Capacity Preserving Operators

Jonathan Leake
Department of Mathematics
UC Berkeley

IML, 2018

Our Goal

Definition

For $p \in \mathbb{R}[x] \equiv \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, we say p is real stable whenever $p(x) \neq 0$ for $x \in \mathcal{H}_{+}^{n}$.

Main goal: obtain bounds on combinatorial info via real stable polynomials which encode that info.

- Matching polynomial - matchings of a graph
- Product of linear forms - permanent of a matrix
objects \rightarrow multivariate polynomials \rightarrow apply operators \rightarrow information
Can we use and/or emulate the Borcea-Brändén characterization to transfer quantitative information about coefficients/evaluations?

Two Motivating Examples

(BB) Multivariate matching polynomial $=\operatorname{MAP}\left(\prod_{(i, j) \in E}\left(1-x_{i} x_{j}\right)\right)$

- $\left(1-x_{i} x_{j}\right)$ is real stable, products are real stable.
- MAP $=$ "Multi-Affine Part" preserves real-stability.
- Plug in x for all variables \rightarrow univariate matching poly is real-rooted.
- What about bounds on coefficients?
(Gurvits) Doubly stochastic matrix $M \rightarrow \prod_{r \in \text { rows }} r \cdot x$
- $p_{M}(x):=\prod_{i} \sum_{j} m_{i j} x_{j}$ is real stable.
- (coefficient of $\left.x_{1} x_{2} \cdots x_{n}\right)=\partial_{x_{1}} \cdots \partial_{x_{n}} p$ is the permanent of M.
- We can obtain a bound on the permanent by analyzing $\partial_{x_{k}}$.

Both cases: want to obtain bounds on how certain linear operators affect the coefficients of a real stable polynomial.

An Explicit Example: Schrijver's Inequality

Let G be a d-regular bipartite graph with $2 n$ total vertices.

Bipartite adjacency matrix, M:

$$
\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]
$$

\# perfect matchings $=$ permanent

$$
p_{M}=\left(x_{1}+x_{2}+x_{4}\right)\left(x_{1}+x_{3}+x_{4}\right)\left(x_{2}+x_{3}+x_{4}\right)\left(x_{1}+x_{2}+x_{3}\right)
$$

- $\operatorname{pm}(G)=\operatorname{per}(M)=\partial_{x_{1}} \cdots \partial_{x_{n}} p_{M}$
- Schrijver: $\operatorname{pm}(G) \geq\left(\frac{(d-1)^{d-1}}{d^{d-2}}\right)^{n}$
- \#k-edge matchings $\sim \sum_{S \in\left(\begin{array}{c}{\left[\begin{array}{c}n \\ k\end{array}\right)}\end{array}\right.} \partial_{x}^{S} p_{M}(1) \geq$?

Gurvits' Method

Throughout: x is a vector, $x>0$ is element-wise, $x^{\alpha}:=\prod_{k=1}^{n} x_{k}^{\alpha_{k}}$, etc.

Definition (Gurvits)

For $p \in \mathbb{R}_{+}[x]$ and $\alpha \in \mathbb{R}_{+}^{n}$, we define $\operatorname{Cap}_{\alpha}(p):=\inf _{x>0} \frac{p(x)}{x^{\alpha}}$.

Theorem (Gurvits)

Let $p \in \mathbb{R}_{+}[x] \equiv \mathbb{R}_{+}\left[x_{1}, \ldots, x_{n}\right]$ be n-homogeneous and real stable. Then:

$$
\operatorname{Cap}_{\left(1^{n-1}\right)}\left(\left.\partial_{x_{k}} p\right|_{x_{k}=0}\right) \geq\left(\frac{n-1}{n}\right)^{n-1} \operatorname{Cap}_{\left(1^{n}\right)}(p)
$$

- Gives a simple proof of the van der Waerden lower bound for the permanent of a doubly stochastic matrix $\left(\operatorname{per}(M) \geq \frac{n!}{n^{n}}\right)$
- Essentially implies Schrijver's perfect matching inequality
- Can be interpreted as a capacity preservation result for $\left.\partial_{x_{k}}\right|_{x_{k}=0}$

Can we generalize this result to other operators?

