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Abstract

We first study an epidemic amongst a population consisting of individuals with the same
infectivity but with varying susceptibilities to the disease. The asymptotic final epidemic
size is compared with the corresponding size for a homogeneous population. Then we
group a heterogeneous population into households, assuming very high infectivity within
households, and investigate how the global infection pressure is affected by rearranging
individuals between the households. In both situations considered, it turns out that
whether or not homogenizing the individuals or households will result in an increased
spread of infection actually depends on the infectiousness of the disease.
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1. Introduction

This paper studies to some extent how the total size of an epidemic may be affected by
introducing variability among the individuals. The underlying epidemic process (a special
case of the model described in Ball and Clancy [5]) is a generalization of the so-called general
epidemic model, and we are mainly concerned with two different situations. First, we assume
that all the individuals are equally infectious but may have different susceptibility. The asymp-
totics for the total epidemic size is studied under the constraint that the population mean of the
susceptibilities is kept fixed. Second, we group a multitype population into households, where
we assume very high infectivity within households, and again draw some conclusions about
the total size for different household formations. Here homogeneity refers to the case where all
households have the same infectivity and the same susceptibility. As we shall see, this model
may be treated as an epidemic in a multitype population without households. Our main goal is
to quantify the following very loose statement.

If the disease is very contagious then homogenizing the population increases the size of the
epidemic, while for a less infectious disease the largest epidemic arises in a heterogeneous
setup.

It must be kept in mind that the results derived in Section 3, hinting at the above phenomenon,
rely on the concept of individual stochastic thresholds, which is a purely mathematical con-
struction without a clear immunological interpretation. On the other hand, the corresponding
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results for the household case treated in Sections 4 and 5 are less controversial – heterogeneous
situations are created here by simply swapping or moving individuals between households. Yet
another convincing example will be given in Andersson [1].

Let us mention a few other papers that investigate this kind of question from a theoret-
ical point of view. Ball [2] and Becker and Marschner [9] announce interesting comparison
results for some classical epidemic models. Related problems for the carrier-borne epidemic
are discussed by Becker [8], Lefèvre and Malice [13] and Ball [3]. Marschner [14] con-
siders epidemic models where the population is stratified into classes, the individuals having
a preference for either within- or between-class contact. These models are compared with
corresponding homogeneous ones. O’Neill [15] treats a model for a fatal disease, where
individuals are members in high-risk or low-risk activity groups. Further, members of the high-
risk group may change their behaviour by entering the low-risk group. This model is compared
with the corresponding homogeneous one, considered for example by Ball and O’Neill [6].
Clancy [12] compares the distribution of the total size for a standard multigroup model with
the corresponding distribution for a model (see Ball [4]) where infectives move from group to
group and infect only within their current group.

Note carefully that our result partly contradicts the general opinion that the total size of
an epidemic is always reduced when heterogeneities are introduced in the population (see for
example [2], [3], [8], [13], [15]). We feel therefore that it is very important to gain further
insight in how to compare epidemic models with each other.

2. The underlying epidemic model

Consider a closed population, each individual in the population being of one of ρ types. In
the beginning we have νi susceptibles and ηi infectives of type i, 1 ≤ i ≤ ρ. Let ν = ν1+
· · · + νρ denote the total number of initial susceptibles, and also write πi = νi/ν, 1 ≤ i ≤ ρ.
Following Ball and Clancy [5], we give each individual a label (i, r), where i denotes the type
of the individual and r = −(ηi − 1),−(ηi − 2), . . . ,−1, 0, 1, . . . , νi indicates the number
of the individual in a type-specific list. The first ηi members of that list refer to the initial
infectives and the subsequent members to the initial susceptibles. We assume that to each
individual (i, r) is attached an infective period I (i,r) with distribution Fi and expected value
µi , say. In case (i, r) becomes infected, she remains infective for a period I (i,r) and during
that time makes contact with type j individuals according to a Poisson process with intensity
λijπj , 1 ≤ j ≤ ρ. Each time point of this process indicates a contact with an individual
chosen at random among the νj initial susceptibles of type j . If the individual so contacted
is still susceptible she becomes infected (and infective). All the infective periods and all the
Poisson processes are assumed to be mutually independent.

