TREES, PARKING FUNCTIONS, AND DEFORMATIONS OF MONOMIAL IDEALS

ALEXANDER POSTNIKOV AND BORIS SHAPIRO

Abstract. For a graph G, we define G-parking functions and show that their number is equal to the number of spanning trees of G. We construct a certain monomial ideal and a certain ideal generated by powers of linear forms. The dimension of the quotient of the polynomial ring modulo either of these two ideals equals the number of spanning trees of G. The monomials corresponding to G-parking functions form linear bases in each of these two algebras. Then we investigate the general class of monotone monomial ideals and their deformations. We show that the Hilbert series of a monotone monomial ideal is always bounded by the Hilbert series of its deformation. We prove several formulas for the Hilbert series.

1. Introduction

The famous Cayley’s result says that the number of trees on $n + 1$ labelled vertices equals $(n + 1)^{n-1}$. Remarkably, this number has several other interesting combinatorial interpretations. For example, it is equal to the number of parking functions of size n.

In this paper we present two algebras A_n and B_n of dimension $(n + 1)^{n-1}$. The algebra A_n is a quotient of the polynomial ring modulo a monomial ideal; and the algebra B_n is a quotient of the polynomial ring modulo powers of some linear forms. It is immediate that the set of monomials x^b, where b is a parking function, is the standard monomial basis of the algebra A_n. On the other hand, the same set of monomials forms a basis of the algebra B_n, which is a non-trivial result.

More generally, for any graph G, we define G-parking functions and describe two algebras A_G and B_G. The number of G-parking functions equals the number of spanning trees of the graph G. The set of monomials corresponding to G-parking functions form bases in both these algebras. In particular, $\dim A_G = \dim B_G$ is the number of spanning trees of G.

All these pairs of algebras are instances of the general class of algebras given by monotone monomial ideals and their deformations. For such an algebra A and its deformation B, we show that $\dim A \geq \dim B$ and the Hilbert series of B is termwise bounded by the Hilbert series of A. There is a natural correspondence between polynomial generators of the ideal for B and monomial generators of the ideal for A. However, these monomials are not the leading terms of the polynomial generators for any term order, because they are usually located at the center of the Newton polytope of the corresponding polynomial generators. The standard Gröbner bases technique cannot be applied for treatment of this class of algebras.

Date: November 23, 2002.

Key words and phrases. Spanning trees, parking functions, monomial ideals, deformations.

The first author was supported in part by NSF grant DMS-0201494.
The general outline of the paper follows. In Section 2 we define G-parking functions for a digraph G. We formulate Theorem 2.1 that says that the number of such functions equals the number of oriented spanning trees of G. Then we construct the algebra A_G as the quotient of the polynomial ring modulo certain monomial ideal. Elements of the standard monomial basis of A_G correspond to G-parking functions. In Section 3 we construct the algebra B_G as the quotient of the polynomial ring modulo the ideal generated by power of certain linear forms. Then we formulate Theorem 3.1 that implies that the algebras A_G and B_G have the same Hilbert series. In Section 4 we give two examples of these results. For the complete graph $G = K_{n+1}$ we recover the usual parking functions and the algebras A_n and B_n of dimension $(n+1)^n - 1$. For a little bit more general class of graphs we obtain two algebras of dimension $l(l+kn)^{n-1}$. Section 5 is devoted to description of monotone monomial ideals and their deformations. We formulate Theorem 5.2, which implies the inequality for the Hilbert series. In Section 6 we prove general formulas for Hilbert series and dimension of the algebra given by a monotone monomial ideal. Then in Section 7 we deduce Theorem 2.1. In Section 8 we construct the algebra C_G and prove Theorem 8.1 that claims that the dimension of this algebra equals the number of spanning trees. Actually, we will later see that C_G is isomorphic to the algebra B_G. In Section 9 we prove Theorem 5.2. Then we finish the proof of Theorem 3.1, which goes as follows. By Theorem 5.2 and construction of C_G we know that $\text{Hilb} A_G \geq \text{Hilb} B_G \geq \text{Hilb} C_G$. On the other hand, by Theorems 2.1 and 8.1, $\dim A_G = \dim C_G$ is the number of spanning trees of G. Thus the Hilbert series of these three algebras coincide. In Section 10 we discuss some results of our previous works and compare them with results of this paper. We mention a certain algebra, whose dimension equals the number of forests on $n+1$ vertices. This algebra originally appeared in the attempt to lift Schubert calculus of the flag manifold on the level of differential forms. In Section 11 we discuss a special class of monotone monomial ideals and their deformations. In this case we give a subtraction-free formula for the Hilbert series of the algebra A and list several cases when it is equal to the Hilbert series of B.