General Form of the Method

Fix $p \in \mathbb{R}_{+}^{\lambda}[x]$ (degree at most λ_{k} in x_{k}) and linear $T: \mathbb{R}_{+}^{\lambda}[x] \rightarrow \mathbb{R}_{+}^{\gamma}[x]$.

$$
\operatorname{Cap}_{\beta}(T[p]) \geq c_{T, \alpha, \beta, \lambda} \cdot \operatorname{Cap}_{\alpha}(p)
$$

What we need to happen:

- Series of linear operators which lead to a desired quantity.
- Capacity of starting polynomial is easy to compute.
- If T is a functional and $\beta=\varnothing$, then $T[p]=\operatorname{Cap}_{\beta}(T[p])$.

Bounds are achieved when p is real stable and T preserves real stability: can theoretically lower-bound any quantity which is derivable in this way.

First Idea: Inner Product Bounds

Certain differential operators can be interpreted via (real) inner products.

- E.g., $\operatorname{per}(M)=\left.q\left(\partial_{x}\right) p_{M}(x)\right|_{x=0}$ for $q=x_{1} \cdots x_{n}$.
- Can we obtain/utilize bounds on inner products of polynomials?

Definition

For $p, q \in \mathbb{R}^{\lambda}[x]$, define $\langle p, q\rangle^{\lambda}:=\sum_{0 \leq \mu \leq \lambda}\binom{\lambda}{\mu}^{-1} p_{\mu} q_{\mu}$.
Observation: $\operatorname{per}(M)=\partial_{x_{1}} \cdots \partial_{x_{n}} p_{M}=\left\langle x_{1} \cdots x_{n}, p_{M}\right\rangle^{\lambda} \cdot \prod_{k} \lambda_{k}$
Why this inner product?

- Practical - inductive structure leads to the bounds we want
- Useful - amenable to BB-style ideas (similar to apolarity form)
- Natural - unique SO_{2}^{n}-invariant bilinear form (up to degree)

First Idea: Inner Product Bounds

Theorem (Anari-Gharan, 2017)

For real stable multiaffine $p, q \in \mathbb{R}_{+}[x]$ and $\alpha \in \mathbb{R}_{+}^{n}$, we have:

$$
\langle p, q\rangle^{\left(1^{n}\right)} \geq \alpha^{\alpha}(1-\alpha)^{1-\alpha} \operatorname{Cap}_{\alpha}(p) \operatorname{Cap}_{\alpha}(q)
$$

Proof: Strongly Rayleigh inequalities.

Theorem (Anari-Gharan, 2017)

For real stable $p, q \in \mathbb{R}_{+}[x]$ and $\alpha \in \mathbb{R}_{+}^{n}$, we have:

$$
\left.q\left(\partial_{x}\right) p(x)\right|_{x=0} \geq e^{-\alpha} \alpha^{\alpha} \operatorname{Cap}_{\alpha}(p) \operatorname{Cap}_{\alpha}(q)
$$

Already: $\operatorname{per}(M) \geq e^{-\left(1^{n}\right)}\left(1^{n}\right)^{\left(1^{n}\right)} \operatorname{Cap}_{\left(1^{n}\right)}\left(p_{M}\right)=e^{-n} \operatorname{Cap}_{\left(1^{n}\right)}\left(p_{M}\right)$

Lemma (Gurvits)

If M is doubly stochastic, then $\operatorname{Cap}_{\left(1^{n}\right)}\left(p_{M}\right)=1$.

First Idea: Inner Product Bounds

Can we do better if we know the degree of the polynomial?

Theorem

For real stable $p, q \in \mathbb{R}_{+}^{\lambda}[x]$ and $\alpha \in \mathbb{R}_{+}^{n}$, we have:

$$
\langle p, q\rangle^{\lambda} \geq \frac{\alpha^{\alpha}(\lambda-\alpha)^{\lambda-\alpha}}{\lambda^{\lambda}} \operatorname{Cap}_{\alpha}(p) \operatorname{Cap}_{\alpha}(q)
$$

Proof: Capacity and $\langle\cdot, \cdot\rangle$ play nice with polarization; follows from the prior multiaffine result.

