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Abstract. We describe a step-by-step approach to the implementation
and formal verification of efficient algebraic algorithms. Formal specifi-
cations are expressed on rich data types which are suitable for deriving
essential theoretical properties. These specifications are then refined to
concrete implementations on more efficient data structures and linked
to their abstract counterparts. We illustrate this methodology on key
applications: matrix rank computation, Winograd’s fast matrix prod-
uct, Karatsuba’s polynomial multiplication, and the gcd of multivariate
polynomials.
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1 Introduction

In the past decade, the range of application of proof assistants has extended its
traditional ground in theoretical computer science to mainstream mathematics.
Formalised proofs of important theorems like the fundamental theorem of algebra
[2], the four colour theorem [6] and the Jordan curve theorem [10] have advertised
the use of proof assistants in mathematical activity, even in cases when the pen
and paper approach was no longer tractable.

But since these results established proofs of concept, more effort has been
put into designing an actually scalable library of formalised mathematics. The
Mathematical Components project (developing the SSReflect library [8] for
the Coq proof assistant) advocates the use of small scale reflection to achieve
a nearly comparable level of detail to usual mathematics on paper, even for
advanced theories like the proof of the Feit-Thompson theorem. In this approach,
the user expresses significant deductive steps while low-level details are taken
care of by small computational steps, at least when properties are decidable.
Such an approach makes the proof style closer to usual mathematics.

One of the main features of these libraries is that they heavily rely on rich
dependent types, which gives the opportunity to encode a lot of information
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directly into the type of objects: for instance, the type of matrices embeds their
size, which makes operations like multiplication easy to implement. Also, algo-
rithms on these objects are simple enough so that their correctness can easily
be derived from the definition. However in practice, most efficient algorithms
in modern computer algebra systems do not rely on dependent types and do
not provide any proof of correctness. We show in this paper how to use this
rich mathematical framework to develop efficient computer algebra programs
with proofs of correctness. This is a step towards closing the gap between proof
assistants and computer algebra systems.

The methodology we suggest for achieving this is the following: we are able to
prove the correctness of some mathematical algorithms having all the high-level
theory at our disposal and we then refine them to an implementation on simpler
data structures that will be actually running on machines. In short, we aim at
formally linking convenient high-level properties to efficient low-level implemen-
tations, ensuring safety of the whole approach while enjoying better performance
thanks to the separation of proofs and computational content.

In the next section, we describe the methodology of refinements. Then, we
give two examples of such refinements for matrices in Section 3, and polynomials
in Section 4. In Section 5, we give a solution to unify both examples by describing
CoqEAL3, a library built using this methodology on top of the SSReflect
libraries.

2 Refinements

Refinements are commonly used to describe successive steps when verifying a
program. Typically, a specification is expressed in Hoare logic, then the program
is described in a high-level language and finally implemented in C. Each step
is proved correct with respect to the previous one. By using several formalisms,
one has to trust every translation step or prove them correct in yet another
formalism.

Our approach is similar: we refine the definition of a concept to an efficient
algorithm described on high-level data structures. Then, we implement it on data
structures that are closer to machine representations, once we no longer need
rich theory to prove the correctness. Thus the implementation is an immediate
translation of the algorithm, see Fig. 1.

However, in our approach, the three layers can be expressed in the same
formalism (the Calculus of Inductive Constructions), though they do not use
exactly the same features. On one hand, the high-level layers use rich dependent
types that are very useful when describing theories because they allow abuse of
notations and concise statements which quickly become necessary when working
with advanced mathematics. On the other hand, the efficient implementations
use simple types, which are closer to standard implementations in traditional

3 Documentation available at http://www-sop.inria.fr/members/Maxime.Denes/

coqeal/
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Fig. 1. The three steps of refinement

programming languages. The main advantage of this approach is that the cor-
rectness of translations can easily be expressed in the formalism itself, and we
do not rely on any additional external proofs.