ACKNOWLEDGMENTS: The authors are grateful to Mikhail Shapiro, Richard Stanley, and Bernd Sturmfels for helpful discussions and relevant comments, and to Ralf Fröberg for his help with Macaulay. The first author thanks the Miller Institute for Basic Research in Science at UC Berkeley for financial support during 1999–2001, when a part of this project was completed. The second author is sincerely grateful to the Max-Planck Institut für Mathematik in Bonn for the financial support and the excellent research atmosphere during his visit in the fall of 2000.

2. G-PARKING FUNCTIONS

A parking function of size n is a sequence $b = (b_1, \ldots, b_n)$ of nonnegative integers such that its increasing rearrangement $c_1 \leq \cdots \leq c_n$ satisfies $c_i < i$. Equivalently, we can formulate this condition as $\# \{ i \mid b_i < r \} \geq r$, for $r = 1, \ldots, n$. The parking functions of size n are known to be in a bijective correspondence with trees on $n+1$ labelled vertices, see [Krew]. Thus the total number of parking functions of size n equals $(n+1)^{n-1}$, which it Cayley’s formula for the number of labelled trees. In this section we extend this statement to a more general class of functions.
A graph is given by specifying its set of vertices, set of edges, and a function that associates to each edge an unordered pair of vertices. A directed graph, or digraph, is given by specifying its set of vertices, set of edges, and a function that associates to each edge an ordered pair of vertices. Thus multiple edges and loops are allowed in graphs and digraphs. A subgraph H in a (directed) graph G is a (directed) graph on the same set of vertices whose set of edges is a subset of edges of G. We will write $H \subseteq G$ to denote that H is subgraph of G. For a subgraph $H \subseteq G$, the notation $G \setminus H$ denote the complement subgraph whose edge set is complementary to that of H. Also we will write $e \in G$ to show that e is an edge of the graph G.

Let G be a digraph on the set of vertices $0, 1, \ldots, n$. The vertex 0 will be the root of the graph G. The digraph G is determined by its adjacency matrix $A = (a_{ij})_{0 \leq i,j \leq n}$, where a_{ij} is the number of edges from the vertex i to the vertex j. We will regard graphs as a special case of digraphs with symmetric adjacency matrix A. Actually, almost everywhere in the paper, except for this section, we will assume that G is a graph.

An oriented spanning tree T of the digraph G is a subgraph $T \subseteq G$ such that there exists a unique directed path in T from any vertex i to the root 0. The number N_G of such trees is given by the matrix-tree theorem, e.g., see [Sta2, Section 5.6]:

\[N_G = \det L_G, \]

where $L_G = (l_{ij})_{1 \leq i,j \leq n}$ is the Laplace matrix, also known as the Kirchhoff matrix, given by
\[
l_{ij} = \begin{cases} \sum_{r \in \{0, \ldots, n\} \setminus \{i\}} a_{ir} & \text{for } i = j, \\ -a_{ij} & \text{for } i \neq j. \end{cases}
\]

If G is a graph, i.e., A is a symmetric matrix, then oriented spanning trees defined above are exactly the usual spanning trees of G, which are connected subgraphs of G without cycles.

