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Preface

Fermat’s problem, also called Fermat’s last theorem, has attracted the
attention of mathematicians for more than three centuries. Many clever
methods have been devised to attack the problem, and many beautiful
theories have been created with the aim of proving the theorem. Yet, despite
all the attempts, the question remains unanswered.

The topic is presented in the form of lectures, where I survey the main
lines of work on the problem. In the first two lectures, there is a very brief
description of the early history, as well as a selection of a few of the more
representative recent results. In the lectures which follow, I examine in suc-
cession the main theories connected with the problem. The last two lectures
are about analogues to Fermat’s theorem.

Some of these lectures were actually given, in a shorter version, at the
Institut Henri Poincaré, in Paris, as well as at Queen’s University, in 1977.

I endeavoured to produce a text, readable by mathematicians in general,
and not only by specialists in number theory. However, due to a limitation
in size, I am aware that certain points will appear sketchy.

Another book on Fermat’s theorem, now in preparation, will contain a
considerable amount of the technical developments omitted here. It will
serve those who wish to learn these matters in depth and, I hope, it will
clarify and complement the present volume.

It is for me gratifying to acknowledge the help and encouragement I
received in the preparation of this book: A. J. Coleman and the Mathematics
Department at Queen’s University—for providing excellent working con-
ditions; E. M. Wight-—for her dilligent and skillful typing of the manuscript;
G. Cornell—who read the book and helped very much in improving the
style; The Canada Council—for partial support; C. Pisot and J. Oesterlé—
who arranged for my lectures at the Institut Henri Poincaré.
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It is also my pleasure to report here various suggestions, criticisms and
comments from several specialists, whom I consulted on specific points or
to whom I have sent an earlier typescript version of this book. In alphabetical
order: A. Baker, D. Bertrand, K. Inkeri, G. Kreisel, H. W. Lenstra Jr.,J. M.
Masley, M. Mendés-France, B. Mazur, T. Metsinkyld, A. Odlyzko, K.
Ribet, A. Robert, P. Samuel, A. Schinzel, E. Snapper, C. L. Stewant,
G. Terjanian, A. J. van der Poorten, S. S. Wagstaff, M. Waldschmidt,
L. C. Washington.

Kingston, March, 1979 Paulo Ribenboim
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LECTURE 1

The Early History of
Fermat’s Last Theorem

1. The Problem

Pierre de Fermat (1601-1665) was a French judge who lived in Toulouse.
He was a universal spirit, cultivating poetry, Greek philology, law but mainly
mathematics. His special interest concerned the solutions of equations in
integers.

For example, Fermat studied equations of the type

X2 —dY?=+1,

where d is a positive square-free integer (that is, without square factors
different from 1) and he discovered the existence of infinitely many solutions.
He has also discovered which natural numbers n may be written as the sum
of two squares, namely those with the following property: every prime factor
p of n which is congruent to 3 modulo 4 must divide n to an even power.

In the margin of his copy of Bachet’s edition of the complete works of
Diophantus, Fermat wrote:

It is impossible to separate a cube into two cubes, or a biquadrate into two
biquadrates, or in general any power higher than the second into powers of
like degree; I have discovered a truly remarkable proof which this margin is
too small to contain.

This copy is now lost, but the remark appears in the 1670 edition of the
works of Fermat, edited in Toulouse by his son Samuel de Fermat. It is
stated in Dickson’s History of the Theory of Numbers, volume II, that
Fermat’s assertion was made about 1637. Tannery (1883) mentions a letter
from Fermat to Mersenne (for Sainte-Croix) in which he wishes to find two
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cubes whose sum is a cube, and two biquadrates whose sum is a biquadrate.
This letter appears, with the date June 1638, in volume 7 of Correspondance
du Pére Marin Mersenne (1962); see also Itard (1948). The same problem was
proposed to Frénicle de Bessy (1640) in a letter to Mersenne, and to Wallis
and Brouncker in a letter to Digby, written in 1657, but there is no mention
of the remarkable proof he had supposedly found.

In modern language, Fermat’s statement means:

The equation X" + Y" = Z", where n is a natural number larger than 2,
has no solution in integers all different from Q.

No proof of this statement was ever found among Fermat’s papers. He
did, however, write a proof that the equations X* — Y* = Z?and X* + Y* =
Z* have no solutions in integers all different from 0. In fact, this is one
of two proofs by Fermat in number theory which have been preserved!.
With very few exceptions, all Fermat’s other assertions have now been
confirmed. So this problem is usually called Fermat’s last theorem, despite
the fact that it has never been proved.

Fermat’'s most notable erroneous belief concerns the numbers F, =
22" + 1, which he thought were always prime. But Euler showed that Fs
is not a prime. Sierpifiski and Schinzel pointed out some other false assertions
made by Fermat.

Mathematicians have debated whether Fermat indeed possessed the proof
of the theorem. Perhaps, at one point, he mistakenly believed he had found
such a proof. Despite Fermat’s honesty and frankness in acknowledging
imperfect conclusions, it is very difficult to understand today, how the most
distinguished mathematicians could have failed to rediscover a proof, if one
had existed.

To illustrate Fermat’s candor, we quote from his letter of October 18,
1640 to Frénicle de Bessy:

Mais je vous advoue tout net (car par advance je vous advertis que comme
jesuis pas capable de m’attribuer plus que je nesgay, je dis avec méme franchise
ce que je ne s¢ay pas) que je n'ay peu encore démonstrer I'exclusion de tous
diviseurs en cette belle proposition que je vous avois envoyée, et que vous
m’avez confirmée touchant les nombres 3, 5, 17, 257, 65537 & c. Car bien que
je réduise 'exclusion a la plupart des nombres, et que jaye méme des raisons
probables pur le reste, je n'ay peu encore démonstrer nécessairement la
vérité de cette proposition, de laquelle pourtant je ne doute non plus a cette
heure que je faisois auparavant. Si vous en avez la preuve assurée, vous
m’obligerez de me la communiquer: car aprés cela rien ne m’arrestera en ces
matieres.

! The other proof, partial but very interesting, was brought to light and reproduced by Hofmann
(1943, pages 41-44). Fermat showed that the only solutions in integers of the system x = 2y? — 1,
x?=2z~larex=landx=7.

1. The Problem / 3

Again, in a letter to Pascal from August 29, 1654, Fermat proposes the
same problem:

Au reste, il n’est rien & 'avenir que je ne vous communique avec toute
franchise. Songez cependant, si vous le trouvez & propos, a cette proposition:
les puissances carrées de 2, augmentées de 'unité, sont toujours des nombres
premiers: 22 4+ 1=35, 22 +1=17, 22 +1 =257, 2% + 1 = 65537, sont
premiers, et ainsi a I'infini. C’est une proposition de la verité de laquelle je
vous répond. La démonstration en est trés malaisée, et je vous avoue que je
n'ai pu encore la trouver pleinement; je ne vous la proposerois pas pour la
chercher si j'en étois venu & bout.