In the next sections, we are going to use the following methodology to build
efficient algorithms from high-level descriptions:

1. Implement an abstract version of the algorithm using SSReflect’s struc-
tures and use the libraries to prove properties about them. Here we can use
the full power of dependent types when proving correctness.

2. Refine this algorithm into an efficient one using SSReflect’s structures and
prove that it behaves like the abstract version.

3. Translate the SSReflect structures and the efficient algorithm to the low-
level data types, ensuring that they will perform the same operations as their
high-level counterparts.

3 Matrices

Linear algebra is a natural first test-case to validate our approach, as a pervasive
and inherently computational area of mathematics, which is well covered by
the SSReflect library [7]. In this section, we will detail the (quite simple)
data structure we use to represent matrices and then review two fundamental
examples: rank computation and efficient matrix product.

3.1 Representation

Matrices are represented by finite functions over pairs of ordinals (the indices):

(* ’I_n *)

Inductive ordinal (n : nat) : predArgType := Ordinal m of m < n.

(* ’M[R]_(m,n) *)

Inductive matrix R m n := Matrix of {ffun ’I_m * ’I_n -> R}.
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This encoding makes many properties easy to derive, but it is inefficient for
evaluation. Indeed, a finite function over ’I_m * ’I_n is internally represented
as a flat list of m× n values which has to be traversed whenever the function is
evaluated. Moreover, having the size of matrices encoded in their type allows
to state concise lemmas without explicit side conditions, but it is not always
flexible enough when getting closer to machine-level implementation details.

To be able to implement efficient matrix operations we introduce a low-level
data type seqmatrix representing matrices as lists of lists. A concrete matrix is
built from an abstract one by mapping canonical enumerations (enum) of ordinals
to the corresponding coefficients in the abstract matrix:

Definition seqmx_of_mx (M : ’M[R]_(m,n)) : seqmatrix :=

[seq [seq M i j | j <- enum ’I_n] | i <- enum ’I_m].

To ensure the correct behaviour of concrete matrices it is sufficient to prove
that seqmx_of_mx is injective (== denotes boolean equality):

Lemma seqmx_eqP (M N : ’M[R]_(m,n)) :

reflect (M = N) (seqmx_of_mx M == seqmx_of_mx N).

Operations like addition are straightforward to implement, and their cor-
rectness is expressed through a morphism lemma, stating that the concrete rep-
resentation of the sum of two matrices is the concrete sum of their concrete
representations:

Definition addseqmx (M N : seqmatrix) : seqmatrix :=

zipwith (zipwith (fun x y => add x y)) M N.

Lemma addseqmxE :

{morph (@seqmx_of_mx m n) : M N / M + N >-> addseqmx M N}.

Here morph is notation meaning that seqmx_of_mx is an additive morphism from
abstract to concrete matrices. It is worth noting that we could have stated all
our morphism lemmas with the converse operator (from concrete matrices to
abstract ones). But these lemmas would then have been quantified over lists of
lists, with poorer types, which would have required a well-formedness predicate
as well as premises expressing size constraints. The way we have chosen takes
full advantage of the information carried by richer types.

Like the addseqmx operation, we have developed concrete implementations of
most of the matrix operations provided by the SSReflect library and proved
the corresponding morphism lemmas. Among these operations we can cite: sub-
traction, scaling, transpose and block operations.

3.2 Computing the rank

Now that the basic data structure and operations have been defined, it is possible
to apply our approach to an algorithm based on Gaussian elimination which
computes the rank of a matrix A = (ai,j) over a field K. We first specify the
algorithm using abstract matrices and then refine it to the low-level structures.
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An elimination step consists of finding a nonzero pivot in the first column of
A. If there is none, it is possible to drop the first column without changing the
rank. Otherwise, there is an index i such that ai,1 6= 0. By linear combinations
of rows (preserving the rank) A can be transformed into the following matrix B:

B =



0 a1,2 − a1,1×ai,2

ai,1
· · · a1,n − a1,1×ai,n

ai,1

0
...