For a subset I in $\{1, \ldots, n\}$ and $i \in I$, let $d_I(i) = \sum_{j \notin I} a_{ij}$, i.e., $d_I(i)$ is the number of edges from the vertex i to a vertex outside of the subset I. Let us say that a sequence $b = (b_1, \ldots, b_n)$ of nonnegative integers is a G-parking function if, for any nonempty subset $I \subseteq \{1, \ldots, n\}$, there exists $i \in I$ such that $b_i < d_I(i)$.

If $G = K_{n+1}$ is the complete graph on $n+1$ vertices then K_{n+1}-parking functions are the usual parking functions of size n defined in the beginning of this section.

Theorem 2.1. The number G-parking functions equals the number $N_G = \det L_G$ of oriented spanning trees of the digraph G.

We can reformulate the definition of G-parking functions in algebraic terms as follows. Throughout this paper we fix a field K. Let $I_G = (m_I)$ be the monomial ideal in the polynomial ring $K[x_1, \ldots, x_n]$ generated by the monomials

\[m_I = \prod_{i \in I} x_i^{d_I(i)}, \]

where I ranges over all nonempty subsets $I \subseteq \{1, \ldots, n\}$. Define the algebra A_G as the quotient $A_G = K[x_1, \ldots, x_n]/I_G$.

A nonnegative integer sequence $b = (b_1, \ldots, b_n)$ is a G-parking function if and only if the monomial $x^b = x_1^{b_1} \cdots x_n^{b_n}$ is nonvanishing in the algebra A_G.

For a monomial ideal I, the set of all monomials that do not belong to I is a basis in the quotient of the polynomial ring modulo I, called the standard monomial
Corollary 2.2. The algebra A_G is finite-dimensional as a linear space over K. Its dimension is equal to the number of oriented spanning trees of the digraph G:
\[
\dim A_G = N_G.
\]

3. Power algebras

Let G be a graph on the set of vertices $0, 1, \ldots, n$. In this case the dimension of the algebra A_G is equal to the number of usual spanning trees of G.

For a nonempty subset I in $\{1, \ldots, n\}$, let $D_I = \sum_{i \in I, j \not\in I} a_{ij} = \sum_{i \in I} d_I(i)$ be the total number of edges that join some vertex in I with a vertex outside of I. For any nonempty subset $I \subseteq \{1, \ldots, n\}$, let
\[
p_I = \left(\sum_{i \in I} x_i \right)^{D_I}.
\]

For a spanning tree T of the graph G, let $N_G(T)$ be the total number of edges that join some vertex in I with a vertex outside of I. Thus the Hilbert series of the algebras A_G and B_G coincide termwise. In particular, both these algebras are finite-dimensional as linear spaces over K and
\[
\dim A_G = \dim B_G = N_G
\]
is the number of spanning trees of the graph G.

For example, for $n = 3$ and the graph
\[
G = \begin{array}{ccc}
1 & 0 \\
2 & & 3 \\
& & \\
\end{array}
\]
we have
\[
I_G = \langle x_1^2, x_2, x_3^2, x_1^3, x_1^2x_2, x_2x_3^2, x_1x_3^3 \rangle,
\]
\[
J_G = \langle x_1^3, x_2^3, x_3^2, (x_1 + x_2)^3, (x_1 + x_3)^4, (x_2 + x_3)^3, (x_1 + x_2 + x_3)^2 \rangle,
\]
the standard monomial basis of the algebra A_G is $\{1, x_1, x_2, x_3, x_1x_2, x_2x_3, x_3^2 \}$, $\dim A_G = \dim B_G = 8$ is equal to the number of spanning trees of G, and Hilb $A_G = \text{Hilb } B_G = 1 + 3q + 4q^2$.

We will refine Theorem 3.1 and interpret dimensions of graded components of the algebras A_G and B_G in terms of certain statistics on spanning trees. Let us fix a linear ordering of all edges of the graph G. For a spanning tree T of G, an edge $e \in G \setminus T$ is called externally active if there exists a cycle C in the graph G such that e is the minimal edge of C and $(C \setminus \{e\}) \subseteq T$. The external activity of a
spanning tree is the number of externally active edges. Let N^k_G denote the number of spanning trees $T \subset G$ of external activity k. Even though the notion of external activity depends on a particular choice of ordering of edges, the numbers N^k_G are known to be invariant on the choice of ordering.

