman, M. (2017) Semantics of higher inductive types. Preprint
arXiv:1705.07088.

Martin-Löf, P. (1975) An intiutionistic theory of types: Predicative part. Rose, H. E. and
Shepherdson, J. (eds), Logic Colloquium ’73, pp. 73–118. North–Holland, Amsterdam.

McBride, C. (2009) Let’s see how things unfold: Reconciling the infinite with the intensional.
Proceedings of the 3rd International Conference on Algebra and Coalgebra in Computer Science.
CALCO’09, pp. 113–126. Springer-Verlag.

Mörtberg, A. and Pujet, L. (2020) Cubical Synthetic Homotopy Theory. Proceedings of the 9th ACM
SIGPLAN International Conference on Certified Programs and Proofs. CPP 2020, pp. 158–171.
Association for Computing Machinery.

Orton, I. and Pitts, A. M. (2016) Axioms for modelling cubical type theory in a topos. 25th EACSL
Annual Conference on Computer Science Logic (CSL 2016). LIPIcs 62, pp. 24:1–24:19.

Riehl, E. (2019) The equivariant uniform Kan fibration model of cubical homotopy type theory.
Talk given at The International Conference on Homotopy Type Theory (HoTT 2019) at Carnegie
Mellon University.

Riehl, E. and Shulman, M. (2017) A type theory for synthetic ∞-categories. Higher Structures
1(1):147–224.

Sattler, C. (2018) Do cubical models of type theory also model homotopy types? Talk given at Types,
Homotopy Type theory, and Verification at the Hausdorff Center for Mathematics in Bonn.

Sojakova, K. (2016) The Equivalence of the Torus and the Product of Two Circles in Homotopy
Type Theory. ACM Transactions on Computational Logic 17(4):29:1–29:19.

Sterling, J., Angiuli, C. and Gratzer, D. (2019) Cubical syntax for reflection-free extensional equal-
ity. Geuvers, H. (ed), 4th International Conference on Formal Structures for Computation and
Deduction, FSCD 2019. Leibniz International Proceedings in Informatics, LIPIcs. Schloss
Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing.

Tabareau, N., Tanter, E. and Sozeau, M. (2018) Equivalences for free: Univalent parametricity for
effective transport. Proc. ACM Program. Lang. 2(ICFP):92:1–92:29.

Tabareau, N., Éric Tanter and Sozeau, M. (2020) The Marriage of Univalence and Parametricity.
Preprint arXiv:1909.05027 [cs.PL].

Team, T. C. D. (2019) The Coq Proof Assistant, version 8.9.0.
The RedPRL Development Team. (2018) The redtt Proof Assistant.

http://www.cse.chalmers.se/~nad/publications/danielsson-hits-without-paths.html
http://www.cse.chalmers.se/~nad/publications/danielsson-hits-without-paths.html

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

48

Univalent Foundations Program, T. (2013) Homotopy Type Theory: Univalent Foundations of
Mathematics.

Veltri, N. and Vezzosi, A. (2020) Formalizing π-Calculus in Guarded Cubical Agda. Proceedings of
the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs. CPP 2020,
pp. 270–283. Association for Computing Machinery.

Vezzosi, A. (2017) Streams for Cubical Type Theory. http://saizan.github.io/
streams-ctt.pdf.

Vezzosi, A., Mörtberg, A. and Abel, A. (2019) Cubical Agda: A dependently typed programming
language with univalence and higher inductive types. Proceedings of the ACM on Programming
Languages 3(ICFP):87:1–87:29.

Voevodsky, V. (2013) A simple type system with two identity types.
Voevodsky, V. (2015) An experimental library of formalized mathematics based on the univalent

foundations. Mathematical Structures in Computer Science 25:1278–1294.
Wood, J. (2019) Vectors and Matrices in Agda. Blog post at https://personal.cis.
strath.ac.uk/james.wood.100/blog/html/VecMat.html.

http://saizan.github.io/streams-ctt.pdf
http://saizan.github.io/streams-ctt.pdf
https://personal.cis.strath.ac.uk/james.wood.100/blog/html/VecMat.html
https://personal.cis.strath.ac.uk/james.wood.100/blog/html/VecMat.html

	Introduction
	Programming and proving in Cubical Agda
	Unary and Binary Numbers
	Univalent Transport
	Univalent Program and Data Refinements

	Inductive families
	Vectors
	Matrices
	Equality

	Univalence for Coinductive Types
	Quotient Types as Higher Inductive Types
	Integers as a HIT
	General Quotient Types and Set Quotients

	Synthetic Homotopy Theory in Cubical Agda
	The Torus and Two Circles
	Further Synthetic Homotopy Theory in Cubical Agda

	Making Agda cubical
	The Interval and Path Types
	Generalized Transport
	Function Types
	Records and Coinductive Types
	Datatypes
	Inductive Families
	Path Types

	Partial Elements
	Homogeneous Composition

	Pattern Matching with Higher Inductive Types and Inductive Families
	Elaboration by Example
	Syntax of the Core Type Theory
	Case Trees
	Unification: splitting on the inductive equality type.
	Inferring Right-Hand Side of a =0mu=0muhcomp r u u0 match
	Inferring case tree of a =0mu=0mutranspXprt0 match

	Glue Types in Cubical Agda
	Glue Types and Univalence
	General Case of =0mu=0mutransp for Glue Types and the =0mu=0mughcomp Operation

	Metatheory of Cubical Type Theory and Cubical Agda
	Conclusion
	Related Work
	Future Work

