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Our Goal

Definition

For p ∈ R[x ] ≡ R[x1, ..., xn], we say p is real stable whenever p(x) 6= 0 for
x ∈ Hn

+.

Main goal: obtain bounds on combinatorial info via real stable polynomials
which encode that info.

Matching polynomial − matchings of a graph

Product of linear forms − permanent of a matrix

objects → multivariate polynomials → apply operators → information

Can we use and/or emulate the Borcea-Brändén characterization to
transfer quantitative information about coefficients/evaluations?
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Two Motivating Examples

(BB) Multivariate matching polynomial = MAP(
∏

(i ,j)∈E (1− xixj))

(1− xixj) is real stable, products are real stable.

MAP = “Multi-Affine Part” preserves real-stability.

Plug in x for all variables → univariate matching poly is real-rooted.

What about bounds on coefficients?

(Gurvits) Doubly stochastic matrix M →
∏

r∈rows r · x
pM(x) :=

∏
i

∑
j mijxj is real stable.

(coefficient of x1x2 · · · xn) = ∂x1 · · · ∂xnp is the permanent of M.

We can obtain a bound on the permanent by analyzing ∂xk .

Both cases: want to obtain bounds on how certain linear operators affect
the coefficients of a real stable polynomial.
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An Explicit Example: Schrijver’s Inequality

Let G be a d-regular bipartite graph with 2n total vertices.

Bipartite adjacency matrix, M:
1 1 0 1
1 0 1 1
0 1 1 1
1 1 1 0


# perfect matchings = permanent

pM = (x1 + x2 + x4)(x1 + x3 + x4)(x2 + x3 + x4)(x1 + x2 + x3)

pm(G ) = per(M) = ∂x1 · · · ∂xnpM
Schrijver: pm(G ) ≥

(
(d−1)d−1

dd−2

)n
# k-edge matchings ∼

∑
S∈([n]k ) ∂

S
x pM(1) ≥ ?
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Gurvits’ Method

Throughout: x is a vector, x > 0 is element-wise, xα :=
∏n

k=1 x
αk
k , etc.

Definition (Gurvits)

For p ∈ R+[x ] and α ∈ Rn
+, we define Capα(p) := infx>0

p(x)
xα .

Theorem (Gurvits)

Let p ∈ R+[x ] ≡ R+[x1, ..., xn] be n-homogeneous and real stable. Then:

Cap(1n−1)(∂xkp|xk=0) ≥
(
n − 1

n

)n−1
Cap(1n)(p)

Gives a simple proof of the van der Waerden lower bound for the
permanent of a doubly stochastic matrix (per(M) ≥ n!

nn )

Essentially implies Schrijver’s perfect matching inequality

Can be interpreted as a capacity preservation result for ∂xk |xk=0

Can we generalize this result to other operators?
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General Form of the Method

Fix p ∈ Rλ+[x ] (degree at most λk in xk) and linear T : Rλ+[x ]→ Rγ+[x ].

Capβ(T [p]) ≥ cT ,α,β,λ · Capα(p)

What we need to happen:

Series of linear operators which lead to a desired quantity.

Capacity of starting polynomial is easy to compute.

If T is a functional and β = ∅, then T [p] = Capβ(T [p]).

Bounds are achieved when p is real stable and T preserves real stability:
can theoretically lower-bound any quantity which is derivable in this way.
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First Idea: Inner Product Bounds

Certain differential operators can be interpreted via (real) inner products.

E.g., per(M) = q(∂x)pM(x)|x=0 for q = x1 · · · xn.

Can we obtain/utilize bounds on inner products of polynomials?

Definition

For p, q ∈ Rλ[x ], define 〈p, q〉λ :=
∑

0≤µ≤λ

(
λ
µ

)−1
pµqµ.

Observation: per(M) = ∂x1 · · · ∂xnpM = 〈x1 · · · xn, pM〉λ ·
∏

k λk

Why this inner product?

Practical − inductive structure leads to the bounds we want

Useful − amenable to BB-style ideas (similar to apolarity form)

Natural − unique SOn
2 -invariant bilinear form (up to degree)
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First Idea: Inner Product Bounds

Theorem (Anari-Gharan, 2017)

For real stable multiaffine p, q ∈ R+[x ] and α ∈ Rn
+, we have:

〈p, q〉(1n) ≥ αα(1− α)1−α Capα(p) Capα(q)

Proof: Strongly Rayleigh inequalities.