Let A^k_G and B^k_G be the k-th graded components of the algebras A_G and B_G, correspondingly.

Theorem 3.2. The dimensions of the k-th graded components A^k_G and B^k_G are equal to

$$\dim A^k_G = \dim B^k_G = N^{G|G|-n-k}_G,$$

the number of spanning trees of G of external activity $|G| - n - k$, where $|G|$ denotes the number of edges of G.

4. Examples

4.1. Two algebras of dimension $(n + 1)^{n-1}$. Suppose that $G = K_{n+1}$ is the complete graph on $n + 1$ vertices. As we have already mentioned, the K_{n+1}-parking functions are the usual parking functions of size n defined in the beginning of Section 2.

Let $I_n = (m_I)$ and $J_n = (p_I)$ be the ideals in the polynomial ring $\mathbb{K}[x_1, \ldots, x_n]$ generated by the monomials m_I and the polynomials p_I, correspondingly, given by

$$m_I = (x_{i_1} \cdots x_{i_r})^{r+1},$$

$$p_I = (x_{i_1} + \cdots + x_{i_r})^{r(n-r+1)},$$

where in both cases $I = \{i_1, \ldots, i_r\}$ runs over all nonempty subsets of $\{1, \ldots, n\}$. Let $A_n = \mathbb{K}[x_1, \ldots, x_n]/I_n$ and $B_n = \mathbb{K}[x_1, \ldots, x_n]/J_n$.

Corollary 4.1. The graded algebras A_n and B_n have the same Hilbert series. They are finite-dimensional, as linear spaces over \mathbb{K}. Their dimensions are equal to

$$\dim A_n = \dim B_n = (n + 1)^{n-1}.$$

The images of the monomials x^b, where b ranges over parking functions of size n, form linear bases in both algebras A_n and B_n.

An inversion in a tree T on the $n+1$ vertices labelled $0, \ldots, n$ is a pair of vertices labelled i and j such that $i > j$ and the vertex i belongs to the shortest path in T that joins the vertex j with the root 0.

Corollary 4.2. The dimension $\dim A^n = \dim B^n$ of the k-th graded components of the algebras A_n and B_n is equal to

(A) the number of parking functions b of size n such that $b_1 + \cdots + b_n = k$;

(B) the number of trees on $n+1$ vertices with external activity $\binom{n}{2} - k$;

(C) the number of trees on $n+1$ vertices with $\binom{n}{2} - k$ inversions.

It is well known that the numbers (A), (B), and (C) are equal, see [Krew]. The inversion polynomial is defined as the sum $I_n(q) = \sum_T q^{\#}$ of inversions in T over all trees T on $n+1$ labelled vertices. Thus the Hilbert series of the algebras A_n and B_n are equal to

$$\text{Hilb } A_n = \text{Hilb } B_n = q^{\binom{n}{2}} I_n(q^{-1}).$$
4.2. Two algebras of dimension $l(l + kn)^{n-1}$. It is possible to extend the previous example as follows. Fix two nonnegative integers k and l. Let $G = K_{n+1}^{k,l}$ be the complete graph on the vertices $0, 1, \ldots, n$ with the edges (i, j), $i, j \neq 0$, of multiplicity k and the edges $(0, i)$ of multiplicity l. The $K_{n+1}^{k,l}$-parking functions are the nonnegative integer sequences $b = (b_1, \ldots, b_n)$ such that, for $r = 1, \ldots, n$,

$$\#\{i \mid b_i < l + k(r - 1)\} \geq r.$$

The definition of these functions can be also formulated as $c_i < l + (i - 1)k$, where $c_1 \leq \cdots \leq c_n$ is the increasing rearrangement of elements of b. Such functions were studied in [PiSt] and then in [Yan]. These authors demonstrated that their number equals $l(l + kn)^{n-1}$. One can show, using for example the matrix-tree theorem (1), that the number of spanning trees in the graph $K_{n+1}^{k,l}$ equals $l(l + kn)^{n-1}$. Thus Theorem 2.1 recovers the above formula of the number of $K_{n+1}^{k,l}$-parking functions.