Consider now a sequence of epidemic processes indexed by the population size ν. We are
going to study an asymptotic situation where ν → ∞ in such a way that all proportions π(ν)

i

converge to strictly positive limits. Moreover, the numbers η(ν)i are kept constant independent
of ν. Define τ (ν)i to be the relative proportion of the initially susceptible type i individuals that
become infected during the course of the epidemic. In [5] it is shown that the distribution of
the vector τ (ν) = (τ

(ν)
1 , . . . , τ

(ν)
ρ ) converges as ν → ∞ to a distribution concentrated on the

at most two solutions of the following non-linear system of equations:

1 − τj = exp

{
−

m∑
i=1

πiλijµiτi

}
, 1 ≤ j ≤ ρ, (2.1)
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where now of course the numbers πi denote the limiting values. It is also shown that the
largest eigenvalue R0 of the matrix (πiλijµi) reflects the qualitative behaviour of the process
in the sense that if R0 ≤ 1 then (2.1) has only the solution τ = 0, whereas if R0 > 1
then besides the trivial solution there always exists a strictly positive root. In this case we
say that the epidemic is above threshold, and we say that a major epidemic has occurred if
the final proportion infected is close to the positive root. In our analysis of the asymptotic
total size, unless otherwise stated we always refer to the largest root of (2.1). At the end of
Section 3, the probability of a major epidemic will be discussed. The quantity R0 is called the
basic reproduction number. From now on we will skip the index ν in order not to overburden
notation. We also suppress the limits on the summation indices whenever possible.

In the sequel we will often assume that the contact rate λijπj from type i individuals to
type j individuals splits up into a product; i.e. λij = αiβj for all i, j . The parameter αi reflects
how infectious and social the i-individuals are during their infective stage, and βj measures
how social and liable to infection susceptible j -individuals are. One can show that in this case
R0 = ∑

i πiαiβiµi (cf. [9]).
The following equivalent construction of the epidemic model described above is similar to

that of Sellke [16]. We provide each individual (i, r) with an exponentially distributed random
variable Q(i,r) having intensity βi . The variables are mutually independent, and they are also
independent of all the variables and Poisson processes defined above. The variable Q(i,r) is
called the individual stochastic threshold for the individual (i, r). The initial infectives (i, r)
are infective for a time I (i,r) and are then removed. At any time t ≥ 0 the susceptible with
label (j, r) accumulates ‘exposure to infection’ at rate

∑
i αiYi(t)/ν, where Yi(t) denotes

the number of infective type i individuals at time t . As soon as this exposure to infection
reaches the threshold Q(j,r), the individual (j, r) becomes infected, and then stays infective
for a time I (j,r). This construction is seen to be equivalent to our epidemic process (cf. [5]).
The interpretation ofQ(i,r) as a measure of the susceptibility of individual (i, r) (low threshold
= high susceptibility) is crucial in what follows.

3. Individuals with varying susceptibilities

In what follows we want to compare a homogeneous population with a multitype pop-
ulation with varying susceptibility. Given a homogeneous (ρ = 1) epidemic process, i.e.
given parameters (ν, η, F, λ), it is unfortunately not at all clear what the ‘correct’ equivalent
multitype processes to compare with should look like. In fact, there are usually several answers
depending on the phenomenon one wishes to focus on. In this section we assume that all the
infectious periods are identically distributed (in particular µi = µ for all i) and also that
λij = αiβj where αi are equal to α for all i, so all that differs are the susceptibility rates.
Below we will suggest one way to construct comparable heterogeneous processes.

Under the above restriction, the fundamental equation (2.1) becomes

1 − τj = exp

{
−βjαµ

∑
i

πiτi

}
, 1 ≤ j ≤ ρ,

hence multiplying by πj , summing over j and writing τ = ∑
i πiτi yields

1 − τ =
∑
j

πj exp{−βjαµτ }. (3.1)
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Obviously, τ is the overall total size of the epidemic. In Ball [2] this quantity is compared
with the corresponding total size, τ∗ say, obtained by running a homogeneous process with the
weighted mean of the old contact rates as the new contact rate:

β =
∑
i

πiβi .