...
ai,1 ai,2 · · · ai,n

0
...

...

0 an,2 − an,1×ai,2

ai,1
· · · an,n − an,1×ai,n

ai,1


=



0
R1...

0
ai,1 · · · ai,n
0

R2...
0


Now pose R =

(
R1

R2

)
, since ai,1 6= 0, this means that rank A = rank B =

1 + rank R. Hence the current rank can be incremented and the algorithm can
be recursively applied on R.

In our development we defined a function elim_step returning the matrix R
above and a boolean b indicating if a pivot has been found. A wrapper function
rank_elim is in charge of maintaining the current rank and performing the
recursive call on R:

Fixpoint rank_elim (m n : nat) {struct n} : ’M[K]_(m,n) -> nat :=

match n return ’M[K]_(m,n) -> nat with

| q.+1 => fun M =>

let (R,b) := elim_step M in (rank_elim R + b)%N

| _ => fun _ => 0%N

end.

Note that booleans are coerced to natural numbers: b is interpreted as 1 if
true and 0 if false. The correctness of rank_elim is expressed by relating it to
the \rank function of the SSReflect library:

Lemma rank_elimP n m (M : ’M[K]_(m,n)) : rank_elim M = \rank M.

The proof of this specification relies on a key invariant of elim_step, relating
the ranks of the input and output matrices:

Lemma elim_step_rank m n (M : ’M[K]_(m, 1 + n)) :

let (R,b) := elim_step M in \rank M = (\rank R + b)%N.

Now the proof of rank_elimP follows by induction on n. The concrete version
of this algorithm is a direct translation of the algorithm using only concrete
matrices and executable operations on them. This executable version (called
rank_elim_seqmx) is then linked to the abstract implementation by the lemma:

Lemma rank_elim_seqmxE : forall m n (M : ’M[K]_(m, n)),

rank_elim_seqmx m n (seqmx_of_mx M) = rank_elim M.
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The proof of this is straightforward as all of the operations on concrete ma-
trices have morphism lemmas which means that the proof can be done simply
by expanding the definitions and applying the translation morphisms.

3.3 Fast matrix product

In the context we presented, the näıve matrix product (i.e. with cubic complex-
ity) of two matrices M and N can be implemented by transposing the list of
lists representing N and then for each i and j compute

∑
k Mi,kN

T
j,k:

Definition mulseqmx (M N : seqmatrix) : seqmatrix :=

let N’ := trseqmx N in

map (fun r => map (foldl2 (fun z x y => x * y + z) 0 r) N’) M.

Lemma mulseqmxE (M : ’M[R]_(m,p)) (N : ’M[R]_(p,n)) :

mulseqmx (seqmx_of_mx M) (seqmx_of_mx N) = seqmx_of_mx (M *m N).

*m is SSReflect’s notation for the matrix product. Once again, the rich
type information in the quantification of the morphism lemma ensures that it
can be applied only if the two matrices have compatible sizes.

In 1969, Strassen [19] showed that 2 × 2 matrices can be multiplied using
only 7 multiplications without requiring commutativity. This yields an imme-
diate recursive scheme for the product of two n × n matrices with O(nlog2 7)
complexity.4 This is an important theoretical result, since matrix multiplication
was commonly thought to be intrinsically of cubic complexity, it opened the way
to many further improvements and gave birth to a fertile branch of algebraic
complexity theory.

However, Strassen’s result is also still of practical interest since the asymp-
totically best algorithms known today [4] are slower in practice because of huge
hidden constants. Thus, we implemented a variant of this algorithm suggested by
Winograd in 1971 [20], decreasing the required number of additions and subtrac-
tions to 15 (instead of 18 in Strassen’s original proposal). This choice reflects the
implementation of matrix product in most of modern computer algebra systems.
A previous formal description of this algorithm has been developed in ACL2
[17], but it is restricted to matrices whose sizes are powers of 2. The extension
to arbitrary matrices represents a significant part of our development, which is
to the best of our knowledge the first complete formally verified description of
Winograd’s algorithm.