So: $\operatorname{per}(M)=\left\langle x_{1} \cdots x_{n}, p_{M}\right\rangle^{\lambda} \cdot \prod_{k} \lambda_{k} \geq\left(\frac{\lambda-1}{\lambda}\right)^{\lambda-1} \operatorname{Cap}_{\left(1^{n}\right)}\left(p_{M}\right)$

- Limits to the e^{-n} bound as $\lambda \rightarrow \infty$.
- Looks similar to Gurvits' theorem, but not quite as strong/general.
- Easy to achieve Schrijver's inequality as a corollary.

Proof of Schrijver's Inequality

G is a d-regular bipartite graph on $2 n$ vertices, with incidence matrix M.

$$
M=\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]
$$

$$
p_{M}=\left(x_{1}+x_{2}+x_{4}\right)\left(x_{1}+x_{3}+x_{4}\right)\left(x_{2}+x_{3}+x_{4}\right)\left(x_{1}+x_{2}+x_{3}\right)
$$

Recall: $\operatorname{pm}(G)=\operatorname{per}(M) \geq\left(\frac{\lambda-1}{\lambda}\right)^{\lambda-1} \operatorname{Cap}_{\left(1^{n}\right)}\left(p_{M}\right)$

- d-regularity implies $\frac{1}{d} M$ is doubly stochastic
- Lemma implies $\operatorname{Cap}_{\left(1^{n}\right)}\left(p_{M}\right)=d^{n} \cdot \operatorname{Cap}_{\left(1^{n}\right)}\left(p_{\frac{1}{d} M}\right)=d^{n}$
- d-regularity implies p_{M} is of degree $\lambda=(d, d, \ldots, d)$
- $\left(\frac{\lambda-1}{\lambda}\right)^{\lambda-1}=\prod_{k=1}^{n}\left(\frac{d-1}{d}\right)^{d-1}=\left(\frac{d-1}{d}\right)^{n(d-1)}$

Therefore: $\operatorname{pm}(G) \geq\left(\frac{d-1}{d}\right)^{n(d-1)} \cdot d^{n}=\left(\frac{(d-1)^{d-1}}{d^{d-2}}\right)^{n}$

Other Bounds on Matchings

What about non-bipartite G? Via the matching polynomial?
Unfortunate problem: matching polynomial does not have non-negative coefficients, and this is essentially unavoidable for non-bipartite G.

What about counting k-matchings for bipartite G ?

Theorem (Csikvári, 2014)

Let G be a d-regular bipartite graph with $2 n$ vertices. Then:

$$
\mu_{k}(G) \geq\binom{ n}{k} d^{k}\left(\frac{n d-k}{n d}\right)^{n d-k}\left(\frac{n}{n-k}\right)^{n-k}
$$

- Reduces to Schrijver's inequality for $k=n$ (here $0^{0}=1$).
- Implies Friedland's lower matching conjecture.
- Actually able to bound k-matchings for biregular bipartite graphs.
- Can prove these bounds using capacity-preservers.

The Symbol for Capacity

BB: stability properties shared between operator and its symbol.
Recall: $\langle p, q\rangle^{\lambda}=\sum_{\mu \leq \lambda}\binom{\lambda}{\mu}^{-1} p_{\mu} q_{\mu}$

Definition

Given linear $T: \mathbb{R}^{\lambda}[x] \rightarrow \mathbb{R}^{\gamma}[x]$, we define $\operatorname{Symb}(T) \in \mathbb{R}^{(\lambda, \gamma)}[z, x]$ via:

$$
T[p](x)=\langle\operatorname{Symb}(T)(z, x), p(z)\rangle^{\lambda}
$$

Lemma

For a given linear operator $T: \mathbb{R}^{\lambda}[x] \rightarrow \mathbb{R}^{\gamma}[x]$, we have:

$$
\operatorname{Symb}(T)(z, x)=T\left[(1+x z)^{\lambda}\right]=\sum_{\mu \leq \lambda}\binom{\lambda}{\mu} z^{\mu} T\left(x^{\mu}\right)
$$

Is there a similar operator-symbol correspondence for capacity?

