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WARING-LIKE DECOMPOSITIONS OF POLYNOMIALS - 1

MARIA VIRGINIA CATALISANO, LUCA CHIANTINI, ANTHONY V. GERAMITA,
AND ALESSANDRO ONETO

Abstract. Let F be a homogeneous form of degree d in n variables. A Waring
decomposition of F is a way to express F as a sum of dth powers of linear forms.
In this paper we consider the decompositions of a form as a sum of expressions,
each of which is a fixed monomial evaluated at linear forms.

1. Introduction

Let F ∈ k[x1, . . . , xn] = R = ⊕i≥0Ri, (k = k̄). The necessities of a given prob-
lem involving F often make it useful to have different ways to decompose F . E.g.
in many computations it is useful to express a polynomial as a sum of monomials
ordered in a specific way. Different applications call for different kinds of decom-
positions. The following papers give some interesting uses of some non-standard
decompositions (see, e.g. [HL12], [Com02], [CM96],[CG15]).

One particular kind of decomposition that has received a great deal of attention
is the Waring decomposition. This decomposition asks us to write F ∈ Rd in an
efficient way as

F =

s∑

i=1

Ld
i

where eachLi is a linear form. There is an extensive literature on this decomposition
with many interesting applications (see [CM96],[AH95],[IK99],[LT10], [CCG12]).

In this paper we want to propose an extension of the notion of Waring decom-
position. To explain the idea we introduce the following notation.

Fix an integer d. Let Pr = Z[Z1, . . . , Zr] and let Mr,d be the set of all monomials
in Pr such that

M = Zd1

1 · · ·Zdr

r

and

i) di > 0, for all i,
ii) d1 + · · ·+ dr = d.

Of course, i) and ii) imply r ≤ d.

Definition 1.1. Let M be as above and let F ∈ Rd.
i) An M -decomposition of F having length s is an expression of the form

F =

s∑

j=1

Ld1

1,j · L
d2

2,j · · ·L
dr

r,j,

where the Li,j are linear forms.
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ii) The M -rank of F is the least integer s such that F has an M -decomposition
of length s.

Remark 1.2. i) If M = Zd
1 then the M -rank of F is known as the Waring rank of

F .
ii) Every F ∈ Rd has an M = Zd1

1 · · ·Zdr
r -decomposition of finite length for any

choice of M . This is immediate from the fact that every F ∈ Rd has finite Waring
rank and

Ld = Ld1 · · ·Ldr .

iii) Two other special cases have received a great deal of attention recently:
when M = Z1 · · ·Zr (r ≥ 2) then the forms in Rr which have M -rank equal to
1 are called split forms or completely decomposable forms. M -decompositions for
these M are considered in [AB11], [Abo14], [CGG+] and [Tor].

When M = Zd−1
1 Z2, M -decompositions were first considered in [CGG02] and

then in [BCGI09] and [Bal05]. They arose naturally from a consideration of the
secant varieties of the tangential varieties to the Veronese varieties. The recent
work [AV] is a major contribution to this decomposition problem.

iv) For the case of binary forms (i.e. n = 2) this problem has its roots in the
very foundations of modern algebra. Since the M -rank of a binary form is invariant
under the usual SL2(k) action on k[x1, x2], we see in the works of Cayley, Salmon,
Sylvester ([Cay09], [Sal64], [Syl04]) the search for the invariants which characterize
forms of M -rank 1 for special choices of M .

A modern treatment of these classical investigations (as well as advances on
them) can be found in the lovely papers of Chipalkatti (see [Chi02], [Chi03], [Chi04a],
[Chi04b], [CC03]). The bibliographies in these papers give a quick entry into the
classical literature on the subject.

v) The M -rank of a form obviously depends on M . E.g. recall that the Waring
rank of xyz in k[x, y, z] is 4 (see e.g. [CCG12]) while if M = Z2

1Z2, the M -rank of
xyz is 2. To see this note that the M -rank is bigger than 1, but

4xyz = x((y + z)2 − (y − z)2).

There is a geometric way of considering the problem of finding the M -rank of a
polynomial F ∈ Rd, M ∈ Mr,d, M = Zd1

1 · · ·Zdr
r .