Incidentally Pascal has written to Fermat stating:

Je vous tiens pour le plus grand géométre de toute I'Europe.

It is also highly improbable that Fermat would have claimed to have
proved his last theorem, just because he succeeded in proving it for a few
small exponents.

In contrast, Gauss believed that Fermat’s assertions were mostly extra-
polations from particular cases. In 1807, Gauss wrote: “Higher arithmetic
has this special feature that many of its most beautiful theorems may be
easily discovered by induction, while any proof can be only obtained with
the utmost difficulty. Thus, it was one of the great merits of Euler to have
proved several of Fermat’s theorems which he obtained, it appears, by
induction”.

Even though he himself gave a proof for the case of cubes, Gauss did not
hold the problem in such high esteem. On March 21, 1816, he wrote to
Olbers about the recent mathematical contest of the Paris Academy on
Fermat’s last theorem:

I am very much obliged for your news concerning the Paris prize. But I
confess that Fermat’s theorem as an isolated proposition has very little
interest for me, because 1 could easily lay down a multitude of such proposi-
tions, which one could neither prove nor dispose of.

In trying to prove Fermat’s theorem for every positive integer n > 3, 1
make the following easy observation. If the theorem holds for an integer m
and n = Im is a multiple of m, then it holds also for n. For, if x, y, z are non-
zero integers and x" + y" = z" then (x)" + (y')" = (Z')", contradicting the
hypothesis. Since every integer n > 3 is a multiple of 4 or of a prime p 5 2,
it suffices to prove Fermat’s conjecture for n = 4 and for every prime p # 2.
However, I shall occassionally also mention some proofs for exponents
of the form 2p, or p" where p is an odd prime.

The statement of Fermat’s last theorem is often subdivided further into
two cases:

The first case holds for the exponent p when there do not exist integers
X, y, z such that p ¥ xyz and x? + y? = z%.
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The second case holds for the exponent p when there do not exist integers
x, v, z, all different from 0, such that p|xyz, ged(x,y,2) =1 and x? + yP = z%,

2. Early Attempts

It was already known in antiquity that a sum of two squares of integers may
well be the square of another integer. Pythagoras was supposed to have
proven that the lengths a, b, ¢ of the sides of a right-angle triangle satisfy the
relation

a* + b =c%

so the above fact just means the existence of such triangles with sides mea-
sured by integers.

But the situation is already very different for cubes, biquadrates and so on.
Fermat’s proof for the case of biquadrates is very ingenious and proceeds
by the method which he called infinite descent. Roughly, it goes as follows:
Suppose a certain equation f(X,Y,Z ) = 0 has integral solutions a, b, ¢, with
¢ > 0, the method just consists in finding another solution in integers @', b', ¢’
with 0 < ¢’ < c. Repeating this procedure a number of times, one would
reach a solution a”, b”, ¢, with 0 < ¢” < 1, which is absurd. This method of
infinite descent is nothing but the well-ordering principle of the natural
numbers.

Little by little Fermat’s problem aroused the interest of mathematicians
and a dazzling array of the best minds turned to it.

Euler considered the case of cubes. Without loss of generality, one may
assume x> + y3 = z*> where x, y, z are pairwise relatively prime integers,
x, y are odd, so x=a —b, y=a+b. Then x +y = 2a, x2—xy+y*=
@ + 3b% and 23 = x3 + y* = 2a(a® + 3b%), where the integers 2a, a* + 3b*
are either relatively prime or have their greatest common divisor equal to 3.
Euler was led to studying odd cubes a® + 3b* (with g, b relatively prime),
and forms of their divisors; he concluded the proof by the method of infinite
descent. The properties of the numbers a® + 3b? which were required had
to be derived from a detailed study of divisibility, and therefore were omitted
from the proof published in Euler’s book on algebra (1822). This proof, with
the same gap, was reproduced by Legendre. Later, mathematicians intrigued
by the missing steps were able without much difficulty, to reconstruct the
proof on a sound basis. In today’s language, numbers of the form a* + 3b*
are norms of algebraic integers of the quadratic extension @(\/——3) of the
rational field @ and the required properties can be deduced from the unique
factorization theorem, which is valid in that field.

Gauss gave another proof for the case of cubes. His proof was not
“rational” since it involved complex numbers, namely those generated by
the cube root of unity { = (—1 + /= 3)/2, i.e., numbers from the quadratic
field @(/ — 3). He consciously used the arithmetic properties of this field. The

2. Early Attempts 5

‘ underlying idee_t was to call “integers” all numbers of the form (a + by =3)2
where a, b are integers of the same parity; then to define divisibility and the
prime integers, and to use the fact that every integer is, in a unique way, the
pro<'iuct of powers of primes. Of course some new facts appeared }I;,irst
the integers +{, +{? that divide 1 are “units” since {{*=1 and th'ereforej
should not be taken into account so to speak, in questions of divisibilit
Thus, ?.ll t.he properties have to be stated “up to units”. Secondly, the uni u};
factquzatlon, which was taken for granted, was by no means imn,lediateiin
fact it turned out to be false in general. I shall return to this later.

Gauss’s proof was an early incursion into the realm of number fields, i.e
those sets pf complex numbers obtained from the roots of polynomial’s i)"
the operations of addition, subtraction, multiplication, and division g

' 'In tf}e 1820s a number of distinguished French and German ma'thema-
ticians were trying intensively to prove Fermat’s theorem.

