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Summary. This article is concerned with a method for making inferences about various measures of vaccine
efficacy. These measures describe reductions in susceptibility and in the potential to transmit infection. The
method uses data on household outbreaks; it is based on a model that allows for transmission of infection
both from within a household and from the outside. The use of household data is motivated by the hope that
these are informative about vaccine-induced reduction of the potential to transmit infection, as household
outbreaks contain some information about the possible source of infection. For illustration, the method is
applied to observed data on household outbreaks of smallpox. These data are of the form needed and the
number of households is of a size that can be managed in a vaccine trial. It is found that vaccine effects, such
as the mean reduction in susceptibility and the mean reduction in the potential to infect others, per infectious
contact, can be estimated with precision. However, a more specific parameter reflecting the reduction in
infectivity for individuals partially responding to vaccination is not estimated well in the application. An
evaluation of the method using artificial data shows that this parameter can be estimated with greater
precision when we have outbreak data on a large number of small households.
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1. Introduction
For the control of vaccine-preventable diseases, it is impor-
tant to have measures of the effectiveness of the vaccine
and estimates of these measures. Various such measures have
been considered in the literature. Smith, Rodrigues, and Fine
(1984) give two forms for the way vaccination might affect
an individual’s susceptibility to infection. Halloran, Haber,
and Longini (1992) consider responses to vaccination that in-
clude the types of response considered by Smith et al. (1984),
some of which allow for the possibility that vaccination re-
duces the vaccinated individual’s infectivity should he be-
come infected. Here, we consider a family of responses to
vaccination that is wider in terms of effects on susceptibil-
ity and infectivity. Our focus is on estimating parameters of
this family of vaccination responses that indicate how effec-
tive the vaccine is at reducing disease transmission. There
is particular interest in estimating how much vaccination re-
duces infectivity. This reduction is difficult to estimate, be-
cause it requires data on the source of infection; see Rhodes,
Halloran, and Longini (1996). While we can observe who
gets infected, there is often little information on who is re-
sponsible for a particular infection. This prompts us to con-
sider data on household outbreaks, because such data contain
some implicit information on who is likely to have infected
whom.

Most of the current literature concerned with how much
vaccination reduces infectivity is motivated by potential vac-
cines for reducing HIV infection and focuses on vaccine trials
involving singles and couples, which can be viewed as small
households; see Koopman and Little (1995), Rida (1996),
Datta, Halloran, and Longini (1999) and Longini et al. (1998).
The present approach differs from these by considering an
application to outbreaks in a range of household sizes and
by having either a different or a more general formulation
for the vaccine response. Longini et al. (1998) propose an
approach to estimating reduced infectivity that is not based
on household-outbreak data. Instead, they use epidemic data
on multiple populations consisting of uniformly-mixing in-
dividuals, where the populations differ in their vaccination
coverage.

The layout of the present article is as follows. In Section 2,
we describe a model for household outbreaks of an infectious
disease transmitted from person to person. Although our ap-
plication assumes homogeneity of unvaccinated individuals,
our analysis requires a model for different kinds of individual,
because individuals may differ in their vaccine response, so
that vaccination generates a community of heterogeneous in-
dividuals. Infection may be transmitted to individuals either
by sources outside the household or by an infected household
member.
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In Section 3, the class of vaccination response formulated
by Becker and Starczak (1998) is described, and we introduce
some measures of vaccination effect for this class. We then
specify the subclass of vaccination responses that is used in
the proposed analysis. Our subclass of responses allows for the
possibility of vaccine failure, complete immunity, and partial
immunity, with the last response including a reduction in both
susceptibility and infectivity.

The probability distribution for the eventual number of
vaccinated and unvaccinated cases in a given household is
derived in Section 4. This distribution can be derived using
the results of Section 2, essentially by conditioning on the
vaccine responses of individuals. Section 5 briefly describes
the form of the data and the proposed method for making in-
ferences. A Bayesian approach is proposed, because it seems
best able to deal with inferences about this complex model,
bearing in mind that the transmission model is specified by re-
cursive equations and that the flexible description for vaccine
response introduces many parameters. In Section 6, the meth-
ods are illustrated by an application to data from a smallpox
epidemic in a partially immunized community. In Section 7,
the methods are evaluated further using artificial data. The
article concludes with some discussion.

2. A Transmission Model for Household Outbreaks
Our focus is on a community of individuals who reside in
households. Some of the individuals have been vaccinated.
It is assumed that prior to vaccination, all individuals are
equally susceptible to the disease in question, and equally
infectious if infected. However, variability in vaccination re-
sponse induces differences among the individuals. Therefore,
the inferences need a multitype model for transmission of in-
fection. The following model, from Addy, Longini, and Haber
(1991), assumes that individuals may be infected either from
the community at large, or by an infected household member.