Let P[R1] be the projective space based on the k-vector space R1. We define the
morphism

ϕM : P[R1]× · · · × P[R1]︸ ︷︷ ︸
r times

−→ P[Rd] ≃ P
(d+n−1

n−1 )−1

by

ϕM ([L1], . . . , [Lr]) = [Ld1

1 Ld2

2 · · ·Ldr

r ],

and denote the image of ϕM by XM .

Remark 1.3. i) Notice that when we have M = Zd
1 , then XM is precisely the dth

Veronese embedding of P(R1) = P
n−1 in P(Rd).

ii) In general, the variety XM is a projection of an appropriate Segre-Veronese
variety. However, we will not use that fact in this paper.
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iii) The equations which define the Veronese variety are well-known (see e.g.
[Puc98]). It would be interesting to find equations for the variety XM whenM 6= Zd

1 .
(See, however, [Bri10] for the variety of split forms).

If X ⊆ P
t is any projective variety, then

σs(X) := {P ∈ Pt | P ∈< P1, . . . , Ps >,Pi ∈ X, }

is the sth-secant variety of X.

σ1(X) = X,

σ2(X) = secant line variety to X, etc.

Remark 1.4. When X = XM and M = Zd
1 , so X is the dth Veronese embedding of

P
n then, if F ∈ Rd has Waring rank s we have [F ] ∈ σs(X). In particular, if s is

the least integer for which σs(X) = P(Rd) then the generic element [F ] ∈ P(Rd)
has Waring rank s.

This is the fundamental connection between the algebraic problem of finding the
Waring rank of a generic form and the geometric problem of finding the dimensions
of secant varieties to Veronese varieties.

One can ask about the dimensions of the secant varieties of any projective variety.
More precisely: given X ⊂ P

t what is dim σs(X) for s ≥ 2?
There is a reasonable guess which gives an upper bound for dim σs(X). It is

obtained by counting parameters and observing that σs(X) ⊆ P
t, namely

(1) dimσs(X) ≤ min{s dimX+ s− 1, t}.

If we have equality in (1) for some s, then we say that σs(X) has the expected
dimension, while if (1) is a strict inequality for some s, we say that σs(X) is defective
and the difference

min{s dimX+ s− 1, t} − dimσs(X),

is called the s-defect of X.
If X ⊆ P

t is non-degenerate then σs(X) = P
t for some s and so the s-defect is

eventually zero, for all s ≫ 0.
The particular problem we consider in this paper is that of finding dimσs(XM )

for R = k[x1, . . . .xn] and any M ∈ Mr,d.
The paper is organized in the following way. In Section 2 we recall Terracini’s

Lemma, which is our main tool in finding dimσs(XM ). Terracini’s Lemma needs
a description of the tangent space at a general point of XM . This tangent space
corresponds to a vector space which is the graded piece of an ideal I in R. We use
information about this ideal to find the dimensions we need.

In the third section we find the dimensions of all the secant varieties of XM for
any M ∈ Mr,d for any r and any d in case n = 2, i.e. for binary forms. We find
that there are no defective secant varieties in this case.

In the final section we find the dimensions of the secant line varieties of XM for
any n and for any M ∈ Mr,d for any r and any d. In this family of cases we find
exactly one defective secant line variety.
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2. Preliminaries

We begin by recalling the Lemma of Terracini [Ter11].

Lemma 2.1. Let X ⊆ P
t be a projective variety and P ∈ σs(X) be a general point,

where
P ∈< P1, . . . , Ps >

and P1, . . . , Ps are general points of X. Then the tangent space to σs(X) at P is
the projectivization of the sum of the tangent spaces to X at P1, . . . , Ps, i.e.,

TP (σs(X)) = P(< TP1
(X), . . . , TPs

(X) >).

To apply Terracini’s Lemma to our situation we first need to calculate TP (XM )
for a general P in XM .

Proposition 2.2. Let R = k[x1, . . . , xn] and let M ∈ Mr,d,

M = Zd1

1 · · ·Zdr

r .

Let L1,...,Lr be general linear forms in R1 so that P = [Ld1

1 · · ·Ldr
r ] is a general

point of XM = ϕM (Pn−1 × · · · × P
n−1

︸ ︷︷ ︸
r times

) ⊆ P
(d+n−1

n−1 )−1.

If

F = Ld1

1 · · ·Ldr

r and IP =

(
F

L1

, . . . ,
F

Lr

)
= ⊕j≥0(IP )j

then
TP (XM ) = P((IP )d).