In 1825, G. Lejeune Dirichlet read at the Académie des Sciences de Paris
a paper where he attempted to prove the theorem for the exponent 5. In fact
1-118 proof was incomplete, as pointed out by Legendre, who provi'ded an
1ndf:pendent and complete proof. Dirichlet then completed his own proof,
whlch was published in Crelle Journal, in 1828. P ’

Dirichlet’s proofis “rational”, and involves numbers of the form a? — 5b2
He carfzfully analyzed the nature of such numbers which are 5th powers.
whf:n. either a, b are odd, or g, b have different parity, and 5 does not divide 4
5 divides b, and a, b are relatively prime. Nowadays the properties he deriveci

" can be obtained from the arithmetic of the field Q(,/5). In this field too

elvery integer hgs a pnique factorization. Moreover every unit is a power of
(1 +/5)/2, which is of crucial importance in the proof. Of course, for

t O W ].C]l

In 1832 Dirichlet settled the theorem for the exponent 14.
" The next 1mportant advance was due to Lamé, who, in 1839 proved the
eorem for /1 = 7. Soon after, Lebesgue simplified Lamé’s proof consider-

ably by a clever use of the identity,
X+Y+2ZY-(X"+Y"+27)
=7(X + Y)X + Z)(Y + Z)
X[(X*+ Y+ Z2+ XY + XZ+ YZP + XYZ(X + Y + Z)]
already considered by Lamé.

ver\yNhile thlfs;l special cases of small exponents were being studied, a

remarkable theorem was proved by Sophi i :

maheomarkab p y Sophie Germain, a French
Previously Barlow, and then Abel, had indicated interesting relations that

X, ¥, z must satisfy if x* + y? = zP (and x
_ . . , ¥, z are not zero). Through clever
manipulations, Sophie Germain proved: : ®

If p is an odd prime such that 2 . ]
p + 1 is also a prime then th
Fermat's theorem holds for p. ’ en the first case of
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These results were communicated by letter to Legendre and Cauchy since
the regulations of the Academy prevented women from presenting the dis-
coveries in person.

There are many primes p for which 2p + 1 is also prime, but it is still not
known whether there are infinitely many such primes.

Following Sophie Germain’s ideas, Legendre proved the following theo-
rem: Let p, g be distinct odd primes, and assume the following two conditions:

1. p is never congruent modulo g to a pth power.
2. the congruence X + Y? + Z7 =0 (mod g) has no solution X, y, z, unless

q divides xyz.

Then the first case of Fermat’s theorem holds for p. With this result,
Legendre extended Sophie Germain’s theorem as follows:

If pis a prime such that4p + 1,8p + 1,10p + 1,14p + 1,0r 16p + Lisalso
a prime then the first case of Fermat's theorem holds for the exponent p.

This was sufficient to establish the first case for all prime exponents
p < 100.

3. Kummer’s Monumental Theorem

By 1840, Cauchy and Lamé were working with values of polynomials at
roots of unity, trying to prove Fermat’s theorem for arbitrary exponents.
Already in 1840 Cauchy published a long memoir on the theory of numbers,
which however was not directly connected with Fermat's problem. In 1847,
Lamé presented to the Academy a “proof” of the theorem and his paper was
printed in full in Liouville’s journal. However, Liouville noticed that the
proof was not valid, since Lamé had tacitly assumed that the decomposition
of certain polynomial expressions in the nth root of unity into irreducible
factors was unique.

Lamé attributed his use of complex numbers to a suggestion from Liouville,
while Cauchy claimed that he was about to achieve the same results, given
more time. Indeed, during that same year, Cauchy had 18 communications
printed by the Academy on complex numbers, or more specifically, on
radical polynomials. He tried to prove what amounted to the euclidean
algorithm, and hence unique factorization for cyclotomic integers. Then,
assuming unique factorization, he drew wrong conclusions. Eventually
Cauchy recognized his mistake. In fact, his approach led to results which
were later rediscovered by Kummer with more suitable terminology. A
noteworthy proposition of Cauchy was the following one, (C. R. Acad. Sci.
Paris, 25, 1847, page 181) later also found by Genocchi and by Kummer:

LL
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If the first case of Fermat's theorem fails for the exponent p, then the sum

— -4
1p—4+2p—4+“_+<P2 1)"

is a multiple of p.

‘ By the year 1847, mathematicians were aware of both the subtlety and
importance of the unique decomposition of cyclotomic integers into ir-
reducible factors.

In Ger‘many, Kummer devoted himself to the study of the arithmetic of
qyclotomlc fields. Already, in 1844, he recognized that the unique factoriza-
tion theorem need not hold for the cyclotomic field Q((,). The first such case
occurs for p = 23. However, while trying to rescue the unique factorization
he was led to the introduction of new “ideal numbers”. Here is an excerpt
of a letter from Kummer to Liouville (1847): ’

- .- Encouraged by my friend Mr. Lejeune Dirichlet, I take the liberty of
sending youa few copies of a dissertation which I have written three years ago
at the occasion of the century jubileum of the University of Konigsber a;
well as of anpther dissertation of my friend and student Mr. Kroneckg; a
young and d‘1stinguished geometer. In these memoirs, which I beg you ’to
accept as a sign of my deep esteem, you will find developments concernin
certain points in the theory of complex numbers composed of roots of unit .
Le., roots of the equation #" = 1, which have been recently the subject of sonlyé
d1scuss1ops at your illustrious Academy, at the occasion of an attempt b
Mr. Lamé to prove the last theorem of Fermat. o

Concgrnmg the elementary proposition for these complex numbers, that
a composite complex number may be decomposed into prime factors in onl,y one
way, which you regret so justly in this proof, which is also lacking in some

othe: pOl S ay assure Yy
h 1 nt: N I m t p
‘ 1 ou ‘]la i d()eS not h()ld in gellelal f()r com ICX

ag+ayr+ar*+- a0t

but. 1t 1s possible to rescue it, by introducing a new kind of complex numbers
which I have called ideal co_mplex number. The results of my research on this’
:ﬁ:tée;; haveb bgen communicated to the Academy of Berlin and printed in
e S nz?ggsc erllf:hte (March 1846); a rpemoir on the same subject will appear
oo relle Jh ournal.  have considered already long ago the applications
o ory to the proof of Eermat’s theorem and I succeeded in deriving

€ impossibility of the equation x" + )" = z" from two properties of the
prime number n, so Fhat it remains only to find out whether these properties
are shared by all prime numbers. In case these results seem worth some of

your attention, you may find them published i i ]
Berlin Acadonsy, s published in the Sitzungsberichte of the

The theorem which K i i
ummer mentioned in this letter repres
noElz}ble.advance over all his predecessors. presented 2
thi he ideal 'numbers. correspond to today’s divisors. Dedekind rephrased
concept, introducing the ideals, which are sets I of algebraic integers of
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the cyclotomic field such that O e I;if o, fe I thena + f,a — fel;ifael
and f is any cyclotomic integer then aff € 1. Ideals may be multiplied in a
very natural way.

Each cyclotomic integer o determines a principal ideal consisting of all
elements fo, where f € A, the set of cyclotomic integers.

If all ideals are principal there is unique factorization in the cyclotomic
field, and conversely. For the cases when not all ideals are principal, Kummer
wanted to “measure” to what extent some of the ideals were not principal.
So he considered two nonzero ideals I, I' equivalent when I’ consists of all
multiples of the elements of I by some nonzero element o in the cyclotomic
field. Thus, there is exactly one equivalence class when all ideals are principal.
Kummer proved that there are only finitely many equivalence classes of
ideals in each cyclotomic field Q({,).