Consider a population consisting of individuals who reside
in households of various sizes. Individuals are of k different
types, labeled 1, . . . , k. Each individual of type i indepen-
dently avoids infection from the community, during the ob-
servation period (0, τ), with probability qi . Here, we implic-

itly assume that qi = e
−
∫ τ

0
ηi(x)dx

, where ηi(x) is the intensity
of infection exerted at time x on a type-i individual by in-
fectious individuals outside the household. The observation
period may be any interval that includes an entire epidemic.
However, the model also applies when (0, τ) contains only
part of an epidemic or when transmission is endemic, although
then the observation period must be large relative to the du-
ration of a typical infectious period for an infected individ-
ual. An infected type-i individual is assumed to be infectious
for a period Ti , where Ti is random with moment generat-
ing function φi(s) = E(e−sTi). During his infectious period, a
type-i individual has infectious contacts with a given type-j
household member at the points of a Poisson process of rate
βij . Any such contact results in infection of the type-j indi-
vidual. The Poisson processes describing infections between
different infective-susceptible pairs are assumed to be inde-
pendent. It follows that, conditional upon Ti , a type-i indi-
vidual infects each given type-j susceptible household member
independently with equal probability 1 − e−βijTi . Removing

the conditioning yields that the probability of a given type-j
susceptible avoiding infection from a given type-i infective is
E(e−βijTi) = φi(βij), although now the fates of different indi-
viduals are not independent, in general. Note that to avoid
infection, an individual must fail to be infected both from the
community, and also from all infectives within the household.

The probability distribution for the final outcome of the
transmission model described above can be expressed in terms
of the above avoidance probabilities. We use bold letters to
denote k-dimensional vectors and define(

s
j

)
=

(
s1

j1

)
· · ·

(
sk
jk

)
, sj =

∏
i

sjii ,

and
∑
s<j

=
∑
s1≤j1

· · ·
∑
sk≤jk

,

where at least one inequality in the sums on the right of the
last equation must be strict.

Let ps,r(j) denote the probability that a household contain-
ing s initial susceptibles (i.e., s1 of type 1, s2 of type 2, etc.)
and r initial infectives has j additional infections during the
observation period. Following Addy et al. (1991), the final-size
probabilities can be derived recursively from the equations

ps,r(j) =

(
s
j

)∏
i

φi

{∑
k

(sk − jk)βik

}ji−ri

qs−j

−
∑
w<j

(
s − w
j − w

)
ps,r(w)

∏
i

φi

{∑
k

(sk − jk)βik

}ji−wi

,

0 ≤ j ≤ s. (1)

In the absence of vaccination, we assume that the popula-
tion is described by a single-type model, obtained by setting
k = 1, q1 = q, T 1 = T , and β11 = 1. The last assumption can
be made without loss of generality, since β11 and T cannot be
separately identified from final outcome data.

3. Vaccination
The purpose of vaccinating an individual is to protect the
individual against infection and, more generally, to reduce
transmission within the community. Our interest therefore
lies in the effect of vaccination on an individual’s susceptibil-
ity to infection and his subsequent potential to infect others.
Consequently, it is natural to formulate a description of the
effects of vaccination in terms of changes in the forces of infec-
tion exerted on individuals and by individuals. The framework
we now describe was first proposed by Becker and Starczak
(1998), who used it to study the effect of variable vaccina-
tion response on the fraction who need to be vaccinated to
prevent major epidemics. Here the focus is on measures of
vaccine efficacy and their estimation.

To formulate the effect of vaccination on susceptibility, con-
sider a susceptible individual who is subjected to the intensity
of infection λt, at time t ≥ 0. Here λt is the sum of the inten-
sities exerted by all infectious household members and from
the community at large. The probability that the individual
is infected in the time increment [t, t + dt) is λt dt + o(dt) if
he has not been vaccinated and Aλt dt + o(dt) if he has been
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vaccinated. The nonnegative quantity A is the proportionate
reduction in the probability that a vaccinated individual is
infected, per contact, relative to an unvaccinated individual.
We assume that A is random, thus allowing susceptibility to
vary between vaccinated individuals. This is appropriate, be-
cause sometimes vaccines fail and there are differences in the
immune systems of individuals.

Individuals who have an immunological response to vacci-
nation may have a milder form of the illness, if ever infected,
making them less likely to transmit the infection to others. To
quantify a possible reduction in the potential to infect others,
let B denote the proportionate reduction in the mean number
of infectious contacts that a vaccinated individual has, com-
pared to the number he would have if he were not vaccinated,
given that he has been infected. The relative infection poten-
tial B lies between zero and unity when vaccination reduces
infectivity. By assuming that B is random, we can accommo-
date variation in those immunological responses that affect
infectivity.