Proof. Since P = ϕM ([L1], . . . , [Lr]), the image of a line through the point ([L1], . . . , [Lr])

in the direction ([L̃1], . . . , [L̃r]) is the curve on the Segre-Veronese variety XM whose
points are parameterized by

[(L1 + λL̃1)
d1 · · · (Lr + λL̃r)

dr ].

The tangent vector to this curve, at P , is given by the coefficient of λ in this last
expression, that is, (

F

L1

)
L̃1 + · · ·+

(
F

Lr

)
L̃r.

These, for varying choices of the L̃i, give that the tangent vectors at P are precisely
the degree d piece of the ideal generated by the F

Li
.

�

Remark 2.3. i) Note that if M = Zd1

1 · · ·Zdr
r and we are considering forms in

k[x1, . . . , xn], then XM = ϕM (Pn−1 × · · · × P
n−1

︸ ︷︷ ︸
r times

), Since the generic fibre of ϕM is

finite, the dimension of TP (XM ) is r(n− 1).
ii) It is easy to see that if F and the Li are as above, then

IP =

(
F

L1

, . . . ,
F

Lr

)

(2) = (Ld1−1
1 · · ·Ldr−1

r ) · (L2L3 · · ·Lr, L1L3 · · ·Lr, . . . , L1L2 · · ·Lr−1) .
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Corollary 2.4. (for binary forms) Let R = k[x1, x2], M ∈ Mr,d ( r ≥ 2)

M = Zd1

1 · · ·Zdr

r .

If L1, L2, . . . , Lr are general linear forms in R1, P = [Ld1

1 . . . Ldr
r ] ∈ XM and we set

I ′ to be the principal ideal

I ′ := (Ld1−1
1 · · ·Ldr−1

r )

then we have
TP (XM ) = P(I ′d).

Proof. In view of equation (2) above we first consider the ideal

J := (L2L3 · · ·Lr, L1L3 · · ·Lr, . . . , L1L1 · · ·Lr−1).

Claim 2.5. J = (x1, x2)
r−1

Proof. (of the Claim) By induction on r. Obvious for r = 2 so let let r > 2. Since

J = (Lr · (L2L3 · · ·Lr−1, L1L3 · · ·Lr−1, . . . , L1L2 · · ·Lr−2), L1L2 · · ·Lr−1),

we have, by the induction hypothesis, that

J = (Lr · (x1, x2)
r−2, L1L2 · · ·Lr−1).

Since R = k[x1, x2], L1L2 · · ·Lr−1 is a general form in Rr−1, hence not in the space
Lr(x1, x2)

r−2. This last implies that dim Jr−1 = r. Since the ideal J begins in
degree r − 1 we are done with the proof of the claim. �

Now, using Claim 2.5, equation (2) and Proposition 2.2 we have that

I = (Ld1−1
1 · · ·Ldr−1

r )(x1, x2)
r−1 ⊆ (Ld1−1

1 · · ·Ldr−1
r )

and since (x1, x2)
r−1 = ⊕j≥r−1Rj , we have that

Id = (Ld1−1
1 · · ·Ldr−1

r )d

�

Corollary 2.6. Let M = Zd1

1 · · ·Zdr
r ∈ Mr,d. Let P = ϕM ([L1], · · · , [Lr]) be a

general point of XM , where the Li are general linear forms in k[x1 . . . , , xn] and let
IP be as in Proposition 2.2. Then

IP = (Ld1−1
1 · · ·Ldr−1

r ) ∩ (∩1≤i<j≤r(Li, Lj)
di+dj−1).

Proof. By 2.3 we need to prove that the two ideals

IP = (Ld1−1
1 · · ·Ldr−1

r ) · (L2L3 · · ·Lr, . . . , L1 · · ·Lr−1)

and
J = (Ld1−1

1 · · ·Ldr−1
r ) ∩ (∩1≤i<j≤r(Li, Lj)

di+dj−1)

are equal.
Since each generator of IP is in J , we have IP ⊆ J .
Now let H = Ld1−1

1 · · ·Ldr−1
r , and suppose that F = HG ∈ J . Since the Li are

general linear forms we have

H ∈ (Li, Lj)
di+dj−2 for every 1 ≤ i < j ≤ r,

but
H /∈ (Li, Lj)

di+dj−1 for every 1 ≤ i < j ≤ r,

so G ∈ rad((Li, Lj)
di+dj−1 = (Li, Lj)) for all 1 ≤ i < j ≤ r.