From Inner Products to Operators

Theorem

For real stable $p, q \in \mathbb{R}_{+}^{\lambda}[x]$ and $\alpha \in \mathbb{R}_{+}^{n}$, we have:

$$
\langle p, q\rangle^{\lambda} \geq \frac{\alpha^{\alpha}(\lambda-\alpha)^{\lambda-\alpha}}{\lambda^{\lambda}} \operatorname{Cap}_{\alpha}(p) \operatorname{Cap}_{\alpha}(q)
$$

For T and p with desired properties, and fixed $x>0$:

$$
\begin{aligned}
T[p](x) & =\langle\operatorname{Symb}(T)(z, x), p(z)\rangle^{\lambda} \\
& \geq \frac{\alpha^{\alpha}(\lambda-\alpha)^{\lambda-\alpha}}{\lambda^{\lambda}} \operatorname{Cap}_{\alpha}(p) \operatorname{Cap}_{\alpha}(\operatorname{Symb}(T)(\cdot, x))
\end{aligned}
$$

Divide by x^{β} and take $\inf _{x>0}$ on both sides $\left(\operatorname{recall~}^{\operatorname{Cap}}{ }_{\beta}(p):=\inf _{x>0} \frac{p(x)}{x^{\beta}}\right)$:

$$
\operatorname{Cap}_{\beta}(T[p]) \geq \frac{\alpha^{\alpha}(\lambda-\alpha)^{\lambda-\alpha}}{\lambda^{\lambda}} \operatorname{Cap}_{\alpha}(p) \operatorname{Cap}_{(\alpha, \beta)}(\operatorname{Symb}(T))
$$

Capacity Preserving Operators

Theorem

Let $T: \mathbb{R}_{+}^{\lambda}[x] \rightarrow \mathbb{R}_{+}^{\gamma}[x]$ be such that $\operatorname{Symb}(T)(z, x) \in \mathbb{R}_{+}^{(\lambda, \gamma)}[z, x]$ is real stable in z for every $x>0$. For any real stable $p \in \mathbb{R}_{+}^{\lambda}[x]$:

$$
\operatorname{Cap}_{\beta}(T[p]) \geq\left[\frac{\alpha^{\alpha}(\lambda-\alpha)^{\lambda-\alpha}}{\lambda^{\lambda}} \operatorname{Cap}_{(\alpha, \beta)}(\operatorname{Symb}(T))\right] \operatorname{Cap}_{\alpha}(p)
$$

Moreover, this bound is tight for any fixed α, β, and T.
Tightness is demonstrated by considering $p(x)=(x y+1)^{\lambda}$ for fixed $y>0$.

Corollary

The above theorem holds for any operator preserving real stability and non-negative coefficients, which has image of dimension greater than 2.

Application: Gurvits' Theorem

Theorem (Gurvits)

Let $p \in \mathbb{R}_{+}[x] \equiv \mathbb{R}_{+}\left[x_{1}, \ldots, x_{n}\right]$ be n-homogeneous and real stable. Then:

$$
\operatorname{Cap}_{\left(1^{n-1}\right)}\left(\left.\partial_{x_{k}} p\right|_{x_{k}=0}\right) \geq\left(\frac{n-1}{n}\right)^{n-1} \operatorname{Cap}_{\left(1^{n}\right)}(p)
$$

Recall: $\operatorname{Cap}_{\beta}(T(p)) \geq\left[\frac{\alpha^{\alpha}(\lambda-\alpha)^{\lambda-\alpha}}{\lambda^{\lambda}} \operatorname{Cap}_{(\alpha, \beta)}(\operatorname{Symb}(T))\right] \operatorname{Cap}_{\alpha}(p)$

- $\lambda=(n, \ldots, n), \alpha=\left(1^{n}\right), \beta=\left(1^{n-1}\right) \rightarrow \frac{\alpha^{\alpha}(\lambda-\alpha)^{\lambda-\alpha}}{\lambda^{\lambda}}=\left(\frac{(n-1)^{n-1}}{n^{n}}\right)^{n}$
- $\operatorname{Symb}\left(\left.\partial_{x_{k}}\right|_{x_{k}=0}\right)=\left.\partial_{x_{k}}(x z+1)^{\lambda}\right|_{x_{k}=0}=\lambda_{k} z_{k}(x z+1)^{\lambda^{\prime}}$
- $\operatorname{Cap}_{\left(1^{n}, 1^{n-1}\right)}\left(\lambda_{k} z_{k}(x z+1)^{\lambda^{\prime}}\right)=n\left(\frac{n^{n}}{(n-1)^{n-1}}\right)^{n-1}$