Let h, denote the number of such classes. If p does not divide h, then p is
said to be a regular prime. In this case, if the ideal I” is a principal ideal then
I is itself a principal ideal. But the main property used by Kummer is the
following lemma:

If pis a regular prime, p # 2, if w is a unit in the ring A of cyclotomic integers
of Q({,), and if there exists an ordinary integer m suchthatw —me A(1 — )P,
then w is the pth power of another unit.

The proof of this lemma requires deep analytical methods.

Armed with this formidable weapon, Kummer proved that Fermat’s last
theorem holds for every exponent p which is a regular prime. This is the
theorem which Kummer mentioned in his letter to Liouville. At first Kummer
believed that there exist infinitely many regular primes. But, he later realized
that this is far from evident—and in fact, it has, as yet, not been proved.

A well-known story concerning a wrong proof of Fermat’s theorem
submitted by Kummer, originates with Hensel. Specifically, in his address
to commemorate the first centennial of Kummer’s birth, Hensel (1910) stated:

Although it is not well known, Kummer at one time believed he had found
a complete proof of Fermat’s theorem. (This is attested to by reliable witnesses
including Mr. Gundelfinger who heard the story from the mathematician
Grassmann.) Secking the best critic for his proof, Kummer sent his manuscript
to Dirichlet, author of the insuperably beautiful proof for the case 4 = 5.
Aftter a few days, Dirichlet replied with the opinion that the proof was excellent
and certainly correct, provided the numbers in « could not only be decomposed
into indecomposable factors, as Kummer proved, but that this could be done
in only one way. If however, the second hypothesis couldn’t be satisfied, most
of the theorems for the arithmetic of numbers in « would be unproven and
the proof of Kummer's theorem would fall apart. Unfortunately, it appeared
to him that the numbers in o didn’t actually possess this property in general.

This is confirmed in a letter, which is not dated (but likely from the summer
of 1844), written by Eisenstein to Stern, a mathematician from Gottingen.

4. Regular Primes 9

In a recent paper, Edwards (1975) analyzes this information, in the light
of a letter from Liouville to Dirichlet and expresses doubts about the exis-
tence of such a “false proof” by Kummer.

4. Regular Primes

To decide whether a prime is regular it is necessary to compute the number
of equivalence classes of ideals of the cyclotomic field. Kummer succeeded
in deriving formulas for the class number h, which were good enough to
allow an explicit computation for fairly high exponents p. In this way, he
discovered that 37, 59, 67 were irregular primes—actually these are the only
ones less than 100.

One of the most interesting features in this study was the appearance of
the Bernoulli numbers. In the derivation of the class number formula, there
was an expression of the type

g 284 (n— 1)

which had to be computed for large values of k and n. First it is easy to show
that there is a unique polynomial S,(X) with rational coeficients of degree
k + 1, having leading coefficient 1/(k + 1) and such that for every n > 1 its
value is S(n) = 1¥ + 2 + - - - + ¥, These polynomials can be determined
recursively and may be written as follows:

k+1 k
(k+1)sk(X):Xk+1—< ! >lek+< ;1>32Xk‘1+...+<k:1>BkX.

;Fhe coefficients B,, B,,. .., B, had already been discovered by Bernoulli.
n fact Euler had glready studied these numbers and found that they can be
generated by considering the formal inverse of the series

&—yﬂ+1x 1X2 U,
X TR TR TR S
namely
: . Bl B2 2 B3
g_f4+FX+?X+§Xﬁwu

This series appears i ansi i

cotx‘= et (11?5) o ;?eztil;e_"l;a)l.ylor expansion of the cotangent function:

nurlr:bls easily seen that B, = 0 for every odd k, k # 1. The first Bernoulli

n frssare B, = —1/2, B, = 1/6, B, = —1/30, B, = 1/42, B, = —1/30,

Bro = /66, By, = —691/2730, B,, = 7/6, B;s = —3617/510, B,5 =
867/798. The numerators grow quickly, for example:

_ 2577687858367

34 — T — .

6
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Bernoulli numbers have fascinating arithmetical properties, but 1 have
to refrain from describing them. I will just mention their relation with
Riemann’s zeta-function {(s) = Y =, (1/n®) (for s > 1). The following formula
holds:
2(2k)!

sz = (—l)k_l (2—n)2—k

{(2k) (for k> 1).

Through his studies of the class number formula, Kummer showed that
a prime number p is regular if and only if p does not divide the numerators
of the Bernoulli numbers B,, By,..., B, ;.

From the data he acquired, it was reasonable to conjecture that there are
infinitely many regular primes, at least they seemed to appear more frequently
than the irregular primes. Yet, this has never been proved and appears to be
extremely difficult. Paradoxically, Jensen proved in 1915, in a rather simple
way that there are in fact infinitely many irregular primes.

This was the situation around 1850. The theorem was proved for regular
primes, the Bernoulli numbers had entered the stage and the main question
was how to proceed in the case of irregular primes.

5. Kummer’s Work on Irregular Prime Exponents

In 1851 Kummer began examining the irregular prime exponents. Aiming
to derive congruences which must be satisfied if the first case fails, he produced
some of his deepest results on cyclotomic fields.

It is impossible to describe in a short space Kummer’s highly technical
considerations, but the main points, which we mention here, give at least
some idea of his astonishing mastery. First, he carefully studied the periods
of the cyclotomic polynomial

O (X)=X"""+XP P+ + X+ L

Suppose ¢ is a prime number, g # p, f is the order of gmodulo p,p — 1 = fr,
and let g be a primitive root modulo p,and { a primitive pth root of 1. Kummer
considered the r periods of f terms each 7, ;. . -, 11,-1 (already defined and
used by Gauss). Forexamplero = { + (¥ + %"+ + 977" the other pe-
riods being conjugate to n,. If 4 is the ring of cyclotomic integers, and A’ is the
ring of integers of the field K’ = Q(1o) = - = Q.- 1), Kummer showed
that A is a free module over A, with basis {L,{,...,t7 '}, and 4" =
Z[Nos- - - - My—1] s a free abelian group with basis {5o.M1, - - - Mr—1}- He also
studied the decomposition of the prime g in the ring A".

Then, Kummer gave his beautiful proof that the group of classes of ideals
of the cyclotomic field is generated by the classes of the prime ideals with
prime norm.