Theorem (Anari-Gharan, 2017)

For real stable p, q ∈ R+[x ] and α ∈ Rn
+, we have:

q(∂x)p(x)|x=0 ≥ e−ααα Capα(p) Capα(q)

Already: per(M) ≥ e−(1
n)(1n)(1

n) Cap(1n)(pM) = e−n Cap(1n)(pM)

Lemma (Gurvits)

If M is doubly stochastic, then Cap(1n)(pM) = 1.
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First Idea: Inner Product Bounds

Can we do better if we know the degree of the polynomial?

Theorem

For real stable p, q ∈ Rλ+[x ] and α ∈ Rn
+, we have:

〈p, q〉λ ≥ αα(λ− α)λ−α

λλ
Capα(p) Capα(q)

Proof: Capacity and 〈·, ·〉 play nice with polarization; follows from the
prior multiaffine result.

So: per(M) = 〈x1 · · · xn, pM〉λ ·
∏

k λk ≥
(
λ−1
λ

)λ−1
Cap(1n)(pM)

Limits to the e−n bound as λ→∞.

Looks similar to Gurvits’ theorem, but not quite as strong/general.

Easy to achieve Schrijver’s inequality as a corollary.
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Proof of Schrijver’s Inequality

G is a d-regular bipartite graph on 2n vertices, with incidence matrix M.

M =


1 1 0 1
1 0 1 1
0 1 1 1
1 1 1 0


pM = (x1 + x2 + x4)(x1 + x3 + x4)(x2 + x3 + x4)(x1 + x2 + x3)

Recall: pm(G ) = per(M) ≥
(
λ−1
λ

)λ−1
Cap(1n)(pM)

d-regularity implies 1
dM is doubly stochastic

Lemma implies Cap(1n)(pM) = dn · Cap(1n)(p 1
d
M) = dn

d-regularity implies pM is of degree λ = (d , d , ..., d)(
λ−1
λ

)λ−1
=
∏n

k=1

(
d−1
d

)d−1
=
(
d−1
d

)n(d−1)
Therefore: pm(G ) ≥

(
d−1
d

)n(d−1) · dn =
(
(d−1)d−1

dd−2

)n
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Other Bounds on Matchings

What about non-bipartite G? Via the matching polynomial?

Unfortunate problem: matching polynomial does not have non-negative
coefficients, and this is essentially unavoidable for non-bipartite G .

What about counting k-matchings for bipartite G?

Theorem (Csikvári, 2014)

Let G be a d-regular bipartite graph with 2n vertices. Then:

µk(G ) ≥
(
n

k

)
dk

(
nd − k

nd

)nd−k ( n

n − k

)n−k

Reduces to Schrijver’s inequality for k = n (here 00 = 1).
Implies Friedland’s lower matching conjecture.
Actually able to bound k-matchings for biregular bipartite graphs.
Can prove these bounds using capacity-preservers.
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The Symbol for Capacity

BB: stability properties shared between operator and its symbol.

Recall: 〈p, q〉λ =
∑

µ≤λ
(
λ
µ

)−1
pµqµ

Definition

Given linear T : Rλ[x ]→ Rγ [x ], we define Symb(T ) ∈ R(λ,γ)[z , x ] via:

T [p](x) = 〈Symb(T )(z , x), p(z)〉λ

Lemma

For a given linear operator T : Rλ[x ]→ Rγ [x ], we have:

Symb(T )(z , x) = T
[
(1 + xz)λ

]
=
∑
µ≤λ

(
λ

µ

)
zµT (xµ)

Is there a similar operator-symbol correspondence for capacity?
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From Inner Products to Operators

Theorem

For real stable p, q ∈ Rλ+[x ] and α ∈ Rn
+, we have:

〈p, q〉λ ≥ αα(λ− α)λ−α

λλ
Capα(p) Capα(q)

For T and p with desired properties, and fixed x > 0:

T [p](x) = 〈Symb(T )(z , x), p(z)〉λ

≥ αα(λ− α)λ−α

λλ
Capα(p) Capα(Symb(T )(·, x))

Divide by xβ and take infx>0 on both sides (recall Capβ(p) := infx>0
p(x)
xβ

):

Capβ(T [p]) ≥ αα(λ− α)λ−α

λλ
Capα(p) Cap(α,β)(Symb(T ))
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Capacity Preserving Operators

Theorem

Let T : Rλ+[x ]→ Rγ+[x ] be such that Symb(T )(z , x) ∈ R(λ,γ)
+ [z , x ] is real

stable in z for every x > 0. For any real stable p ∈ Rλ+[x ]:

Capβ(T [p]) ≥
[
αα(λ− α)λ−α

λλ
Cap(α,β)(Symb(T ))

]
Capα(p)

Moreover, this bound is tight for any fixed α, β, and T .