We define a function expressing a recursion step in Winograd’s algorithm.
Given two matrices A and B and an operator f representing matrix product, it
reformulates the algebraic identities involved in the description of the algorithm:

Definition winograd_step {p : positive} (A B : ’M[R]_(p + p)) f :=

let A11 := ulsubmx A in let A12 := ursubmx A in

let A21 := dlsubmx A in let A22 := drsubmx A in

4 log2 7 is approximately 2.807
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let B11 := ulsubmx B in let B12 := ursubmx B in

let B21 := dlsubmx B in let B22 := drsubmx B in

let X := A11 - A21 in let Y := B22 - B12 in

let C21 := f X Y in

let X := A21 + A22 in let Y := B12 - B11 in

let C22 := f X Y in

let X := X - A11 in let Y := B22 - Y in

let C12 := f X Y in

let X := A12 - X in

let C11 := f X B22 in

let X := f A11 B11 in

let C12 := X + C12 in let C21 := C12 + C21 in

let C12 := C12 + C22 in let C22 := C21 + C22 in

let C12 := C12 + C11 in

let Y := Y - B21 in

let C11 := f A22 Y in let C21 := C21 - C11 in

let C11 := f A12 B21 in let C11 := X + C11 in

block_mx C11 C12 C21 C22.

This is an implementation of matrix multiplication that is clearly not suited
for proving algebraic properties, like associativity. The correctness of this func-
tion is expressed by the fact that if f is instantiated by the multiplication of
matrices, winograd_step A B should be the product of A and B (=2 denotes
extensional equality):

Lemma winograd_stepP (p : positive) (A B : ’M[R]_(p + p)) f :

f =2 mulmx -> winograd_step A B f = A *m B.

This proof is made easy by the use of the ring tactic (the script is two lines
long). Since version 8.4 of Coq, ring is applicable to non-commutative rings,
which has allowed its use in our context.

Note that the above implementation only works for even-sized matrices. This
means that the general procedure has to implement a strategy for handling odd-
sized matrices. Several standard techniques have been proposed, which fall into
two categories. Some are static, in the sense that they preprocess the matrices
to obtain sizes that are powers of 2. Others are dynamic, meaning that parity
is tested at each recursive step. Two standard treatments can be implemented
either statically or dynamically: padding and peeling. The first consists of adding
rows and/or columns of zeros as required to get even dimensions (or a power
of 2), these lines are then simply removed from the result. Peeling on the other
hand removes rows or columns when needed, and corrects the result accordingly.

We chose to implement dynamic peeling because it seemed to be the most
challenging technique from the formalisation point of view, since the size of
matrices involved depend on dynamic information and the post processing of
the result is more sophisticated than using padding. Another motivation is that
dynamic peeling has shown to give good results in practice.
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The function that implements Winograd multiplication with dynamic peeling
is called winograd and it is proved correct with respect to the usual matrix
product:

Lemma winogradP : forall (n : positive) (M N : ’M[R]_n),

winograd M N = M *m N.

The concrete version is called winograd_seqmx and it is also just a direct trans-
lation of winograd using only concrete operations on seq based matrices. In the
next section, Fig. 2 shows some benchmarks of how well this implementation
performs compared to the näıve matrix product, but we will first discuss how to
implement concrete algorithms based on dependently typed polynomials.

4 Polynomials

Polynomials in the SSReflect library are represented as records with a list
representing the coefficients and a proof that the last of these is nonzero. The
library also contains basic operations on this representation like addition and
multiplication and proofs that the polynomials form a commutative ring using
these operations. The implementation of these operations use big operators [3]
which means that it is not possible to compute with them.

To remedy this we have implemented polynomials as lists without any proofs
together with executable implementations of the basic operations. It is very easy
to build a concrete polynomial from an abstract polynomial, simply apply the
record projection (called polyseq) to extract the list from the record. The sound-
ness of concrete polynomials is proved by showing that the pointwise boolean
equality on the projected lists reflects the equality on abstract polynomials:

Lemma polyseqP p q : reflect (p = q) (polyseq p == polyseq q).