The effects of vaccination on susceptibility and infectivity
are described by the joint probability distribution of A and
B,

Pr(A = ai, B = bi) = pi, i = 1, 2, . . . , k. (2)

This general formulation can provide a good approximation
to any plausible vaccine response. It is of interest to esti-
mate certain characteristics of this distribution, particularly
ones that indicate how effective the vaccine is. Halloran,
Longini, and Struchiner (1999) review a number of ways to
measure the efficacy of a vaccine. Here, we consider these
for a larger family of vaccine response. The quantity VES =
1 − E(A) measures the reduction in susceptibility induced by
the vaccine. Also relevant are Pr(A = 0), the probability of ac-
quiring complete protection against infection and Pr(A = 1),
the probability of acquiring no protection. Measures of infec-
tivity reduction need to be constructed with some care. The
quantity VEI = 1 − E(B) seems to be an appropriate mea-
sure of the reduction in infectivity, but it is not well defined
when Pr(A = 0) > 0, as is hopefully the case for some vac-
cines. Whenever the value of A for a vaccinated individual is
zero, that individual cannot be infected, so his value of B has
no meaning. To overcome this concern, one might judge the
vaccine effect on infectivity by considering both the probabil-
ity Pr(A = 0) = c and the quantity 1 − E(B |A > 0). Alterna-
tively, one might use the quantity VEIS = 1 − E(AB), which
measures the reduction due to vaccination to the extent to
which a susceptible individual can both become infected and
then infect others. This measure is not affected by the defini-
tion of B when A = 0. Furthermore, VEIS also plays a central
role in the extent of transmission within a partially vaccinated
community; see Becker and Starczak (1998).

To incorporate the vaccine effect (A,B) into the transmis-
sion model, we begin with homogeneous, unvaccinated indi-
viduals. Following vaccination of some individuals, the infec-
tion probabilities involving contacts with vaccinated individu-
als are specified by the following. A vaccinated individual with

relative susceptibility A = a has probability qa = e
−a

∫ t

0
η(x)dx

of avoiding infection from the community, where η(x) is the in-
tensity of infection exerted at time x from individuals outside

Table 1
Parameters used to describe vaccine effects in our application

f probability of vaccine failure
c probability that vaccine gives complete protection
a relative susceptibility if the vaccine is partially effective
b relative infectivity potential if the vaccine

is partially effective

the household. For a randomly selected individual, or uncon-
ditionally, the probability of avoiding infection from the com-
munity is E(qA). The unconditional probability of a vaccinee
avoiding infection from an infected unvaccinated household
member is E(e−AT ) = E{φ(A)}, using the fact that A and
T are associated with different individuals and therefore in-
dependent. Conversely, the probability that an unvaccinated
individual avoids infection from a vaccinated, infected house-
hold member is E(e−BT ) = E{φ(B)}, where it is assumed that
B and T are independent. Finally, the probability that a sus-
ceptible vaccinee avoids infection when exposed to an infected
vaccinee of the same household is E(e−ABT ) = E{φ(AB)},
where A and B are associated with different individuals and
therefore independent.

In our application, we restrict attention to a form of the
vaccine response distribution (2) with three distinct out-
comes. The vaccination fails completely with probability f =
Pr(A = 1, B = 1), it induces complete immunity with proba-
bility c = Pr(A = 0), or it induces partial immunity, which we
specify by Pr(A = a,B = b) = 1 − f − c, where 0 < a, b < 1.
This model for the vaccine response has four parameters, sum-
marized in Table 1. It is of interest to see how well they, and
the measures VES and VEIS , can be estimated from household
outbreak data.

4. Final-Size Probabilities for a Partly
Vaccinated Household

The outcome data used to make inferences about model pa-
rameters consist, for each household, of the eventual number
of cases among vaccinated individuals and the eventual num-
ber of cases among unvaccinated individuals. To construct
the likelihood function corresponding to such data, we need
an expression for the probability

πu,v(i, j) = Pr(i out of u unvaccinated and j out of

v vaccinated become infected)

for a household initially comprised of u unvaccinated and v
vaccinated susceptibles, where 0 ≤ i ≤ u and 0 ≤ j ≤ v. While
these probabilities are not given directly by the final-size prob-
abilities of Section 2, they can be evaluated from these prob-
abilities. For these calculations, it is sufficient to consider a
model with only two types of individual, even though there
are unvaccinated individuals and three possible vaccine re-
sponses. This is because individuals with a failed vaccination
are the same “type” as unvaccinated individuals, while vac-
cinees who acquire complete immunity play no part in the
transmission of infection.