Let $\mathcal{I}_{n,k,l} = \langle m_I \rangle$ and $\mathcal{J}_{n,k,l} = \langle p_I \rangle$ be the ideals in the ring $K[x_1, \ldots, x_n]$ generated by the monomials m_I and the polynomials p_I, correspondingly, given by

$$m_I = (x_{i_1} \cdots x_{i_r})^{l+k(n-r)},$$

$$p_I = (x_{i_1} + \cdots + x_{i_r})^{r(l+k(n-r))},$$

where in both cases $I = \{i_1, \ldots, i_r\}$ runs over all nonempty subsets of $\{1, \ldots, n\}$. Let $A_{n,k,l} = K[x_1, \ldots, x_n]/\mathcal{I}_{n,k,l}$ and $B_{n,k,l} = K[x_1, \ldots, x_n]/\mathcal{J}_{n,k,l}$.

Corollary 4.3. The graded algebras $A_{n,k,l}$ and $B_{n,k,l}$ have the same Hilbert series. They are finite-dimensional, as linear spaces over K. Their dimensions are

$$\dim A_{n,k,l} = \dim B_{n,k,l} = l(l + kn)^{n-1}.$$

The images of the monomials x^b, where b ranges over $K_{n+1}^{k,l}$-parking functions, form linear bases in both algebras $A_{n,k,l}$ and $B_{n,k,l}$.

5. MONOTONE MONOMIAL IDEALS AND THEIR DEFORMATIONS

Let us say that a collection of monomials $\{m_I \mid I \in \Sigma\}$ in the polynomial ring $K[x_1, \ldots, x_n]$ labelled by a set Σ of nonempty subsets in $\{1, \ldots, n\}$ is a monotone collection if the following three conditions hold:

(M1) If $I, J \in \Sigma$ then $I \cup J \in \Sigma$.

(M2) For $I \in \Sigma$, we have $m_I = \prod_{i \in I} x_i^{\nu(i)}$.

(M3) For $I, J \in \Sigma$ such that $I \subseteq J$ and $i \in I$, we have $\deg x_i (m_I) \geq \deg x_i (m_J)$.

For a monotone collection of monomials, the corresponding monotone monomial ideal I is the ideal in the polynomial ring $K[x_1, \ldots, x_n]$ generated by the monomials m_I, $I \in \Sigma$. For example, the monomial ideals \mathcal{I}_G constructed in Section 2 are monotone.

Let $I = \{i_1, \ldots, i_r\}$. For a monomial $m \in K[x_{i_1}, \ldots, x_{i_r}]$, an I-deformation of m is a homogeneous polynomial $p \in K[x_{i_1}, \ldots, x_{i_r}]$ of degree $\deg(p) = \deg(m)$ satisfying the generosity condition

$$K[x_{i_1}, \ldots, x_{i_r}] = \langle R_m \rangle \oplus \langle p \rangle,$$

where $\langle R_m \rangle$ is the linear span of the set R_m of monomials in $K[x_{i_1}, \ldots, x_{i_r}]$ which are not divisible by m, (p) is the ideal in $K[x_{i_1}, \ldots, x_{i_r}]$ generated by p, and "\oplus" stands for a direct sum of subspaces. Notice that the generosity condition is satisfied for a Zariski open set of polynomials in $K[x_{i_1}, \ldots, x_{i_r}]$ of degree $\deg(m)$. For example,
the polynomial \(p = ax_1 + bx_2 \) is a \(\{1,2\} \)-deformation of the monomial \(m = x_1 \) if and only if \(a \neq 0 \).

The following lemma describes a class of \(I \)-deformations of monomials.