Basic operations like addition and multiplication are slightly more compli-
cated to implement for concrete polynomials than for concrete matrices as it is
necessary to ensure that these operations preserve the invariant that the last
element is nonzero. For instance multiplication is implemented as:

Fixpoint mul_seq p q := match p,q with

| [::], _ => [::]

| _, [::] => [::]

| x :: xs,_ => add_seq (scale_seq x q) (mul_seq xs (0%R :: q))

end.

Lemma mul_seqE : {morph polyseq : p q / p * q >-> mul_seq p q}.

Here add_seq is addition of concrete polynomials and scale_seq x q means
that every coefficient of q is multiplied by x (both of these are implemented in
such a way that the invariant that the last element is nonzero is satisfied).
Using this approach we have implemented a substantial part of the SSReflect
polynomial library, including pseudo-division, using executable polynomials.
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4.1 Fast polynomial multiplication

The näıve polynomial multiplication algorithm presented in the previous sec-
tion requires O(n2) operations. A more efficient algorithm is Karatsuba’s al-
gorithm [1, 11] which is a divide and conquer algorithm based on reducing the
number of recursive calls in the multiplication. More precisely, in order to mul-
tiply two polynomials written as aXk + b and cXk + d the ordinary method

(aXk + b)(cXk + d) = acX2k + (ad + bc)Xk + cd

requires four multiplications (as the multiplications by Xn can be implemented
efficiently by padding the list of coefficients by n zeroes). The key observation is
that this can be rewritten as

(aXk + b)(cXk + d) = acX2k + ((a + b)(c + d)− ac− bd)Xk + bd

which only requires three multiplication: ac, (a+b)(c+d) and bd. Now if the two
polynomials have 2n coefficients and the splitting is performed in the middle at
every point then the algorithm will only require O(nlog2 3) which is better than
the näıve algorithm.5 If the polynomials do not have 2n coefficients it is possible
to split the polynomials at for example bn/2c as the formula above holds for any
k ∈ N and still obtain a faster algorithm. This algorithm has been implemented
in Coq previously for binary natural numbers [15] and for numbers represented
by a tree-like structure [9]. But as far as we know, it has never been implemented
for polynomials before. When implementing this algorithm we first implemented
it using dependently typed polynomials as:

Fixpoint karatsuba_rec (n : nat) p q := match n with

| 0%N => p * q

| n’.+1 => if (size p <= 2) || (size q <= 2) then p * q else

let m := minn (size p)./2 (size q)./2 in

let (p1,p2) := splitp m p in

let (q1,q2) := splitp m q in

let p1q1 := karatsuba_rec n’ p1 q1 in

let p2q2 := karatsuba_rec n’ p2 q2 in

let p12 := p1 + p2 in

let q12 := q1 + q2 in

let p12q12 := karatsuba_rec n’ p12 q12 in

p1q1 * ’X^(2 * m) + (p12q12 - p1q1 - p2q2) * ’X^m + p2q2

end.

Here splitp is a function that splits the polynomial at the correct point
using take and drop. There is also a wrapper function named karatsuba that
calls karatsuba_seq with the greatest degree of p and q. The correctness of this
algorithm is expressed by:

Lemma karatsubaE : forall p q, karatsuba p q = p * q.

5 log2 3 is approximately 1.585.
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As p and q are SSReflect polynomials this lemma can be proved using
all of the theory in the library. The next step is to implement the executable
version (karatsuba_seq) of this algorithm which is done by changing all the op-
erations in the above version to executable operations on concrete polynomials.
The correctness of the concrete algorithm is then proved by:

Lemma karatsuba_seqE :

{morph polyseq : p q / karatsuba p q >-> karatsuba_seq p q}.