Tightness is demonstrated by considering p(x) = (xy + 1)λ for fixed y > 0.

Corollary

The above theorem holds for any operator preserving real stability and
non-negative coefficients, which has image of dimension greater than 2.
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Application: Gurvits’ Theorem

Theorem (Gurvits)

Let p ∈ R+[x ] ≡ R+[x1, ..., xn] be n-homogeneous and real stable. Then:

Cap(1n−1)(∂xkp|xk=0) ≥
(
n − 1

n

)n−1
Cap(1n)(p)

Recall: Capβ(T (p)) ≥
[
αα(λ−α)λ−α

λλ
Cap(α,β)(Symb(T ))

]
Capα(p)

λ = (n, ..., n), α = (1n), β = (1n−1)→ αα(λ−α)λ−α

λλ
=
(
(n−1)n−1

nn

)n
Symb(∂xk |xk=0) = ∂xk (xz + 1)λ

∣∣
xk=0

= λkzk(xz + 1)λ
′

Cap(1n,1n−1)(λkzk(xz + 1)λ
′
) = n

(
nn

(n−1)n−1

)n−1
Therefore: αα(λ−α)λ−α

λλ
Cap(α,β)(Symb(T )) =

(
n−1
n

)n−1
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Application: Csikvári’s Theorem

Theorem (Csikvári, 2014)

Let G be a d-regular bipartite graph with 2n vertices. Then:

µk(G ) ≥
(
n

k

)
dk

(
nd − k

nd

)nd−k ( n

n − k

)n−k

Recall: Capβ(T (p)) ≥
[
αα(λ−α)λ−α

λλ
Cap(α,β)(Symb(T ))

]
Capα(p)

M is bipartite adjacency matrix, pM is associated product of linears

d-regularity implies µk(G ) = dk−n∑
S∈([n]k ) ∂

S
x pM(1) =: dk−nT (pM)

d-regularity implies Cap(1n)(pM) = dn

d-regularity implies λ = (d , ..., d)

α = (1n) implies αα(λ−α)λ−α

λλ
= (d−1)nd−n

dnd

β = ∅ implies Capβ(T (pM)) = T (pM)
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Application: Csikvári’s Theorem (continued)

Symb(T ) =
∑

S∈([n]k ) ∂
S
x (xz + 1)λ

∣∣∣
x=1

=
∑

S∈([n]k ) d
kzS(z + 1)λ−S

Lemma

If p ∈ R+[x ] ≡ R+[x1, ..., xn] is symmetric, then:

Cap(t,...,t)(p) = Capnt(p(x0, ..., x0))

Symb(T ) is symmetric:

Cap(1n)

 ∑
S∈([n]k )

dkzS(z + 1)λ−S

 = Capn

[(
n

k

)
dkzk0 (z0 + 1)dn−k

]

Easier: Capn

[(n
k

)
dkzk0 (z0 + 1)dn−k

]
=
(n
k

)
dk (nd−k)nd−k

(n−k)n−k (nd−n)nd−n

Jonathan Leake (UC Berkeley) Capacity Preserving Operators IML, 2018 17 / 18



Further Questions

Applications of capacity-preservers, beyond differential operators?

Can we get similar bounds based only on the total degree of a given
homogeneous polynomial?

SOn-invariant inner product: 〈p, q〉dSOn
:=
∑

µ

(d
µ

)−1
pµqµ

Conjecture (Gurvits, 2009)

For real stable d-homogeneous polynomials p, q ∈ R+[x ], we have:

〈p, q〉dSOn
≥ n−d Capα(p) Capα(q)

What about similar results for polynomials which take matrices as input?

Some bound on Frobenius inner product? Some other inner product?

Possibly related to SOn inner product above.
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