6 M.V.CATALISANO, L. CHIANTINI, A.V. GERAMITA, AND A.ONETO

Since
⋂

1≤i<j≤r(Li, Lj) = (L2 · · ·Lr, . . . , L1 · · ·Lr−1) we are done.
�

3. The Binary Case

For binary forms there is a simple theorem covering all cases.

Theorem 3.1. Let R = k[x, y] = ⊕j≥0Rj and let M = Zd1

1 · · ·Zdr
r ∈ Mr,d for any

r and any d with r ≤ d.
Then σs(XM ) has the expected dimension for every s, i.e.

dimσs(XM ) = min{s dimXM + (s− 1), d} = min{sr + s− 1, d}

for every s and every M .

Proof. Since every form in R of degree d splits as a product of linear forms and the
general form of degree d has no repeated factors, we conlude that forM = Z1 · · ·Zd,
XM = P(Rd) = P

d. This takes care of the case r = d. So, for the rest of the proof
we may assume that r < d.

By Corollary 2.4 we know that if P = [Ld1

1 · · ·Ldr
r ] is a general point of XM

(where L1, . . . , Lr are general in R1) then

TP (XM ) = P((I ′P )d) where I ′P = (Ld1−1
1 · · ·Ldr−1

r ).

So, by Terracini’s Lemma, if P1, . . . , Ps are a set of s general points of XM then

dim(σs(XM )) = dimk(I
′
P1

+ · · ·+ I ′Ps
)d − 1

where if Pj = [Ld1

j1 · · ·L
dr

jr ] then I ′Pj
= (Ld1−1

j1 · · ·Ldr−1
jr ).

However, [GS98] [Cor.2.3] states that for the special points Q1,= [Hd
1 ] . . . , Qs =

[Hd
s ] ∈ XM ( where theHj are general in R1) and for the ideal J = (Hd−r

1 , . . . , Hd−r
s )

we have

dimk(Jd) = min{d+ 1, s(r + 1)} = min{d, sr + (s− 1)}+ 1.

Since we know that dimσs(XM ) ≤ min{d, sr + (s− 1)}, it follows (by semicon-
tinuity) that

dim(I ′P1
+ · · ·+ I ′Ps

)d = min{d, sr + (s− 1)}+ 1.

and so σs(XM ) always has the expected dimension. �

4. The Secant Line Varieties to XM

In this section we will find the dimensions of the secant line varieties of XM for
every M ∈ Mr,d and for every polynomial ring R = k[x1, . . . , xn].

When r = 1 this is one part of the complete solution to Waring’s Problem solved
by Alexander and Hirschowitz in [AH95], so we will assume that r ≥ 2. In the
previous section we solved this problem for n = 2, so we may now assume that
n ≥ 3.

The main result of this paper is the following Theorem.

Theorem 4.1. Let R = k[x1, . . . , xn], let M ∈ Mr,d,

M = Zd1

1 · · ·Zdr

r .

Then σ2(XM ) is not defective, except for M = Z2
1Z2 and n = 3. For this last case

XM has 2-defect equal to 1.



WARING-LIKE DECOMPOSITIONS OF POLYNOMIALS - 1 7

Proof. We always have d ≥ r. The case d = r is covered in [Abo14] so we may as
well assum that d > r also.

By Terracini’s Lemma we need to find the vector space dimension of

(IP1
+ IP2

)d,

where P1 = [Ld1

1 · · ·Ldr
r ] and P2 = [Nd1

1 · · ·Ndr
r ] are points of XM and the

{Li, 1 ≤ i ≤ r}, {Ni, 1 ≤ i ≤ r}

are general sets of linear forms in R.
By Corollary 2.6 we obtain

IP1
= (Ld1−1

1 · · ·Ldr−1
r ) ∩ (∩1≤i<j≤r(Li, Lj)

di+dj−1),

IP2
= (Nd1−1

1 · · ·Ndr−1
r ) ∩ (∩1≤i<j≤r(Ni, Nj)

di+dj−1).