The proof of this is straightforward as all of the operations have morphism
lemmas for translating back and forth between the concrete representation and
the high-level ones.

In Fig. 2 the running time of the different multiplication algorithms that we
have implemented is compared:
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Fig. 2. Benchmarks of Winograd and Karatsuba multiplication

The benchmarks have been done by computing the square of integer matrices
and polynomials using the Coq virtual machine (i.e. by running vm_compute).
It is clear that both the implementation of Winograd matrix multiplication and
Karatsuba polynomial multiplication is faster than their näıve counterparts, as
expected.

4.2 gcd of multivariate polynomials

An important feature of modern computer algebra systems is to compute the
greatest common divisor (gcd) of multivariate polynomials. The main idea of
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our implementation is based on the observation that in order to compute the
gcd of elements in R[X1, . . . , Xn] it suffices to show how to compute the gcd
in R[X] given that it is possible to compute the gcd of elements in R. So, for
example, to compute the gcd of elements in Z[X,Y ] we model it as (Z[X])[Y ],
i.e. as univariate polynomials in Y with coefficients in Z[X], and then use that
there is a gcd algorithm in Z.

The algorithm that we implemented is based on the presentation of Knuth in
[12] which uses that in order to compute the gcd of two multivariate polynomials
it is possible to instead consider the task of computing the gcd of primitive
polynomials, i.e. polynomials where all coefficients are coprime. Using that any
polynomial can be split in a primitive part and a non-primitive part by dividing
by the gcd of its coefficients (this is called the content of the polynomial) we
get an algorithm for computing the gcd of any two polynomials. Below is our
implementation of this algorithm together with explanations of the operations:

Fixpoint gcdp_rec (n : nat) (p q : {poly R}) :=

let r := modp p q in

if r == 0 then q

else if n is m.+1 then gcdp_rec m q (pp r) else pp r.

Definition gcdp p q :=

let (p1,q1) := if size p < size q then (q,p) else (p,q) in

let d := (gcdr (gcdsr p1) (gcdsr q1))%:P in

d * gcdp_rec (size (pp p1)) (pp p1) (pp q1).

– modp p q computes the remainder after pseudo-dividing p by q.
– pp p computes the primitive part of p by dividing it by its content.
– gcdsr p computes the content of p.
– gcdr (gcdsr p1)(gcdsr q1) computes the gcd (using the operation in the

underlying ring) of the content of p1 and the content of q1.

The correctness of this algorithm is now expressed by:

Lemma gcdpP : forall p q g, g %| gcdp p q = (g %| p) && (g %| q).

Here p %| q computes whether p divides q or not. As divisibility is reflexive
this equality is a compact way of expressing that the function actually computes
the gcd of p and q.

Our result is stated in constructive algebra [14] as: If R is a gcd domain then
so is R[X]. Our algorithmic proof is different (and arguably simpler) than the
one in [14]; for instance, we do not go via the field of fractions of the ring.

As noted in [12], this algorithm may be inefficient when applied on the poly-
nomials over integers. The reference [12] provides a solution in this case, based
on subresultants. This would be a further refinement of the algorithm, which
would be interesting to explore since subresultants have been already analysed
in Coq [13].

The executable version (gcdp_seq) of the algorithm has also been imple-
mented and is linked to the abstract version above by:
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Lemma gcdp_seqE :

{morph polyseq : p q / gcdp p q >-> gcdp_seq p q}.

But when running the concrete implementation there is a quite subtle prob-
lem: the polyseq projection links the abstract polynomials with the concrete
polynomials of type seq R where R is a ring with a gcd operation. Let us con-
sider multivariate polynomials, for example R[x, y]. In this case the concrete type
will be seq (seq R), but seq R is not a ring so our algorithm is not applicable!
The next section explains how to resolve this issue so that it is possible to imple-
ment computable algorithms of the above kind that rely on the computability
of the underlying ring.