5. Kummer’s Work on Irregular Prime Exponents 11

Apother ingredient in 'his work was the use of the cyclotomic functions
ﬁrst 1nFroﬂuced by Jacobi. If ¢ is an odd prime of the form g = kp + 1, if h
is a primitive root mod ¢, { a primitive pth root of 1 and n a primitive gth

root of 1, let
q—1

<C,ﬂ> — Z Cind;,(t)nt

t=1
where ind,(¢), the index of ¢ (with respect to h, g) is the only integer s, 1 < s <
g — 1 such that ¢ = k*(mod g). T
For every integer d € Z, let
q—2

l//d(c) — Z Cindh(t)—(d-f- 1)ind;.(t+1).
t=1
IfQis thc? ideal _of A generated by ¢ and h* — { (where g = kp + 1) then of
course Q is a prime ideal of norm ¢, that is, Aq = []P=¢ 6'(Q) (where ¢ is a
generqtor of the Galois group). The main results concern certain products
of conjugates of Q which are principal ideals:

AP = T] oop=-,
i=0

with g, = g°(mod p), = = (p — 1)/2 and if

I,= {i[O Si<p-—-2,¢g,-; + Gr—i+indy@ > P>

Ay = [T o'(Q).

iely

then

All this was put together to give Kummer his congruences. If x, y, z are

gati;wise relatively prime integers, not multiples of p, such that x? + y? + z? =
, then

p—2

(A2)" = AX® + yP) = Alx + y) [T A(x + %),
k=0

where g is a primitive root modulo i
: p- The ideals A(x + y), A(x + (*"y) are
pth powers of ideals, say A(x + y) = J5, A(x + (%y) = J{ (J, being a con-
jiugate pf J o) Fpr everyd,1 <d < p — 2,and I, defined as before, Hie 1,0 (Jo)
sa pr}nmpgl ideal, say Aa, where o = F({), F(X) being a polynomi;l with
coefficients in Z and degree at most p — 2. Then
l—II (x + Xy) = X"(F(X))? + & ,(X)M(X),
iely
where M(X) e Z[ X].
lett(‘fonmdering these. polynomials as functions of the real variable ¢ > 0,
Ing ¢ = e” and taking an appropriate branch of the logarithm we obtain:

Y, log(x + ¢*'y) = mv + plog F(e* [ Syl )Me")
ielg mo+ plog F(e) + log| 1 + e™(F(e"))? |
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Let D"G denote the nth derivative of G(v), at v = 0. Kummer showed for
2s=2,4,...,p—3 (p#2,3) that the following congruences are satisfied:

[D?~2*log(x + €"y)]B,, = 0 (mod p),

where B, is the Bernoulli number of index 2s.

Since D/ log(x + €'y) = R;(x,y)/(x + y)’, where R;(X,Y)is a homogeneous
polynomial of total degree j, multiple of Y, writing Ry{(X,Y) = X'P{T), it
follows that

Pp—2s(t)B2s = 0 (mOdp)

for2s=2,4,...,p— 3.
The polynomials P;(T) may be computed recursively. With these con-
gruences, Kummer improved his previous result:

If p divides the numerator of at most one of the Bernoulli numbers
B,, By, ..., B,_3, then the first case of Fermat’s theorem holds for p.

In 1905 Mirimanoff generalized this last result of Kummer, as follows:

If p does not divide the numerator of one of the four Bernoulli numbers
B,-3,B,_5,B,—7, B,o, then the first case holds for the prime p.

This theorem is again a tour de force. However, due to the long com-
putations involving large Bernoulli numbers, its applicability is limited.

It was becoming increasingly clear that new and significantly more
powerful methods were necessary to provide any substantial progress.

Later, I shall describe the sensational work by Wieferich and Mirimanoff
early this century, and how Furtwingler used class field theory (more
specifically Eisenstein’s reciprocity law for the power residue symbol) to
improve and simplify these results. All this brought into the battle the newly
created forces of class field theory.

6. Other Relevant Results

In 1856, Griinert considered the size of possible solutions of Fermat’s
equation.

He proved that if x, y, z are nonzero integers such that x" + y" = z", with
0 < x < y < z, then necessarily x > n. This was very easy to prove.

For example, if p = 101 the smallest nontrivial solution, if it exists, would
involve numbers greater than 102'°'. This pointed to a fact which was
becoming more and more apparent: In order to disprove Fermat’s statement

one has to deal with very large numbers.
In 1894, following the line of Sophie Germain, Wendt contributed an

interesting theorem. He considered the determinant W, of the circulant
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matrix

H OO

which is equal to [[}24 [(1 + &;)" — 1], where &, = 1
nth roots of 1. ! ’ J “ G oy are the
Wendt proved:

If p is an odd prime, if there exists h > 1 such that q = 2hp + 1 is prime, if

q does not divide W, and p*" # 1 (mod q), then th ’
conjecture holds for p. > ¢ first case of Fermat's

A first step in the proofis the following: i i 1visi
' g:if x, y, z are integers not divisible
by % Izlmd1 if x? + y? + z¥ = 0 (mod q) then g divides W,,.
is leads to the interesting and related problem: if i
does the congruence ’ 1P 4 are 0dd primes

X? 4 Y? + ZP = 0 (mod q)

give a solution in integers x, y, z not multiples of ¢? Of course this depends
P, q

. qu, g1v2n D, thelrle exist infinitely many primes g such that the above con-

ence does not have a solution as indi ’
hold icated, then Fermat’s theorem would
y B;lt in 1902, Dicksgn showed that this hypothesis is false. More precisely,
: ;1 l_ (p — 1)*(p — 2)* + 6p — 2 then the above congruence modulo ¢ has
. olution. In the same year, Hurwitz generalized this theorem, in a very
cautiful paper, by counting the number of solutions of

o, X5 + 0, X5 + -+ + 0, X2 = 0 (mod g).

All these considerations led again to deep investigations of the number of

2eros of polynomials over finite fields, even inki i
' \ tually1 i
hypothesis for function fields. vellylinking up with the Riemann

7. The Golden Medal and the Wolfskehl Prize

.

. d €S 1n 8 i i
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Cauchy wrote the following report:

Eleven memoirs have been presented to the Secretary. But none has solved
the proposed question. The Commissaries have nevertheless noted that the
piece registered under number 2 contained a new solution of the problem in
the special case developed by Fermat himself, namely when the exponent is
equal to 4.

Thus, after being many times put for a prize, the question remains at the
point where M. Kummer left it. However, the mathematical sciences should
congratulate themselves for the works which were undertaken by the ge-
ometers, with their desire to solve the question, specially by M. Kummer; and
the Commissaries think that the Academy would make an honourable and
useful decision if, by withdrawing the question from the competition, it
would adjugate the medal to M. Kummer, for his beautiful researches on the
complex numbers composed of roots of unity and integers.