Ball shows that τ∗ ≥ τ with equality if and only if all the numbers βi are equal. In fact,
the results in [2] are remarkably precise; in short they state that the homogeneous counterpart
gives a stochastically larger accumulated number of infectives for each time point t and for all
population sizes ν. We may gain some insight into this phenomenon by looking at expected
thresholds (cf. Section 2). Write Q(i,r) for the individual stochastic thresholds of the hetero-
geneous model and Q

(r)∗ for the thresholds in the homogeneous case, and define

� = 1

ν
E

(∑
i

νi∑
r=1

Q(i,r)

)
and �∗ = 1

ν
E

( ν∑
r=1

Q(r)∗
)

to be the corresponding population means of the expected thresholds. Since all theQ-variables
are exponentially distributed, we have

� =
∑
i

πi

βi
≥

(∑
i

πiβi

)−1

= 1

β
= �∗

because the arithmetic mean always dominates the harmonic mean, thus the homogeneous
population as a whole is actually made more susceptible to the disease than the heterogeneous
counterpart. The rate β is chosen so that initially the two epidemics spread at the same rate,
but this breaks down as soon as a positive fraction of the individuals have become infected.

The following problem now suggests itself. Given a contact rate β > 0, compare the
resulting homogeneous epidemic process with the multitude of multitype epidemics having
susceptibilities β1, . . . , βρ and relative proportions π1, . . . , πρ satisfying

1

β
=

∑
i

πi

βi
, (3.2)

because all these multitype epidemics will then have the same population mean of the expected
thresholds as the homogeneous epidemic. We have the following result.

Observation 1. Define βc = 2/(αµ(1 − e−2)). If β ≥ βc then the homogeneous epidemic
process, given by β̂ = (β, . . . , β), yields the largest total size. If β < βc then the largest
outbreak is obtained in a heterogeneous case.

To prove this, we fix β and π1, . . . , πρ and define for each given β = (β1, . . . , βρ) obeying
(3.2) the function

f (β, t) =
∑
i

πi exp{−βiαµt}, t ≥ 0.

The total size τ(β) is then the largest root of the equation 1− t = f (β, t) (see Equation (3.1)).
In particular, in the homogeneous case we have, writing τ = τ(β̂),

1 − τ = exp{−βαµτ }. (3.3)
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1

τ

Figure 1: Perturbation of β̂ and its impact on the crossing point τ .

In order to make an analysis of the behaviour of τ(β) for small departures β = β̂ + δ from
β̂, we note that if f (β, τ ) < f (β̂, τ ) then the root τ(β) obviously satisfies τ(β) > τ (see
Figure 1), the statement with reversed inequality signs being equally valid. Denote by 〈u, v〉
the inner product

∑
i uivi of the vectors u, v ∈ R

ρ . Also, let |u| denote the norm √〈u,u〉 of u.
Since ∑

i

πi

βi
= 1

β
− 1

β2 〈π, δ〉 + 1

β3 〈π, δ2〉 + o(|δ|2),

we must have 〈π, δ2〉 − β〈π, δ〉 = o(|δ|2) in order to stay sufficiently close to the surface S

prescribed by (3.2) (here δ2 denotes the vector (δ21, . . . , δ
2
ρ)). Taylor expansion then yields

f (β, τ ) = f (β̂, τ ) + αµτ exp{−βαµτ }(−〈π, δ〉 + 1
2αµτ 〈π, δ2〉) + o(|δ|2)

= f (β̂, τ ) + αµτ exp{−βαµτ }〈π, δ2〉( 12αµτ − 1/β) + o(|δ|2).
We see that the sign of τ(αµτ/2 − 1/β) determines how the total size changes for small
departures from β̂.According to (3.3) we have αµτ/2−1/β = 0 exactly when 1−2/(βαµ) =
e−2, i.e. when β = βc. We can sum up the results as follows.