5 Algebraic hierarchy of computable structures

As noted in the previous section there is a problem when implementing multi-
variate polynomials by iterating the polynomial construction, i.e. by representing
R[X,Y ] as (R[X])[Y ]. The same problem occurs when considering other struc-
tures where the computation relies on the computability of the underlying ring
as is the case when computing the characteristic polynomial of a square ma-
trix for instance. For this, one needs to compute with matrices of polynomials
which will require a concrete implementation of matrices with coefficients being
a concrete implementation of polynomials.

However, both the list based matrices and polynomials have something in
common: we can guarantee the correctness of the operations on a subset of
the low-level structure. This can be used to implement another hierarchy of
computable structures corresponding to the SSReflect algebraic hierarchy.

5.1 Design of the library

We have implemented computable counterparts to the basic structures in this
hierarchy, e.g. Z-modules, rings and fields. These are implemented in the same
manner as presented in [5] using canonical structures. Here are a few examples
of the mixins we use:

Record trans_struct (A B: Type) : Type := Trans {

trans : A -> B;

_ : injective trans

}.

(* Mixin for "Computable" Z-modules *)

Record mixin_of (V : zmodType) (T: Type) : Type := Mixin {

zero : T;

opp : T -> T;

add : T -> T -> T;

tstruct : trans_struct V T;

_ : (trans tstruct) 0 = zero;
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_ : {morph (trans tstruct) : x / - x >-> opp x};

_ : {morph (trans tstruct) : x y / x + y >-> add x y}

}.

(* Mixin for "Computable" Rings *)

Record mixin_of (R : ringType) (V : czmodType R) : Type := Mixin {

one : V;

mul : V -> V -> V;

_ : (trans V) 1 = one;

_ : {morph (trans V) : x y / x * y >-> mul x y}

}.

The type czmodType is the computable Z-module type parametrized by a Z-
module. The trans function is the translation function from SSReflect struc-
tures to the computable structures and the only property that is required of it
is that it is injective, so we are sure that different high-level objects are mapped
to different computable objects.

This way we can implement all the basic operations of the algebraic structures
the way we want (for example using fast matrix multiplication as an implemen-
tation of *m instead of a näıve one), and the only thing we have to prove is that
the implementations behave the same as SSReflect’s operations on the subset
of “well-formed terms” (e.g. for polynomials, lists that do not end with 0). This
is done by providing the corresponding morphism lemmas.

The operations presented in the previous sections can then be implemented
by having computable structures as the underlying structure instead of depen-
dently typed ones. This way one can prove that polynomials represented as lists
is a computable ring by assuming that the coefficients are computable and hence
get ring operations that can be applied on multivariate polynomials built by it-
erating the construction.

It is interesting to note that the equational behavior of an abstract structure
is carried as a parameter, but does not appear in its computable counterpart,
which depends only on the operations to be implemented. For instance, the same
computable ring structure can implement a commutative ring or an arbitrary
one, only its parameter varies.

5.2 Example: computable ring of polynomials

Let us explain how the list based polynomials can be made a computable ring.
First, we define:

Variable R : comRingType.

Variable CR : cringType R.

This says that CR is a computable ring parametrized by a commutative ring
which makes sense as any commutative ring is a ring. Next we need to implement
the translation function from {poly R} to seq CR and prove that this translation
is injective:
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Definition trans_poly (p : {poly R}) : seq CR :=

map (@trans R CR) (polyseq p).

Lemma inj_trans_poly : injective trans_poly.

Assuming that computable polynomials already are an instance of the com-
putable Z-module structure it is possible to prove that they are computable
rings by implementing multiplication (exactly like above) and then prove the
corresponding morphism lemmas:

Lemma trans_poly1 : trans_poly 1 = [:: (one CR)].

Lemma mul_seqE :

{morph trans_poly : p q / p * q >-> mul_seq p q}.

At this point, we could also have used the karatsuba_seq implementation of
polynomial multiplication instead of mul_seq since we can prove its correctness
using the karatsubaE and karatsuba_seqE lemmas. Finally this can be used to
build the CRing mixin and make it a canonical structure.