Consider, therefore, a two-type form of the model in
Section 2, where type-1 individuals are those who are ei-
ther unvaccinated or vaccinated with a failure response, and
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Table 2
Probability of avoiding infection

Type-1 infective Type-2 infective

Type-1 susceptible E(e−T )=φ(1) E(e−bT )=φ(b)
Type-2 susceptible E(e−aT )=φ(a) E(e−abT )=φ(ab)

type-2 individuals are vaccinees who acquired partial immu-
nity. Type-1 individuals are infected from outside the house-
hold, during the observation period (0, τ), with probability
q1 = q, and type-2 individuals with probability q2 = qa . The
probability that a type-1 individual avoids infection from an-
other infected type-1 household member is E(e−T )=φ(1).
The four avoidance probabilities corresponding to possible
infective-susceptible pairs are summarized in Table 2. In the
notation of Section 2, we have β11 =1, β12 = a, β21 = b and
β22 = ba.

Let ps1,s2(j1, j2) denote the probability that j1 out of s1

initially susceptible type-1 individuals and j2 of s2 initially
susceptible type-2 individuals become infected. The system of
equations (1), for the final-size probabilities, then becomes

ps1,s2(j1, j2) =


qs1+as2 , (j1, j2) = (0, 0),(
s1
j1

)(
s2
j2

)
qs1−j1+a(s2−j2)φ {s1 − j1 + (s2 − j2)a}j1

×φ{(s1 − j1)b+ (s2 − j2)ba}j2

−
∑j1

r1=0

∑j2−1
r2=0

(
s1 −r1
j1 −r1

)(
s2 −r2
j2 −r2

)
ps1,s2(r1, r2)

×φ {s1 − j1 + (s2 − j2)a}j1−r1

×φ{(s1 − j1)b+ (s2 − j2)ba}j2−r2

−
∑j1−1

r1=0

(
s1−r1
j1−r1

)
ps1,s2(r1, j2)φ {s1 − j1 + (s2 − j2)a}j1−r1 ,

(j1, j2) 
= (0, 0).

The probabilities, for given s1 and s2, can be obtained by
sequentially computing the probabilities for (1, 0), . . . , (s1, 0),
(0, 1), . . . , (s1, 1), . . . , (s1, s2) using the above equations.

The final outcome probabilities πu,v(i, j) for households
with u unvaccinated and v vaccinated members, none of
whom were previously infected, can be obtained from the
{ps1,s2(j1, j2)} by

πu,v(i, j) =
∑

r,s,t;r+s+t=v

(
v

r s t

)
frcs(1 − f − c)t

×
min(j,r)∑
k=0

(
u
i

)(
r
k

)(
u+r
i+k

) pu+r,t(i+ k, j− k).

The factor after the first summation sign is the trinomial coef-
ficient v!/(r!s!t!), where r+ s+ t= v. This formula is obtained
by conditioning on the vaccine responses among the v vacci-
nated individuals and summing over those configurations with
j vaccinated members infected (regardless of their responses).
The hypergeometric factor in front of pu+r,t(i+ k, j− k) ap-
pears because there are u+ r fully susceptible individuals,
including u unvaccinated individuals and r members whose
vaccination failed; we require the probability that exactly i of
the i+ k infected are unvaccinated.

To compute πu,v(i, j) for 0 ≤ i ≤ u, 0 ≤ j ≤ v, it
is necessary to find ps1,s2(j1, j2) for s1 =u, . . . ,u+ v and
s2 =0, . . . , v− (n1 −u). In practice, it is expeditious to com-
pute the relevant ps1,s2(j1, j2) terms in advance, since they are
required for several different πu,v(i, j) terms.

5. Form of the Data and Proposed Inferences
Assume that households are sampled from the community at
random, in a way that may depend on the size of the house-
hold and/or on the number of vaccinated and unvaccinated
household members, but may not depend on the number of
cases there are, or will be, in the household. Data on the num-
ber of members infected in these households, together with the
vaccination status of household members and cases, are to be
used to make inferences. In the count of household members,
individuals who are known to have acquired immunity from
a previous infection are excluded. The same observation pe-
riod (0, τ) applies to all households. During the observation
period there must be a sufficiently large cumulative force of
infection; otherwise, the number of cases will be too small to
make useful inferences. Nevertheless, the sample of households
will generally include some that have no cases.

The data set has the form

n = {nu,v(i, j) : 0 ≤ i ≤ u ≤ umax, 0 ≤ j ≤ v ≤ vmax},

where nu,v(i, j) is the number of households in which i out
of u unvaccinated and j out of v vaccinated individuals were
infected, and umax and vmax, respectively, denote the largest
numbers of unvaccinated and vaccinated individuals present
in households.

The likelihood corresponding to this data set is given by

L(a, b, c, f, q, µ) =
∏

0≤i≤u≤umax

∏
0≤j≤v≤vmax

{πu,v(i, j)}nu,v(i,j),

(3)

where µ denotes the (possibly one-dimensional) parameter
vector of the distribution of the infectious period T. The pa-
rameters c, f, q are probabilities and so have domain [0, 1].
The parameters a and b are positive and no greater than 1
if vaccination does not increase susceptibility or infectivity,
while the domain of µ depends on the parameterization used
for the distribution of T.