Therefore: $\frac{\alpha^{\alpha}(\lambda-\alpha)^{\lambda-\alpha}}{\lambda^{\lambda}} \operatorname{Cap}_{(\alpha, \beta)}(\operatorname{Symb}(T))=\left(\frac{n-1}{n}\right)^{n-1}$

Application: Csikvári's Theorem

Theorem (Csikvári, 2014)

Let G be a d-regular bipartite graph with $2 n$ vertices. Then:

$$
\mu_{k}(G) \geq\binom{ n}{k} d^{k}\left(\frac{n d-k}{n d}\right)^{n d-k}\left(\frac{n}{n-k}\right)^{n-k}
$$

Recall: $\operatorname{Cap}_{\beta}(T(p)) \geq\left[\frac{\alpha^{\alpha}(\lambda-\alpha)^{\lambda-\alpha}}{\lambda^{\lambda}} \operatorname{Cap}_{(\alpha, \beta)}(\operatorname{Symb}(T))\right] \operatorname{Cap}_{\alpha}(p)$

- M is bipartite adjacency matrix, p_{M} is associated product of linears
- d-regularity implies $\mu_{k}(G)=d^{k-n} \sum_{S \in\binom{[n]}{k}} \partial_{x}^{S} p_{M}(1)=: d^{k-n} T\left(p_{M}\right)$
- d-regularity implies $\operatorname{Cap}_{\left(1^{n}\right)}\left(p_{M}\right)=d^{n}$
- d-regularity implies $\lambda=(d, \ldots, d)$
- $\alpha=\left(1^{n}\right)$ implies $\frac{\alpha^{\alpha}(\lambda-\alpha)^{\lambda-\alpha}}{\lambda^{\lambda}}=\frac{(d-1)^{n d-n}}{d^{n d}}$
- $\beta=\varnothing$ implies $\mathrm{Cap}_{\beta}\left(T\left(p_{M}\right)\right)=T\left(p_{M}\right)$

Application: Csikvári's Theorem (continued)

- $\operatorname{Symb}(T)=\left.\sum_{S \in\binom{[n]}{k}} \partial_{x}^{S}(x z+1)^{\lambda}\right|_{x=1}=\sum_{S \in\binom{[n]}{k}} d^{k} z^{S}(z+1)^{\lambda-S}$

Lemma

If $p \in \mathbb{R}_{+}[x] \equiv \mathbb{R}_{+}\left[x_{1}, \ldots, x_{n}\right]$ is symmetric, then:

$$
\operatorname{Cap}_{(t, \ldots, t)}(p)=\operatorname{Cap}_{n t}\left(p\left(x_{0}, \ldots, x_{0}\right)\right)
$$

- $\operatorname{Symb}(T)$ is symmetric:

$$
\operatorname{Cap}_{\left(1^{n}\right)}\left[\sum_{S \in\binom{[n]}{k}} d^{k} z^{S}(z+1)^{\lambda-S}\right]=\operatorname{Cap}_{n}\left[\binom{n}{k} d^{k} z_{0}^{k}\left(z_{0}+1\right)^{d n-k}\right]
$$

- Easier: $\operatorname{Cap}_{n}\left[\binom{n}{k} d^{k} z_{0}^{k}\left(z_{0}+1\right)^{d n-k}\right]=\binom{n}{k} d^{k} \frac{(n d-k)^{n d-k}}{(n-k)^{n-k}(n d-n)^{n d-n}}$

Further Questions

Applications of capacity-preservers, beyond differential operators?
Can we get similar bounds based only on the total degree of a given homogeneous polynomial?
$S O_{n}$-invariant inner product: $\langle p, q\rangle_{S O_{n}}^{d}:=\sum_{\mu}\binom{d}{\mu}^{-1} p_{\mu} q_{\mu}$

Conjecture (Gurvits, 2009)

For real stable d-homogeneous polynomials $p, q \in \mathbb{R}_{+}[x]$, we have:

$$
\langle p, q\rangle_{S O_{n}}^{d} \geq n^{-d} \operatorname{Cap}_{\alpha}(p) \operatorname{Cap}_{\alpha}(q)
$$

What about similar results for polynomials which take matrices as input?

- Some bound on Frobenius inner product? Some other inner product?
- Possibly related to $S O_{n}$ inner product above.