Definition seq_cringMixin := CRingMixin trans_poly1 mul_seqE.

Canonical Structure seq_cringType :=

Eval hnf in CRingType {poly R} seq_cringMixin.

5.3 Examples of computations

This computable ring structure has also been instantiated by the Coq imple-
mentation of Z and Q which means that they can be used as basis when building
multivariate polynomials. To multiply 2 + xy and 1 + x + xy + x2y2 in Z[x, y]
one can write:

Definition p := [:: [:: 2]; [:: 0; 1]].

Definition q := [:: [:: 1; 1]; [:: 0; 1]; [:: 0; 0; 1]].

> Eval compute in mul p q.

= [:: [:: 2; 2]; [:: 0; 3; 1]; [:: 0; 0; 3]; [:: 0; 0; 0; 1]]

The result should be interpreted as (2+2x)+(3x+x2)y+3x2y2 +x3y3. The
gcd of 1 + x + (x + x2)y and 1 + (1 + x)y + xy2 in Z[x, y] can be computed by:

Definition p := [:: [:: 1; 1] ; [:: 0; 1; 1] ].

Definition q := [:: [:: 1]; [:: 1; 1]; [:: 0; 1]].

> Eval compute in gcdp_seq p q.

= [:: [:: 1]; [:: 0; 1]]

The result is 1 + xy as expected. The following is an example over Q[x, y]:
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Definition p := [:: [:: 2 # 3; 2 # 3]; [:: 0; 1 # 2; 1 # 2]].

Definition q := [:: [:: 2 # 3]; [:: 2 # 3; 1 # 2]; [:: 0; 1 # 2]].

> Eval compute in gcdp_seq p q.

= [:: [:: 1 # 3]; [:: 0; 1 # 4]]

The two polynomials are 2
3 + 2

3x + 1
2xy + 1

2x
2y and 2

3 + 2
3y + 1

2xy + 1
2xy

2.
The resulting gcd should be interpreted as 1

3 + 1
4xy.

6 Conclusions and Further Work

In this paper, we showed how to use high-level libraries to prove properties
of algorithms, while retaining good execution capabilities by providing efficient
low-level implementations. The need of modularity of the executable structure
appears naturally and the methodology explained in [5] works quite well. The
only thing a user has to provide is a proof of an injectivity lemma stating that
the translation behaves correctly.

The methodology we suggest has already been used in other contexts, like the
CoRN library, where properties of real numbers described in [16] are obtained
by proving that these real numbers are isomorphic to an abstract, pre-existing
but less efficient version. We tried to show that this approach can be applied in
a systematic and modular way.

The library we designed also helps to solve a restriction of SSReflect:
due to a lot of computations during deduction steps, some of the structures are
locked to allow type-checking to be performed in a reasonable amount of time.
This locking prevents full-scale reflection on some of the most complex types
like big operators, polynomials or matrices. Our implementation restores the
ability to perform full-scale reflection on abstract structures, and more generally
to compute. For instance, addition of two fully instantiated polynomials cannot
be evaluated to its actual numerical result but we can refine it to a computable
object that will reduce. This is a first step towards having in the same system
definitions of objects on which properties can be proved and some of the usual
features of a computer algebra system.

However, in its current state, the inner structure of our library is slightly
more rigid than necessary: we create a type for computable Z-modules, but in
practice, all the operations it contains could be packaged independently. Indeed,
on each of these operations we prove only a morphism lemma linking it to its ab-
stract counterpart, whereas in usual algebraic structures, expressing properties
like distributivity require access to several operations at once. This specificity
would make it possible to reorganise the library and create independent struc-
tures for each operation, instead of creating one of them for each type. Also,
we could use other packaging methods, like type classes [18], to simplify the
layout of the library. However, modifying the library to use type classes on top
of SSReflect’s canonical structures is still on-going work, since we faced some
incompatibilities between the different instance resolution mechanisms.
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