In 1908 the very substantial Wolfskehl Prize, in the amount of 100,000
Mark, was offered with the same aim by the Konigliche Gesellschaft der

Wissenschaften, in Gottingen, Germany:

By the power conferred on us, by Dr. Paul Wolfskehl, deceased in
Darmstadt, hereby we fund a prize of one hundred thousand Marks, to be
given to the person who will be the first to prove the great theorem of Fermat.

In his will, Doctor Wolfskehl observed that Fermat (Oeuvres, Paris, 1891,
volume I, p. 291, observation 2) asserted mutatis mutandis that the equation
x* + y* = z* has no integral solutions for any odd prime number 4. This
theorem has to be proved, either following the ideas of Fermat, or completing
the researches of Kummer (Crelle’s Journal, vol. XL, page 130; Abhandlungen
der Akademie der Wissenschaften zu Berlin, 1857), for all exponents 4, for
which it has some meaning [consult Hilbert, Theorie der Algebraischen
Zahlkorper, 18941895, and Enzyklopddie der Mathematischen Wissenschaften,
(1900-1904), I C 4b, page 713].

The following rules will be followed:

_ The Kénigliche Gesellschaft der Wissenschaften in Géttingen will decide
in entire freedom to whom the prize should be conferred. It will refuse to
accept any manuscript written with the aim of entering the competition to
obtain the Prize. It will only take in consideration those mathematical memoirs
which have appeared in the form of 2 monograph in the periodicals, or which
are for sale in the bookstores. The Society asks the authors of such memoirs
to send at least five printed exemplars.

Works which are published in a language which is not understood by the
scholarly specialists chosen for the jury will be excluded from the competition.
The authors of such works will be allowed to replace them by translations, of
guaranteed faithfulness.

The Society declines its responsibility for the examination of works not
brought to its attention, as well as for the errors which might result from the
fact that the author of a work, or part of a work, are unknown to the Society.

The Society keeps the right of decision in the case where various persons
would have dealt with the solution of the problem, or for the case where the
solution is the result of the combined efforts of several scholars, in particular
in what concerns the partition of the Prize, at its own discretion.

The award of the Prize by the Society will take place not earlier than two
years after the publication of the memoir to be crowned. The interval of time
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is aimed to allow the German and foreign mathematicians to voice their
opinion about the validity of the solution published.

~Assoon as the Prize will be conferred by the Society, the laureate will be
informed by the secretary, on the name of the Society, and the result will be
published everywhere the Prize would have been announced during the
preceding year. The assignment of the Prize by the Society is not to be the
subject of any further discussion.

The payment of the Prize will be made to the laureate, in the next three
months after the award, by the Royal Cashier of Géttingen University, or
at the receivers own risk, at any other place he will have designated. ’
. The capital may be delivered against receipt, at the Society’s will, either
in ca_sh, or by the transfer of financial values. The payment of the Prize will be
considered as accomplished by the transmission of these financial values, even
though their total value at the day’s course would not attain 100,000 1\’/Iark.

If the Prize is not awarded by September 13, 2007, no ulterior claim will
be accepted.

The competition for the Prize Wolfskehl is open, as of today, under the
above conditions.

. ' Géttingen, June 27, 1908
Die Kénigliche Gesellschaft der Wissenschaften.

A memorandum dated 1958 states that the Prize of 100,000 DM has been
reduced to approximately 7,600 DM, in virtue of the inflation and financial
changes.

Dr. F. Schlichting, from the Mathematics Institute of the University of

Géttingen, was kind enough to provide me with the following information
on the Wolfskehl Prize:

Gottingen, March 23, 1974.

Dear Sir:
.I?lease excuse the delay in answering your letter. I enclose a copy of the
Srlglnal announcement, which gives the main regulations, and a note of the
Akademie” which is usually sent to persons who are applying for the prize
now worth a little bit more than 10,000 DM. There is no count of the totai
numt?er of “solutions” submitted so far. In the first year (1907-1908) 621
solutions were registered in the files of the Akademie, and today they have
stored about 3 meters of correspondence concerning the Fermat problem.
In recent decades it was handled in the following way: the secretary of the
Akademxe di.vides the arriving manuscripts into (1) complete nonsense, which
1s sent back immediately, and into (2) material which looks like mathematics.
The secpnd part is given to the mathematical department and there, the work
of r'eadmg, finding mistakes and answering is delegated to one of the scientific
assistants (at German universities these are graduated individuals working
for PhD or habilitation and helping the professors with teaching and
supervision)—at the moment I am the victim. There are about 3 to 4 letters
to answer per month, and there is a lot of funny and curious material arriving
€.g,, like the one sending the first half of his solution and promising the second’
if we would pay 1000 DM in advance; or another one, who promised me 10
per cent of his profits from publications, radio and TV interviews after he
got famous, if only I would support him now; if not, he threatened to send
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it to a Russian mathematics department to deprive us of the glory of dis-
covering him. From time to time someone appears in Gottingen and insists
on personal discussion.

Nearly all “solutions” are written on a very elementary level (using the
notions of high school mathematics and perhaps some undigested papers in
number theory), but can nevertheless be very complicated to understand.
Socially, the senders are often persons with a technical education but a failed
career who try to find success with a proof of the Fermat problem. I gave
some of the manuscripts to physicians who diagnosed heavy schizophrenia.

One condition of Wolfskehl’s last will was that the Akademie had to
publish the announcement of the prize yearly in the main mathematical
periodicals. But already after the first years the periodicals refused to print
the announcement, because they were overflowed by letters and crazy
manuscripts. So far, the best effect has been had by another regulation of the
prize: namely, that the interest from the original 100,000 Mark could be used
by the Akademie. For example, in the 1910s the heads of the Géttingen
mathematics department (Klein, Hilbert, Minkowski) used this money to
invite Poincaré to give six lectures in Gottingen.

Since 1948 however the remainder of the money has not been touched.

1 hope that you can use this information and would be glad to answer any
further questions.

Yours sincerely,
F. Schlichting.
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LECTURE II

Recent Results

Some of the most common questions I have been asked are:

a. For which exponents is Fermat’s theorem true?
b. Isserious work still being done on the problem?
c. Will it be solved soon?

Anyone over 40, hearing my reply to the first question, will say: “When
I was younger, we knew that it was true up to ...” and will then state some
rather small exponent.

Below I will try to present whatever information I have gathered. 1 will
not, however, attempt to answer the last question.

There has always been considerable work done on the subject—though
of rather diverse quality—so it is necessary to be selective. My purpose is to
shqw the various methods of attack, the different techniques involved, and
to indicate important historical developments. ’

Here are 10 recent results which will later be discussed in more detail.