If 0 < β ≤ 1/(αµ) then τ = 0 (see (3.3)), and it easy to see that we can find β with
τ(β) > 0. Indeed, the basic reproduction number R0 can easily be pushed above 1, e.g. by
choosing one of the components βi to be very large. If 1/(αµ) < β < βc then τ > 0 and
perturbations of β̂ always lead to an increasing total size. Finally, if β ≥ βc then we have a
local maximum of τ(β) at the point β̂. In fact, τ(β) has its global maximum at β̂ which we
now show. Assume for contradiction that the maximum is not global, i.e. there exists a point
on the surface S with even larger total size. Pick a smooth curve γ on S with these two extreme
points as endpoints. Somewhere along this curve, at the point β∗ say, the total size takes the
minimal value τ ∗ = τ(β∗). But this is impossible, since Taylor expansion shows that along
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Table 1: Maximal total size for different values of β

β (β1, β2) τ

0.50 (14.5, 0.25) 0.57
1.00 (9.5, 0.53) 0.64
1.50 (6.40, 0.85) 0.73
2.00 (4.14, 1.32) 0.81
2.31 (2.31, 2.31) 0.86
2.50 (2.50, 2.50) 0.89

the tangent v to γ at β∗,
f (β∗ + εv, τ ∗) > f (β∗, τ ∗)

if ε is small enough, giving even smaller values of the total size in a neighbourhood of β∗.
Table 1 gives the maximal value of the total size and the corresponding optimal point along

the curve described by (3.2) for a range of parameter values β. Here ρ = 2, α = µ = 1 and
π1 = π2 = 1/2. We have included the value βc ≈ 2.31. Note how the pairs (β1, β2), giving
the maximal value of τ , approach the diagonal as β increases. Also note that the value of the
total size for β = βc is extremely high – for all realistic values the optimum is to be found
at a point off the diagonal. (Obviously, interchanging the coordinates of (β1, β2) also gives an
optimal point.)

Let us make one final remark. It is important to consider not only the final epidemic size
in case of a large outbreak, but also the probability of a large outbreak along the surface S.
Fix β, {πi} and {βi} as before. From Becker and Marschner [9] we may extract the following
equation for the probabilities θi of a large epidemic given a single initial infective of type i,
1 ≤ i ≤ ρ:

1 − θi = E

[
exp

{
−αI

∑
j

πjβj θj

}]
, 1 ≤ i ≤ ρ,

where the infectious period I has distribution F . Now, it is natural to assume that the probab-
ility of the initial infective being a type i individual is proportional both to the number of type
i individuals and to the susceptibility βi , i.e. the unconditional explosion probability is given
by θ = ∑

i πiβiθi/〈π, β〉. It follows that
1 − θ = E[exp{−αI 〈π, β〉θ}].

We have previously observed that β = (
∑

i πi/βi)
−1 ≤ 〈π, β〉. This implies that the probabil-

ity of a large outbreak is always minimal in the homogeneous setup, even in the case of a very
infectious disease where, as we have seen, the total size in case of an outbreak is maximized
for the homogeneous case.

4. An epidemic model for a multitype population with households

The formation of households is obviously a very important feature to take under consid-
eration when studying the spread of an epidemic among a human population. Only recently,
however (by Ball et al. [7]), has a thorough probabilistic analysis of an epidemic model with
households, assuming homogeneous individuals, been performed. Britton [11] also treats the
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case with households of homogeneous individuals and constructs a statistical test to detect
if the disease transmits at a higher rate within households. Becker and Dietz [10] study the
other extreme, meaning that they assume that all household members become infected once
the disease has entered the household – an assumption we adopt in this and the next section.
Here we extend the model of Section 2 to an epidemic in a population built up of households of
individuals, assuming very high infectivity within the households. By treating the households
as ‘macro individuals’ it is shown that this model falls under a multitype epidemic model
without households defined by Ball and Clancy [5].

Start with the model defined in Section 2 and adopt the notation of that section. On top of
this we assume that each individual belongs to exactly one household and that once someone
in a household is infected she immediately infects all other household members (see the end
of Section 5 for comments on this assumption). Once a household is infected each of the
individuals has contact with individuals outside the household according to the rules defined
in Section 2. Beside different individuals we now also have different types of households.
Assume there are r different household structures labelled 1, . . . , r , and let khi denote the
number of i-individuals in h-households (households will be indexed by g and h as opposed to
individuals where i and j are used). Let nh denote the number of h-households and ph = nh/n

the corresponding proportion, where n = ∑
h nh is the total number of households. Further,

we define γ = ν/n to be the average household size. The asymptotics we will consider is
where γ is finite and n tends to infinity. For this notation to be consistent with the notation of
Section 2 it follows that νi = ∑

h k
h
i nh.