We now consider Bayesian inference for the model param-
eters a, b, c, f, q, and µ given the data n, by investigating the
posterior density ϕ(a, b, c, f , q, µ | n). By Bayes’ Theorem,
we have

ϕ(a, b, c, f, q, µ |n) ∝ L(a, b, c, f, q, µ)ϕ(a, b, c, f, q, µ), (4)

where L is defined by (3) and ϕ(a, b, c, f , q, µ) is the prior
density on the parameter vector (a, b, c, f , q, µ).

To investigate the posterior density given by (4), we use
a Markov chain Monte Carlo (MCMC) algorithm; see Gilks,
Richardson, and Spiegelhalter (1996) for an introduction to
MCMC methods, and O’Neill et al. (2000) for applications
to epidemic models. Specifically, we use a single-component
Hastings algorithm. The updating of a single parameter χ
(so that χ is one of a, b, etc.) with current value θ, say, is
performed as follows. A new value, θ̃, is drawn from a proposal
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density gχ(θ̃ | θ). The new value is accepted with probability

min

{
ϕ(. . . , θ̃, . . .)

ϕ(. . . , θ, . . .)

gχ(θ | θ̃)
gχ(θ̃ | θ)

, 1

}
.

If θ̃ is not accepted, then χ remains as θ. Note that, although
the choice of gχ is essentially arbitrary, the particular distribu-
tion used affects the convergence properties of the algorithm.

6. Application
To illustrate the proposed method for making inferences, we
use data on observed household outbreaks of smallpox. The
data set is well suited for this illustration, because it is essen-
tially of the form needed and is of a size that can be managed
in a vaccine trial. The properties of the vaccine are also suit-
able. Specifically, the vaccine is not transmissible and it is
designed for an antigenically stable pathogen.

6.1 The Data
The data are taken from an epidemic of variola minor, the
mild form of smallpox, that occurred in Bragança Paulista
County (Brazil) in 1956; see Angulo (1976). The households
were not selected in strict accordance with the sampling
scheme assumed in Section 5 but, for our analysis, we as-
sume that the households were sampled without reference to
the number of cases. There are a total of 338 households,
including 126 without any cases. The household size ranges
from 1 to 12 individuals, with a mean household size of 4.56.
In total, there are 1542 individuals, of whom 809 were vac-
cinated and 733 unvaccinated. During the epidemic, 425 of
the unvaccinated individuals and 85 of the vaccinated indi-
viduals were infected. The data on households affected by
smallpox were previously used by Becker and Angulo (1981)
to compare the susceptibility of vaccinated and unvaccinated
individuals. They estimated parameters of a two-type chain
binomial model using maximum likelihood methods, and also
fitted a continuous-time model by using martingale estimat-
ing equations.

6.2 Implementation Details
We present two different analyses corresponding to two mod-
els, labeled 1 and 2. In model 1, the infectious period T is
nonrandom, while in model 2, T is assumed to have an ex-
ponential distribution. The two models thus represent dif-
ferent assumptions regarding the within-household infection

Table 3
Posterior density summary, model 1

a b c f

Mean 0.217 0.589 0.440 0.078
Median 0.163 0.623 0.460 0.072
S. dev 0.166 0.264 0.228 0.051
95% C.I. (0.054,0.572) (0.106,0.959) (0.055,0.776) (0.007,0.170)

q µ E(A) E(AB)

Mean 0.629 0.678 0.157 0.127
Median 0.629 0.678 0.155 0.127
S. dev 0.022 0.027 0.025 0.035
95% C.I. (0.591,0.665) (0.633,0.721) (0.118,0.201) (0.071,0.186)

process. Comparison of the inferences drawn using these two
models enables us to assess informally the degree to which
estimation for vaccine efficacy is robust with respect to the
assumptions regarding disease transmission. The details are
as follows.

For model 1, T is assumed to be a constant with mo-
ment generating function φ(s)=µs, so that in the absence
of any vaccination, µ is the probability that a given suscepti-
ble avoids infection from a given infective household member.
The assumption that T is constant is known as the Reed-
Frost assumption; see Andersson and Britton (2000). Each
of the six model parameters was assigned an independent
Uniform(0,1) prior density. Within the Hastings algorithm,
each of the proposal densities g was set as Uniform(0,1).

For model 2, T is assumed to have an exponential distribu-
tion with mean λ−1. This is known as the general stochastic
epidemic assumption; see Andersson and Britton (2000). For
convenience, within the MCMC algorithm, the reparameteri-
sation ν=e−λ was used, so that ν ∈ (0, 1). Prior distributions
and proposal distributions were the same as for model 1.