1. Stating the Results

1. Wagstaff (1976): Fermat’s last theorem (FLT) holds for every prime
exponent p < 125000.

2. Mprlshima and Gunderson (1948): The first case of FLT holds for every
prime exponent p < 57 x 10° (or, at worst, as I will explain, for every
prime exponent p < 3 x 10°, according to Brillhart, Tonascia and
Weinberger, 1971).

In fact the first case also holds for larger primes.
3. The first case of FLT holds for the largest prime known today.
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The above results are on the optimistic side. But some mathematicians
think that there might be a counterexample. How large would the smallest
counterexample have to be for a given exponent p?

4. Inkeri(1953): If the first case fails for the exponent p, if x, y, z are integers,
0<x<y<z pfxyz xP + yP = z”, then

2p3 4
>< P +P>.
log(3p)

x>p¥>® % and y>3pP*Tl.

And in the second case,

Moreover, Pérez Cacho proved in 1958 that in the first case, y > 3(p*P + 1),
where P is the product of all primes ¢ # p such that ¢ — 1 divides p — 1.
There might also be only finitely many solutions. In this respect:

5. Inkeri and Hyyro (1964): (a) Given p and M > 0, there exist at most
finitely many triples (x,,2), such that 0 < x <y <z, x’ + )y’ = z?, and
y-xz—y<M.

(b) Given p, there exist at most finitely many triples (x,y,z) such that
0<x<y<zxP+ y?’ =z% and x is a prime power.
For each such triple, cf. Inkeri (1976), we have the effective majoration
(and this is a very important new feature):

x <y < expexp{[2%(p — )to- -7,

Another sort of result, this time for even exponents is the following:

6. Terjanian (1977): If x, y, z are nonzero integers, p is an odd prime, and
x2P 4 y?? = 727, then 2p divides x or y. In other words, the first case of

FLT is true for every even exponent.

The possibility that FLT (or even its first case) holds for infinitely many
prime exponents is still open. In this respect we have:

7. Rotkiewicz (1965): If Schinzel's conjecture on Mersenne numbers is
true, then there exist infinitely many primes p such that the first case
of FLT holds for p (Schinzel conjectured that there exist infinitely many

square-free Mersenne numbers).
The next results are intimately connected with the class group of the
cyclotomic fields Q((), where { is a primitive pth root of 1.
8. Vandiver (1929): If the second factor h* of the class number of Q(()

is not a multiple of p and if none of the Bernoulli numbers B,,, (n =
1,2,....(p — 3)/2) is a multiple of p3, then Fermat’s last theorem holds

for the exponent p.
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9. Eichler (1965): If the first case fails for p, then piv?1~1 divides the first
factor h* of the class number of Q({) and the p-rank of the ideal class
group of Q({) is greater than /p — 2.

10. Briickner (1975): If the first case fails for p, then the irregularity index of
p, ii(p) = #{k=24,...,p— 3|p divides the Bernoulli number B,}
satisfies

ii(p) > /p — 2.

2. Explanations

Now, I shall explain the significance of these various theorems and
computations.

Result (1). Wagstaff obtained his result with a computer, but what is the
theory behind it?

Kummer’s theorem asserts that FLT holds for the prime exponents p
which are regular. A prime p is regular if p does not divide the class number
h of the cyclotomic field Q({), where { is a primitive pth root of 1. Kummer
showed that this is equivalent to p not dividing the first factor h* of the class
pumber. Since the computation of the class number, or even of its first factor,
is .rather involved, and even more because the class number grows so rapidly
with p, it was imperative to find a more amenable criterion. Kummer charac-
terized the regular primes p by the condition:

pA B,y for2k=2,4,...,p—3.

Here B,, denotes the 2kth Bernoulli number. These are defined by the formal
power series expansion

They may be obtained recursively; moreover if n is odd, n > 3, then B,=0.
Vandiver gave a practical criterion to determine whether p 1is irregular,
by means of the congruence
4p—2k + 3p—2k _ 6p—2k -1
4k

By = > a® ! (modp).
pI6 <a<p/4

The advantage of this congruence is that it involves a sum of relatively few
summands, contrary to the previous congruences. If both the right-hand side
and the left-hand factor of the above congruence are multiples of p then the
above congruence does not decide the question and other similar congruences
have to be used. Once it is known that p is irregular, the following criterion is
used (Vandiver, 1954 and Lehmer, Lehmer, and Vandiver, 1954):

Let p be an irregular prime, let P = rp + 1 bea prime such that P < p? — p
and let ¢ be an integer such that " % 1 (mod P). If p| By, with2 < 2k <p —3
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let
(p—1)/2
d= Y nr %
n=1
and
1 w-2

On= =35 [I *—1*"™"
¢! 1
o

If Q5. # 1 (mod p) for all 2k such that p|B,,, then FLT holds for the ex-
ponent p. This criterion is well suited to the computer.

During his extensive calculations, Wagstaff noted many facts about the
irregular primes. The maximum irregularity index found was 5. Moreover,

. . )
# (irregular primes p < 125000) 25500 4 — L _ 39347
# (primes p < 125000) Je

This confirms a heuristic prediction of Siegel (1964).

Let me now recall various interesting results about regular and irregular
primes.

It is suspected that there exist infinitely many regular primes, but this
has never been proved. On the other hand, Jensen proved in 1915 that there
exist infinitely many irregular primes. Actually they are abundant in the
following sense. In 1975, Yokoi proved for N an odd prime, and Metsénkyld
(1976), for arbitrary N > 3, thatif H is a proper subgroup of the multiplicative
group (Z/NZ)*, then there exist infinitely many irregular primes p such that p
modulo N is not in H.

Taking N = 12 and letting H be the trivial subgroup, gives the following
puzzling theorem previously obtained by Metsinkyld (1971): There exist
infinitely many irregular primes p which satisfy either one of the congruences
p=1(mod 3), p=1 (mod 4). But he couldn’t decide which of these con-
gruence classes must contain infinitely many irregular primes.

So it is rather startling that it is possible—and not too difficult—to show
that there are infinitely many irregular primes, however, it is not known
whether there are infinitely many regular ones, even though heuristic argu-
ments seen to indicate that these are much more numerous.

Among the many conjectures—and all seem difficult to prove—let me
mention:

1. There exist primes with arbitrarily large irregularity index.
2. There exist infinitely many primes with given irregularity index.
3. There exists a prime p and some index 2k such that p?| By, 2 < 2k < p — 3.

Result (2). The fact that the first case holds for all prime exponents less
than 3 x 10° depends on the scarcity of primes p satisfying the congruence
2P~ = 1 (mod p?).