In this new model we may treat a household as an individual since all individuals become
infected at the same time. However, this ‘individual’ does not make infective contacts at a
constant rate during its infective stage, as was assumed in the model of Section 2. The reason
for this is that, unless all infective periods are degenerate with equal constant values, after some
time some individuals in the household will remain infective whereas others are removed. The
rate of infective contacts decreases each time someone in the household is removed, until all
individuals in the household are removed – when this happens the whole household is removed.
Fortunately, Ball and Clancy [5] study a model in which infective individuals may change state.
All that is required of the random process governing the state-changes is that it is independent
of the remaining population – an assumption which is fulfilled in the present case since all
infective periods were defined to be independent of everything else. If the model did not
assume immediate infection of all household members, then this would imply that individuals
could get infected from someone outside the household while the disease was spreading within
the household. But then the random process changing infective state would be dependent on
the remaining population and the results in [5] could not be applied.

An important quantity is the expected number +gh of h-households that one g-household
would infect if all h-households were susceptible. The following relation holds:

+gh = E

(∑
i

(
(I (i,1) + · · · + I (i,k

g
i ))

∑
j

πjλij
nhk

h
j

νj

))
. (4.1)

A g-household can infect an h-household by any type of individual in the g-household having
contact with any type of individual from the h-household. This explains the summation over
i and j . The factor (I (i,1) + · · · + I (i,k

g
i )) is the cumulative infective period of all i-type

individuals in a g-household. While infective, an i-individual has contact with j -individuals
at rate πjλij , but only the fraction nhk

h
j /νj of these individuals belong to h-households. This
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explains Equation (4.1). After some simple algebra the expression becomes

+gh = ph

γ

∑
i,j

k
g
i k

h
j λijµi. (4.2)

Under the assumption (cf. Section 2) that the contact rates between individuals split up into
products λij = αiβj , Equation (4.2) can bewritten +gh = (ph/γ )agbh, where ag = ∑

i k
g
i αiµi

is ν times the average infection pressure caused by a g-household and bh = ∑
j k

h
j βj measures

the susceptibility of an h-household.

5. Adding individuals to households

In this section we compare the contribution of ‘infection pressure’ from different household
formations. The comparison is performed by swapping or moving individuals between house-
holds and we derive the necessary criteria on the households in order to get a larger/smaller
contribution to the pressure by a swap. It turns out that whether or not a swap will cause a larger
contribution often depends on the remaining population and in particular the accumulated
infection pressure it has caused.

Assume as before that the contact rates between individuals satisfy λij = αiβj and that the
population consists of a large number of households.We concentrate on two of the households,
one of type g and one of type h, and treat the remaining population as a black box. Assume
two ‘new’ individuals, one i- and one j -individual, have to join the two households – one in
each household. Which of the two possible ways to do this will, on the average, result in a
larger contribution to the global infection pressure?

To address the question posed we will consider the random graph corresponding to the
epidemic. It is well known that a suitably defined directed random graph can model the final
outcome of more or less any epidemic model – the existing directed components indicate trans-
mission if the host gets infected. By neglecting the arrows to and from household g and h we
may study the epidemic that would appear if g and h did not belong to the population. Assume
the remaining population has caused the infection pressure A, where the infection pressure
caused by an i-individual with an infective period of length I (i) is defined as αiI (i)/ν. Given
A, we now compute the expectation of the additional infection pressure, X say, obtained by
entering the two households into the population, that is no longer neglecting the arrows to and
from the two households. The reason for choosing expectation as the quantity of interest would
perhaps be better motivated if many such pairs of households were entered simultaneously.
Let I denote the case where i joins household g and consequently that j joins household h.
Conditioning upon which of the households that get infected by the pressure A, we have

EI
A(X) = EI

A(X | neither)P I
A(neither) + EI

A(X | g)P I
A(g)

+ EI
A(X | h)P I

A(h) + EI
A(X | g and h)P I

A(g and h)