By the exact sequence

(3) 0 −→ (IP1
∩ IP2

)d −→ (IP1
⊕ IP2

)d −→ (IP1
+ IP2

)d −→ 0,

and the fact that we know that dim(IPi
)d = r(n − 1) + 1, (i = 1, 2), (see Remark

2.3), it is enough to find dim(IP1
∩ IP2

)d.
Recall that the expected dimension of σ2(XM ) is

exp.dim σ2(XM ) = min{2r(n− 1) + 1,

(
d+ n− 1

n− 1

)
− 1}.

Note that, if dim(IP1
∩ IP2

)d = 0, then by (3) the dimension of σ2(XM ) is as
expected.

Let V be the subscheme of Pn−1 defined by IP1
∩ IP2

and let f be a form of
degree d in IP1

∩ IP2
. Clearly

F = Ld1−1
1 · · ·Ldr−1

r ·Nd1−1
1 · · ·Ndr−1

r ·G

where G is a form of degree d− 2(d− r) = 2r − d.
If 2r− d < 0, of course there are no forms of this degree, hence (IP1

∩ IP2
)d = 0

and we are done. So assume 2r − d ≥ 0.
The form G vanishes on the residual scheme W of V with respect to the 2r

multiple hyperplanes {Li = 0} and {Ni = 0} (1 ≤ i ≤ r). It is easy to see that W
is defined by the ideal

(∩1≤i<j≤r(Li, Lj)) ∩ (∩1≤i<j≤r(Ni, Nj)).

The form G cannot be divisible by all the Li and Nj for then it would have degree
at least 2r.

Without loss of generality assume that G is not divisible by L1, and let H be the
hyperplane defined by L1. The form G cuts out on H a hypersurface S of H having
degree 2r − d, and containing the r − 1 hyperplanes of H cut out by L2, . . . , Lr.
Hence, in order that G exist, 2r− d has to be at least r− 1, that is, d ≤ r+1. But
we are assuming d ≥ r + 1, so we get that d = r + 1.

It follows that S has degree r − 1, contains the r − 1 hyperplanes of H cut out
by L2, . . . , Lr, and contains the trace on H of the schemes defined by the ideals
(Ni, Nj). Since the Ni are generic with respect to H and to the Li’s, now the only
possibility for g to exist is that the schemes Yi,j defined by the ideals (Ni, Nj) do not
intersect H . Since H ≃ P

n−2 ⊆ P
n−1 and Yi,j ≃ P

n−3 ⊆ P
n−1, then H ∩ Yi,j = ∅

only for n ≤ 3.
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Recalling that n > 2, 2 ≤ r ≤ n and d = r + 1, we are left with the following
cases:

Case 1: n = 3, r = 3, d = 4;
Case 2: n = 3, r = 2, d = 3.
In Case 1, M = Z2

1Z2Z3, the form G has degree 2r− d = 2 and the scheme W is
the union of 6 general points of P2, hence G does not exist, and so (IP1

∩ IP2
)d = 0.

In Case 2, M = Z2
1Z2, the form G has degree 2r − d = 1 and the scheme W is

the union of 2 points of P2. Hence G can exist and describes the line through the
two points. It follows that dim(IP1

∩ IP2
)3 = 1. So from (2) we get

dim(IP1
+ IP2

)3 = 9,

that is, dimσ2(XM ) = 8. But exp.dimσ2(XM ) = 9, and so XM has 2-defect =1 and
we are done.

�

Remark 4.2. The exceptional case noted above was observed in [CGG02] in con-
nection with the study of the secant varieties of the tangential varieties to Veronese
varieties.

Example 4.3. We claim that the hypersurface in P
9 containing all those cubic

forms of k[x, y, z] which can be written L2
1L2+N2

1N2 (with the Li, Ni linear forms) is
precisely the hypersurface in P

9 containing all singular cubics. It is well-known that
the (closure) of the set of cubic plane curves with a double point is a hypersurface in
P
9. It will be enough to show that every nodal cubic can be written in the desired

form (since cuspidal cubics can, after a change of variables, always be written in
the form y3 + x2z).

First recall (see [Ful89]) that every nodal cubic can, after a change of variables,
be written in the form

xyz − x3 − y3.

With a further change of variables given by

x = −X − Y ; y = X − Y ; z = −Z,

we get

X2(6Y + Z) + Y 2(2Y − Z).
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