6.3 Results
Posterior density summaries are given for model 1 in Table 3
and for model 2 in Table 4. The quantity µ=λ /(λ+1) in
Table 4 is the avoidance probability between an unvaccinated
infective-susceptible household pair, and so has the same in-
terpretation as the µ of Table 3. In both tables, the values are
based on samples of size 104 from the MCMC output.

The characteristics of the posterior distributions given in
the two tables are very similar, which indicates that the re-
sults are not sensitive to substantially different assumptions
about variation in the infectious period. Consequently, the re-
marks below apply equally to either model. Additionally, the
plots in Figures 1 and 2, both taken from model 1, are very
similar to the corresponding plots for model 2 (not shown).

The vaccine failure probability, f = Pr(A = 1, B = 1), is a
quantity of major interest. For these data, f is estimated with
precision that is of practical value. Specifically, the data are
not compatible with a failure rate that is greater than 20%.

The probability of acquiring complete immunity, c =
Pr(A = 0), is also a quantity of major interest. Its estima-
tion is not very precise, although the results indicate that the
data are not compatible with values of c greater than 80%.

Inference for a also lacks precision. Indeed, inferences for
a, the relative susceptibility of partially immune vaccinees,
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Table 4
Posterior density summary, model 2

a b c f

Mean 0.198 0.560 0.438 0.070
Median 0.148 0.576 0.452 0.063
S. dev 0.156 0.264 0.228 0.048
95% C.I. (0.053,0.526) (0.100,0.954) (0.054,0.775) (0.006,0.160)

q µ E(A) E(AB)

Mean 0.619 0.651 0.143 0.113
Median 0.619 0.652 0.141 0.112
S. dev 0.022 0.031 0.026 0.037
95% C.I. (0.582,0.655) (0.599,0.701) (0.105,0.189) (0.054,0.176)

and c, the probability of complete immunity, are closely tied
together, as is revealed by the scatter plot for the values of
c and a in Figure 2. First, note that the lack of points in
the bottom right-hand corner of Figure 2 indicates that the
vaccine is effective at reducing susceptibility, because the data
are not compatible with c being small and a being large simul-
taneously. With c large, the data are compatible with most
values of a. Conversely, with a small, the data are compatible
with most values of c. Specifically, the data are not able to
distinguish between (a, c) ≈ (0, 0) and (a, c) ≈ (1, 0.8), which
both indicate low susceptibility.

For a partial-immunity response, the reduction in infec-
tivity is indicated by the value of b. In this application, the
credible interval for b is rather wide. This result is disappoint-
ing in view of our hope that household data provide a way
to make inferences about reduced infectivity. Note, however,
that the marginal posterior density of b, shown in Figure 1,
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Figure 1. Posterior density plots for a (relative susceptibil-
ity), b (relative infectivity potential), c (complete protection
probability), f (vaccine failure probability), E(A), and E(AB),
model 1.

has a slight peak. More specifically, it is not simply uniform.
Thus, the data do provide some, albeit not much, information
about b.

The inferences regarding the baseline parameters, q and µ,
of the transmission model are reasonably precise. Information
about q comes primarily from the fact that 502 individuals are
known to escape transmission from outside their household;
this large number explains the precision in q. The precision
of inference about µ arises because the number of within-
household exposures between pairs is large.

The parameters c, f, q, and µ are probabilities, making a
Uniform(0,1) prior distribution a natural choice. On the other
hand, using a Uniform(0,1) prior distribution for a and b, as
above, assumes that the vaccine reduces susceptibility and
infectivity. This seems reasonable for the smallpox vaccine,
but vaccines with adverse effects have been reported; see Kim
et al. (1969). Adverse effects are of particular concern for sex-
ually transmitted diseases, since being vaccinated might influ-
ence risk-taking behavior. We applied the method of inference
with a Uniform(0,3) prior distribution for a and b. Inferences
for c, f, q, µ and E(A) were minimally affected. The upper
credible bound for a slipped out to 0.94, while inference for b
were affected substantially (95% C.I. (0.21,2.7)). In short, the
information about b in these data is not sufficient to dominate
its prior distribution.

7. Evaluating the Method for Making Inferences
It is desirable to evaluate the performance of such inferences
by conducting a comprehensive study, based on many simu-
lated data sets for each of many points in the six-dimensional
parameter space. This is impracticable, because the method
involves very intensive computation for each chosen set of pa-
rameter values and each data set. Here, we conduct a very
limited evaluation, from which we hope to learn something
about (a) how well reduced infectivity can be estimated from
data on outbreaks in smaller households, (b) how much in-
ferences are affected by the way vaccinated individuals are
distributed over the households, and (c) how precision of in-
ferences improves as the sample size increases.