= 0 + ag + αi

ν
(1 − exp{−(bg + βi)A}) exp{−(bh + βj )A}

+ ah + αj

ν
exp{−(bg + βi)A}(1 − exp{−(bh + βj )A})

+ ag + ah + αi + αj

ν
(1 − exp{−(bg + βi)A})(1 − exp{−(bh + βj )A})

+ o(ν−1).
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The remainder on the right-hand side comes from the small chance that household g infects
household h and vice versa. Denote the second alternative by II, i.e. i belongs to household h

and j to g. The corresponding expected additional force EII
A(X) is computed similarly. Now

define 1(A) = limν→∞ ν(EI
A(X) − EII

A(X)). Simple algebra yields

1(A) = (ag + αj ) exp{−(bg + βj )A} + (ah + αi) exp{−(bh + βi)A}
− (ag + αi) exp{−(bg + βi)A} − (ah + αj ) exp{−(bh + βj )A}. (5.1)

We show next that the sign of 1 can change at most once for positive A. This is equivalent to
proving that f (A) has at most one strictly positive root, where

f (A) = c1 exp{−d1A} + c2 exp{−d2A} − c3 exp{−d3A} − c4 exp{−d4A},
such that c1 + c2 = c3 + c4 and d1 + d2 = d3 + d4, all coefficients being positive. Assume
without loss of generality that d4 ≥ di for all i which implies that d3 ≤ di for all i. Define

g(A) = exp{d3A}(d4f (A) + f ′(A))
= c1(d4 − d1) exp{−(d1 − d3)A} + c2(d4 − d2) exp{−(d2 − d3)A} − c3(d4 − d3).

(5.2)

From the first line of (5.2) we see that g and f ′ have the same sign at the roots of f . From
the second line of (5.2) we note that g is decreasing in A due to the assumptions on di . This
implies that g changes sign at most once. But f ′ changes sign between adjacent roots of f , so
these two observations imply that f has at most two roots and, since 0 is a root, consequently
at most one strictly positive root.

Since the function 1 has at most one strictly positive root it is of particular interest to
compute 1(A) for small positive and large positive A. The critical value Ac where 1 changes
sign, if it ever does, can only be solved numerically. It is not hard to show that

1(A) = [(ag − ah)(βi − βj ) + (bg − bh)(αi − αj )]A + o(A), (5.3)

so the sign of the first order term determines which alternative gives the largest average
additional infection pressure when A is small. For large A, the sign of 1(A) is identical to
the sign of

min{bg + βi, bh + βj } − min{bg + βj , bh + βi}, (5.4)

except when either (5.4) equals 0 or at least one of the households and one of the individuals
has no infectivity at all.

Assume that (5.4) and the first order term in (5.3) are both non-zero. Let us also assume that

ag ≥ ah, bg ≥ bh; αi ≥ αj , βi ≥ βj .

We believe that this situation is most common in applications. In particular, this is always true
if αi = cβi , implying that infectivity and susceptibility depend only on social activity. Another
example is where we have homogeneous individuals belonging to households of varying sizes,
and where individual j is fictitious, that is αj = βj = 0 (this means that individual i shall join
either of two households of different size). By using (5.3) and (5.4) we easily conclude that
1(A) is positive for small A and negative for large A (see Figure 2 for a particular case). We
have thus shown the following.
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Figure 2: 1 as a function of A when ag = 10, ah = 8, bg = 1, bh = 0.8, αi = 4, αj = 3, βi = 0.4,
βj = 0.2.

Observation 2. Consider an infectious disease with high infectivity within households. Let
the infection pressure be A. Then, under the conditions above, there exists Ac such that if
A > Ac then the largest contribution to the infection pressure is obtained when households are
homogenized, whereas if A < Ac the largest additional pressure is obtained when households
are heterogenized.

We have, for technical reasons, assumed that once someone in a household is infected this
individual infects all other household members. This is of course not true in real life. However,
for infectious diseases with high infectivity upon contact such as measles, it is approximately
true if we consider only individuals who are susceptible when the epidemic starts. Further, the
household model can be derived as the limit of a sequence of epidemic models with within-
household infection rates increasing to infinity. For this reason the statement above should hold
also when the infection rate within the household is not extremely high.
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