Lemma 5.1. Let \(I = \{i_1, \ldots, i_r\} \), let \(m \) be a monomial in \(\mathbb{K}[x_{i_1}, \ldots, x_{i_r}] \), and let \(\alpha_1, \ldots, \alpha_r \in \mathbb{K} \setminus \{0\} \). Then the polynomial

\[
p = (\alpha_1 x_{i_1} + \cdots + \alpha_r x_{i_r})^{\deg m}
\]

is an \(I \)-deformation of the monomial \(m \).

Proof. Let \(m = x_{i_1}^{\alpha_1} \cdots x_{i_r}^{\alpha_r} \). The generosity condition (4) is equivalent to the condition that the operator

\[
A : \mathbb{K}[x_{i_1}, \ldots, x_{i_r}] \rightarrow \mathbb{K}[x_{i_1}, \ldots, x_{i_r}]
\]

has zero kernel. Let us change the coordinates to \(y_1 = x_{i_1}, \ldots, y_{r-1} = x_{i_{r-1}}, y_r = \alpha_1 x_{i_1} + \cdots + \alpha_r x_{i_r} \). The operator \(A \) can be written in these coordinates as

\[
A(f) = (\partial_1 + \alpha_1 \tilde{\partial}_r)^{\alpha_1} \cdots (\partial_{r-1} + \alpha_{r-1} \tilde{\partial}_r)^{\alpha_{r-1}} (\alpha_r \tilde{\partial}_r)^{\alpha_r} (y_r^{\alpha_1 + \cdots + \alpha_r} \cdot f)
\]

where \(\tilde{\partial}_j = \partial / \partial y_j \). Then \(A(f) = c \cdot f + g \), where \(c \) is a nonzero constant and \(\deg_y (g) < \deg_y (f) \). Thus, in an appropriate basis, the operator \(A \) is given by a triangular matrix with nonzero diagonal elements. This implies that \(\ker A = 0 \). \(\square \)

A deformation of a monotone monomial ideal \(I \) generated by monomials \(m_I, I \in \Sigma \), is an ideal \(J \) generated by polynomials \(p_I, I \in \Sigma \), such that \(p_I \) is an \(I \)-deformation of \(m_I \) for each \(I \in \Sigma \). For example, according to Lemma 5.1, the ideal \(J_G \) given in Section 3 is a deformation of the monotone monomial ideal \(I_G \).

Theorem 5.2. Let \(I \) be a monotone monomial ideal, and \(R \) be the standard monomial basis of the algebra \(A = \mathbb{K}[x_1, \ldots, x_n]/I \), i.e., \(R \) is the set of monomials that do not belong to \(I \). Let \(J \) be a deformation of the ideal \(I \), and \(B = \mathbb{K}[x_1, \ldots, x_n]/J \).

Then the monomials in \(R \) linearly span the algebra \(B \).

Remark that the set of monomials \(R \) may or may not be a basis for \(B \).

Corollary 5.3. Let \(I \) be a monotone monomial ideal, \(J \) be a deformation of the ideal \(I \), \(A = \mathbb{K}[x_1, \ldots, x_n]/I \), and \(B = \mathbb{K}[x_1, \ldots, x_n]/J \). Then we have the following termwise inequalities for the Hilbert series:

\[
\text{Hilb} I \leq \text{Hilb} J \quad \text{or, equivalently,} \quad \text{Hilb} A \geq \text{Hilb} B.
\]

In some cases the Hilbert series are actually equal to each other. According to Theorem 3.1, \(\text{Hilb} A_G = \text{Hilb} B_G \), for any graph \(G \). However in general the Hilbert series may not be equal to each other. It would be interesting to describe a general class of monotone monomial ideals and their deformations with equal Hilbert series.

