GEOMETRIC FUNCTION THEORY **GRADUATE COURSE, SPRING 2018**

ALAN SOLA AND FREDRIK VIKLUND

HOMEWORK ASSIGNMENTS

Problems are taken from J.B. Garnett and D.E. Marshall, "Harmonic measure," Cambridge University Press, unless otherwise specified.

Problem set 1				
Chapter	Problems	Due date		
1	1; 2; 5; 8	22 February 2018		

Problem set 2

Problem	set 2	
Chapter	Problems	Due date
2	3; 5; 6; 7ab	15 March 2018

Problem set 3

Chapter	Problems	Due date	
3	1i-iv; 2; 7a-c	19 April 2018	

.

Problem set 4

Chapter	Problems	Due date
4	1; 5a,b; 6a; problem below	17 May 2018

Problem: Let \mathbb{D} be the unit disc and K a connected set such that the component of 0 of $\mathbb{D} \setminus K$ is simply connected. Suppose dist $(0, K) = r \in (0, 1)$. Show that there is a universal constant c such that

$$\omega(0,\partial \mathbb{D} \setminus K, \mathbb{D} \setminus K) \le cr^{1/2}.$$

DEPARTMENT OF MATHEMATICS, STOCKHOLM UNIVERSITY, 106 91 STOCKHOLM, SWEDEN. *E-mail address*: sola@math.su.se

DEPARTMENT OF MATHEMATICS, KTH, 100 44 STOCKHOLM, SWEDEN. *E-mail address*: frejo@math.kth.se