Fermat’s little theorem says that if p is a prime and p ¥ m, then m*™' =1
(mod p). Hence the quotient g,(m) = (m?~' — 1)/p is an integer. It is called
the Fermat quotient of p with base ni.

o
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In 1909 Wieferich proved the following theorem:

If the first case of FLT fails for the exponent p, then p satisfies the stringent
condition that 2°~' = 1 (mod p?); or equivalently 4,(2) = 0 (mod p).

This theorem had a new feature, in that it gives a condition involving only
the exponent p, and not a possible solution (x,y,z) of Fermat’s equation as in
most of the previous results. The original proof of Wieferich’s theorem was
very technical, based on the so-called Kummer congruences for the first case:

If p¥xyz and x? + y? + zf =0, then for 2k =2, 4,..., p — 3, we have
the congruences (for a real variable v)

[dz" log(x + e”y)]

dUZk

(as well as the similar congruences for (y,x), (x,z), (z,x), (3,2), (z,y)). These
congruences were obtained with intricate considerations involving the arith-
metic of the cyclotomic field and transcendental methods (the latter, as a
matter of fact, may be replaced by p-adic methods).

Thus, it suffices to show that 27! # 1 (mod p?) to guarantee that the first
case holds for p. For a few years no such p was found. Only in 1913 Meissner
showed that p = 1093 satisfies 27! = 1 (mod p?). The next prime satisfying
this congruence was discovered by Beeger in 1922; it is p = 3511. Since then,
computations performed up to 3 x 10° by Brillhart, Tonascia and
Weinberger (1971) have not found any other such prime. Thus, in the above
range, the first case holds for all but these two primes.

The handling of these exceptional primes was actually done by a similar
criterion. Indeed, in 1910 Mirimanoff gave another proof of Wieferich’s
theorem and showed also that if the first case fails for p then 377! =
(mod p?). The primes p = 1093 and 3511 do not satisfy this congruence.

Several more criteria of a similar kind were successively obtained by
various authors. In 1914 Frobenius and Vandiver showed independently
that qp(.S) =0 (modp) and ¢,(11) = 0 (mod p), if the first case fails for p.
Successively, Pollaczek, Vandiver, Morishima proved that q,(m) = 0 (mod p)
must hold for all primes m < 31. Morishima proved the same criterion for
m = 37, 41, 43 (except for finitely many primes p). The exceptions were ruled
out by Rosser in 1940 and 1941. However, in 1948 Gunderson pointed out
that Morishima’s proof was incomplete. I have been assured by Agoh and
Yamaguchi, who worked with Morishima and studied his papers, that the
proofs are sound.

Rosser, Lehmer and Lehmer, using the above criteria (up to m = 43), and
the Bernoulli polynomials to estimate the number of lattice points in a
certain simplex in the real vector space of 14 dimensions, gave the following
well-known bound:

If the first case fails for p, then p > 252 x 109,

Tl}ese computations have been superseded by the bound 3 x 10°
obtained using a computer, as I have already indicated. ’

X B, = 0 (mod p)
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Furthermore, Gunderson devised, in 1948, another sharper method to
bound the exponent. Assuming the Fermat quotient criteria up to 31, this
gives the bound p > 43 x 10%, and up to 43, the bound is p > 57 x 10°.

Result (3). The largest prime known today' is the Mersenne number
M, = 2% — 1 where q = 19937. It has 6002 digits. Its primeness was shown
by Tuckermann in 1971, using the famous Lucas test: if ¢ > 2, M is prime
if and only if M, divides S,. The numbers S, are defined by recurrence:
S,=4,8,., =S —2,s0 the sequence is 4, 14,194, . ...

But how was it possible to show that the first case holds for such a large
exponent? As a matter of fact, this is a consequence of Wieferich’s and
analogous criteria, and it is a special case of a result which was proved suc-
cessively by Mirimanoff, Landau, Vandiver, Spunar, Gottschalk. Namely:

Suppose that there exists m not divisible by p, such that mp =a + b,
where the prime factors of a and of b are at most 43 (this depends on the
Fermat quotient criteria). Then the first case holds for p. Therefore, it holds
for all Mersenne primes M, = 2¢ — 1, as well as for many other numbers.

Do there exist infinitely many prime numbers p satisfying the conditions
of the preceding proposition? This is an open question. In 1968 Puccioni
proved:

If this set of primes is finite, then for all primes | <43, [ # +1 (mod?g)
the set M, = {q|q is a pime and '~ ' = 1(g°)} is infinite.

Primes in .#, are very hard to find, but this doesn’t preclude these sets
being infinite.

Result (4). The first lower bound for a counterexample to FLT was given
by Griinert in 1856. He showed that if 0 < x <y < zand x" + y" = 2" then
x > n. So it is useless to try to find a counterexample with small numbers.
For example, if n = 101 the numbers involved in any counterexample would
be least 102101

It was easy to improve this lower bound. Based on congruences of
Carmichael (1913), if x* + y? = 2%, 0 < x < y < z, then x > 6p°.

But, with some clever manipulations Inkeri arrived at the lower bound
already given. Taking into account that the first case holds for all prime
exponents p < 57 x 10°, then

. 2 x 573 x 102° + 57 x 109\37*1¢°
X
log(171 x 10°)

This is a very large number; it has more than 18 x 10'! digits!

! Since this book was written, a larger prime M, with ¢ = 21701 was discovered by two 18-year-
old students of California State University at Hayward. Laura Nickel and Curt Noll announced
their discovery on November 15, 1978, and their computations were confirmed by Tuckermann
(see Los Angeles Times, November 16, 1978, part II, page 1). The search lasted for three years,
it required 440 computer hours. The new prime has 6533 digits.
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Similarly, for the second case we may take p = 125000, hence
x > (125 x 103)3x125%10%

This number has more than 18 x 10° digits.

To give some sense of the magnitudes involved, T have inquired about
some physical constants, as they have been estimated by the physicists.

For example, the radius of the known universe is estimated to be 10?® cm.
The radius of the atomic nucleus, about 10~ '3 cm. So the number of nuclei
that may be packed in the universe, is just about (10?8*13)3 = 10123 —3 very
modest number indeed!

But I should add that the above is rather controversial, and I have quoted
it only to stress the enormous disparity between the sizes of the candidates
for a counterexample to FLT, and the reputedly largest physical constants.

Despite the monstrous size of the numbers involved, it is perhaps not
quite safe to assert that no counterexample to the theorem will ever be
available. Consider, for example, the equation

121097 — [ = (1119 4 D(1119'° — 1)

which is easy to establish. Yet, the