There is an obvious correspondence between the generators \(m_I \) of a monotone monomial ideal \(I \) and the generators \(p_I \) of its deformation \(J \). Notice however that (except for very special cases) the monomial generator \(m_I \) does not belong to the boundary of the Newton polytopes of its polynomial deformation \(p_I \). Thus the monomial \(m_I \) can not be the leading term of the polynomial \(p_I \) for any term order. This shows that our results can not be tackled by the standard Gröbner bases technique.
6. Hilbert series of monotone monomial ideals

In this section we present a formula for the Hilbert series of an arbitrary monotone monomial ideal.

We first give a general formula from [Naru] related to semilattices. Let \(P \) be a finite join-semilattice, i.e., \(P \) is a poset on a finite set of elements such that for any \(X, Y \in P \) there exists a unique minimal element in the set \(\{ Z \in P \mid Z \geq X, Z \geq Y \} \), called join of \(X \) and \(Y \) and denoted \(X \vee Y \). Let \(M \) be a set together with a grading \(\gamma: M \to \mathbb{Z}_{\geq 0} \). For a subset \(M \subseteq M \), the generating function of \(M \) is the formal power series in \(q \) given by

\[
GF(M) = \sum_{a \in M} q^{\gamma(a)}.
\]

Proposition 6.1. [Naru] Let \(M_X, X \in P \), be a collection of subsets of \(M \) such that, for any \(X, Y \in P \),

\[
M_X \cap M_Y \subseteq M_{X \vee Y}.
\]

Then we have

\[
GF\left(M \setminus \bigcup_{X \in P} M_X \right) = GF(M) + \sum_{k \geq 1} (-1)^k \sum_{X_1 < \cdots < X_k} GF(M_{X_1} \cap \cdots \cap M_{X_k}),
\]

where the second sum is over all strictly increasing chains \(X_1 < \cdots < X_k \) in the semilattice \(P \).

Proof. According to the inclusion-exclusion principle, see [Sta1, Section 2.1], we have

\[
GF(M \setminus \bigcup_{X \in P} M_X) = GF(M) - \sum_X GF(M_X) + \sum_{X,Y} GF(M_X \cap M_Y) - \cdots.
\]

The general summand in this expression is \(s_X = (-1)^k GF(M_{X_1} \cap \cdots \cap M_{X_k}) \), where \(X = \{X_1, \ldots, X_k\} \) is an unordered \(k \)-tuple of distinct elements in \(P \). We argue that if we take the summation only over increasing chains \(X_1 < \cdots < X_k \) in \(P \) we get exactly the same answer. Indeed, let us show that the contribution of all other tuples \(X \) is zero. We will use the involution principle, see [Sta1, Section 2.6]. Let us construct an involution \(\iota \) on the set of all unordered \(k \)-tuples \(X \) of all possible sizes \(k \geq 0 \) such that the elements of \(X \) cannot be arranged in an increasing chain. Let us fix a linear order on elements of \(P \). Find the lexicographically minimal pair of elements \(X \) and \(Y \) in \(X \) such that \(X \not\leq Y \) and \(Y \not\leq X \). Let \(Z = X \vee Y \). If \(Z \not\in X \), then set \(\iota: X \mapsto X \cup \{Z\} \), otherwise set \(\iota: X \mapsto X \setminus \{Z\} \). Then \(\iota \) is an involution. According to condition (5), we have \(s_X = -s_{\iota(X)} \). Thus all summands \(s_X \) corresponding to non-chains cancel each other. \(\square \)

Let \(\mathcal{I} \) be a monotone monomial ideal in the polynomial ring \(\mathbb{K}[x_1, \ldots, x_n] \) generated by monomials \(m_I = \prod_{i \in I} x_{i}^{\nu_i(I)} \), \(I \in \Sigma \), and let \(\mathcal{A} = \mathbb{K}[x_1, \ldots, x_n]/\mathcal{I} \). The set \(\Sigma \) is partially ordered by containment.