We choose just one set of parameter values, namely,
a=0.4, b=0.5, c=0.45, and f =0.05, giving E(A)= 0.25 and
E(AB)= 0.15, together with q=0.6 and µ=0.7. These values
are chosen because they reflect a plausible vaccine response
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Figure 2. Scatterplot of a and c, model 1.

and a plausible amount of transmitted infection within
households.

We consider four study designs. In the first two designs,
all households are of size two, and they are further specified
by the total number of households and the distribution of
vaccination over the households. Specifically, we have:

Design 2a All households have exactly one vaccinated and
one unvaccinated member, and

Design 2b Half the households have both members vacci-
nated and the other half have both members
unvaccinated.

The remaining two designs have all households of size four
and are of the following two types:

Design 4a All households have exactly two vaccinated and
two unvaccinated members, and

Design 4b Half the households have four vaccinated mem-
bers and the other half have four unvaccinated
members.

Table 5
Posterior density summary for the evaluation data set (using design 4b with a total

of 500 households)

a b c f q µ E(A) E(AB)

True value 0.40 0.50 0.45 0.05 0.60 0.70 0.25 0.15
Posterior mean 0.41 0.45 0.54 0.14 0.60 0.70 0.24 0.19
Posterior s. dev 0.27 0.28 0.20 0.08 0.03 0.03 0.04 0.06

Instead of simulating many data sets for each design, we
make inferences from just one data set for each design in which
the observed frequencies of different household outbreaks are
equal to the expected frequencies. In other words, we simply
take the integer part of the expected frequencies for a given
total number of households. In a sense, we then have the ideal
data set for those parameter values; we are interested in seeing
if the method of inference can identify the parameters when
the number of households is of a size that is manageable in
practice. We computed posterior distributions for data sets
based on 250, 500, and 1000 households. An illustration of
the results is given in Table 5.

Estimation of a was usually reasonable in all designs consid-
ered. We found that smaller household sizes do indeed provide
greater precision for the estimation of b, in the sense that the
mean posterior values are closer to the true value b=0.5. This
is consistent with results found by Rida (1996) and Datta
et al. (1999) in related settings. Additionally, for b, de-
signs 2a and 4a proved better than 2b and 4b, respec-
tively; one explanation is that in households where all
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individuals are vaccinated, it is relatively unlikely that there
are many infections at all, and thus there is limited in-
formation for inference about b (e.g., in design 2b, only
18 out of 250 households contained vaccinees who became
infected).

Estimation of E(A) was generally good across all designs,
while that for E(AB) varied considerably. The most accu-
rate posterior estimate came from design 4b. In fact, since
E(AB)= f + ab(1− f − c) for typical values of a, b, c it is
clear that f dominates the estimation of E(AB). However, es-
timating f is made complicated by the fact that the actual
value of f =0.05 is quite close to zero, and so the data do
not contain much information about f. This was reflected in
the results; as sample size increased, so the estimation for f
improved. Finally, in general, there was some increase in pre-
cision, in terms of smaller credible intervals, for larger sample
sizes. However, this increase was typically only of the order
of around 5–10%.

8. Discussion
Our aim has been to develop and test a method for making
inference about measures of vaccine efficacy given household
outbreak data. The modeling framework for vaccine response
allows consideration of measures of reduction in susceptibility
and potential to transmit infection. We restricted attention to
a three-type vaccine response, but could have modeled partial
vaccine response more elaborately than a single point mass at
(a, b). It seems unlikely that the additional parameters would
be identifiable from the data, but summary measures such as
E(A) should still be estimable with similar precision. It is not
wholly surprising that estimation of E(A) is fairly precise (see
Figure 1), because it is possible to obtain estimable bounds on
E(A) without specifying the distribution of (A,B), and these
bounds can be reasonably tight; see Becker and Utev (2002).

The precise estimation of VEIS =1−E(AB) is notable, par-
ticularly in view of the pessimism expressed in Section 2.4 of
Becker and Starczak (1998). On the other hand, distinct char-
acteristics of the marginal distribution of B, such as the value
b, are only estimated with a precision of practical value when
we have data on a large number of small households. Further
study of this issue would facilitate the design of vaccine trials
that take into account such issues as the number of individuals
who should be vaccinated and how these individuals should
be distributed over the households; see Rida (1996).

Finally, we have assumed, as is common practice, that the
rate of making infectious contacts is constant over the dura-
tion of the infectious period. The methods do not require this
assumption. If the rate at which individuals shed infectious
agent is not constant over the infectious period, then one can
proceed similarly by replacing β T , as in Section 2, by the
area under the infectiousness function.
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Résumé

Cet article propose une méthode pour faire des inférences
sur des mesures diverses d’efficacité vaccinale. Ces mesures
décrivent des diminutions dans la susceptibilité et dans le
potentiel de transmettre l’infection. La méthode utilise des
données d’épidémies intra-familiales et se base sur un modèle
qui permet la transmission de l’infection à la fois de l’intérieur
d’un foyer et de l’extérieur. L’utilisation de données intra-
familiales est motivée par l’espoir qu’elles soient informatives
sur la diminution du potentiel de transmission de l’infection,
induite par le vaccin, car les épidémies intra-familiales con-
tiennent des informations sur la source possible d’infection.
A des fins d’illustration, la méthode est appliquée à des
données d’épidémies intra-familiales de variole. Ces données
sont dans la forme souhaitée et le nombre de foyers est
d’une taille qui permet de gérer un essai vaccinal. Il a été
montré que les effets de la vaccination tels que la diminution
moyenne de la susceptibilité et la diminution moyenne du
potentiel d’infecter les autres, par contact infectieux, peut
être estimé avec précision. Cependant, un paramètre plus
spécifique reflétant la réduction de l’infectiosité pour des indi-
vidus répondant partiellement à la vaccination n’est pas bien
estimé dans l’application. Une évaluation de la méthode en
utilisant des données artificielles montre que ce paramètre
peut être estimé avec une plus grande précision lorsque l’on
dispose de données épidémiques sur un grand nombre de pe-
tits foyers.

References

Addy, C. L., Longini, I. M., and Haber, M. (1991). A gen-
eralized stochastic model for the analysis of infectious
disease final size data. Biometrics 47, 961–974.

Andersson, H. and Britton, T. (2000). Stochastic Epidemic
Models and Their Statistical Analysis. Lecture Notes in
Statistics 151. New York: Springer.

Angulo, J. J. (1976). Variola minor in Bragança Paulista
County, 1956: Overall description of the epidemic and of
its study. International Journal of Epidemiology 5, 359–
366.

Becker, N. G. and Angulo, J. J. (1981). On estimating the
contagiousness of a disease transmitted from person to
person. Mathematical Biosciences 54, 137–154.

Becker, N. G. and Starczak, D. N. (1998). The effect of ran-
dom vaccine response to prevent epidemics. Mathematical
Biosciences 154, 117–135.

Becker, N. G. and Utev, S. (2002). Protective vaccine efficacy
when vaccine response is random. Biometrical Journal
44, 29–42.

Datta, S., Halloran, M. E., and Longini, Jr., I. M. (1999).
Efficiency of estimating vaccine efficacy for susceptibility
and infectiousness: Randomization by individual versus
household. Biometrics 55, 792–798.

Gilks, W. R., Richardson, S., and Spiegelhalter, D. J. (Eds.)
(1996). Markov Chain Monte Carlo in Practice. London:
Chapman and Hall.



Estimating Vaccine Effects on Transmission of Infection from Household Outbreak Data 475

Halloran, M. E., Haber, M., and Longini, I. M. (1992). Inter-
pretation and estimation of vaccine efficacy under het-
erogeneity. American Journal of Epidemiology 136, 328–
343.

Halloran, M. E., Longini, I. M., and Struchiner, C. J. (1999).
Design and interpretation of vaccine field studies. Epi-
demiologic Reviews 21, 73–88.

Kim, H. W., Canchola, J. G., Brandt, C. D., Pyles, G.,
Chanock, R. M., Jensen, K., and Parrott, R. H. (1969).
Respiratory syncytial virus disease in infants despite
prior administration of antigenic in activated vaccine.
American Journal of Epidemiology 89, 422–434.

Koopman, J. S. and Little, R. J. (1995). Assessing HIV
vaccine effects. American Journal of Epidemiology 142,
1113–1120.

Longini, I. M., Sagatelian, K., Rida, W. N., and Halloran,
M. E. (1998). Optimal vaccine trial design when esti-
mating vaccine efficacy for susceptibility and infectious-
ness from multiple populations. Statistics in Medicine 17,
1121–1136.

O’Neill, P. D., Balding, D. J., Becker, N. G., Eerola, M., and
Mollison, D. (2000). Analyses of infectious disease data
from household outbreaks by Markov chain Monte Carlo
methods. Applied Statistics 49, 517–542.

Rhodes, P. H., Halloran, M. E., and Longini, I. M. (1996).
Counting process models for infectious disease data:
Distinguishing exposure to infection from susceptibility.
Journal of the Royal Statistical Society, Series B 58, 751–
762.

Rida, W. N. (1996). Assessing the effect of HIV vaccina-
tion on infectiousness. Statistics in Medicine 15, 2393–
2404.

Smith, P. G., Rodrigues, L. C., and Fine, P. E. M. (1984).
Assessment of the protective efficacy of vaccines against
common diseases using case-control and cohort studies.
International Journal of Epidemiology 13, 87–96.

Received May 2002. Revised January 2003.
Accepted January 2003.