Proposition 6.2. The Hilbert series of the algebra \(\mathcal{A} \) equals

\[
\text{Hilb} \mathcal{A} = \frac{1 + \sum_{k \geq 1} (-1)^k \sum_{I_1 \subseteq \cdots \subseteq I_k} q^{S(I_1, \ldots, I_k)}}{(1 - q)^n},
\]

where

\[
S(I_1, \ldots, I_k) = \max_{1 \leq i \leq k} \{|I_i|\}.
\]
where the sum is over all strictly increasing chains \(I_1 \subseteq \cdots \subseteq I_k \) in \(\Sigma \) and
\[
S(I_1, \ldots, I_k) = \sum_{i_1 \in I_1} \nu_{I_1}(i_1) + \sum_{i_2 \in I_2 \setminus I_1} \nu_{I_2}(i_2) + \cdots + \sum_{i_k \in I_k \setminus I_{k-1}} \nu_{I_k}(i_k).
\]

According to condition (M1), \(\Sigma \) is a semilattice with join \(I \cup J = I \sqcup J \). For \(I \in \Sigma \), let \(M_I \) denote the set of monomials in \(\mathbb{K}[x_1, \ldots, x_n] \) divisible by \(m_I \).

Lemma 6.3. For any \(I, J \in \Sigma \), we have \(M_I \cap M_J \subseteq M_{I \sqcup J} \).

Proof. By condition (M3), for \(i \in I \), we have \(\deg_{x_i} m_I \geq \deg_{x_i} m_{I \sqcup J} \). Analogously, for any \(j \in J \), we have \(\deg_{x_j} m_J \geq \deg_{x_j} m_{I \sqcup J} \). Thus any common divisor of \(m_I \) and \(m_J \) is divisible by \(m_{I \sqcup J} \).

Proof of Proposition 6.2. Let \(\mathcal{M} \) be the set of monomials in \(\mathbb{K}[x_1, \ldots, x_n] \), and let \(\gamma(m) = \deg(m) \) for \(m \in \mathcal{M} \). Then \(\text{Hilb} \mathcal{A} = \text{GF}(\mathcal{M} \setminus \bigcup M_J) \). Lemma 6.3 shows that all conditions of Proposition 6.1 are satisfied, where \(\mathcal{P} = \Sigma \). Notice that \(\text{GF}(\mathcal{M}) = (1 - q)^{-n} \). For an increasing chain \(I_1 \subseteq \cdots \subseteq I_k \), the least common multiple of the monomials \(m_{I_1}, \ldots, m_{I_k} \) equals
\[
\prod_{i_1 \in I_1} x_{i_1}^{\nu_{I_1}(i_1)} \times \prod_{i_2 \in I_2 \setminus I_1} x_{i_2}^{\nu_{I_2}(i_2)} \times \cdots \times \prod_{i_k \in I_k \setminus I_{k-1}} x_{i_k}^{\nu_{I_k}(i_k)}.
\]
Its degree is \(S(I_1, \ldots, I_k) \). Thus \(\text{GF}(M_{I_1} \cap \cdots \cap M_{I_k}) = q^{S(I_1, \ldots, I_k)}(1 - q)^{-n} \).

The claim of Proposition 6.2 now follows from Proposition 6.1.

Lemma 6.4. The algebra \(\mathcal{A} \) is finite-dimensional as a linear space over \(\mathbb{K} \) if and only if \(\Sigma \) is the set of all nonempty subsets in \(\{1, \ldots, n\} \).

Proof. If there is \(i \in \{1, \ldots, n\} \) such that \(\{i\} \notin \Sigma \) then the powers \(x_i^n \) form an infinite linearly independent subset in \(\mathcal{A} \). Thus \(\mathcal{A} \) is infinite-dimensional. Otherwise, if \(\Sigma \) contains all one-element subsets, then, by condition (M1), \(\Sigma \) should contain all nonempty subsets. In this case, the algebra \(\mathcal{A} \) is finite-dimensional. Indeed, a monomial \(x_1^{a_1} \cdots x_n^{a_n} \) vanishes in \(\mathcal{A} \) unless \(a_1 < \nu(\{1\}), \ldots, a_n < \nu(n) \).

Let us now assume that the set \(\Sigma \) consists of all nonempty subsets in \(\{1, \ldots, n\} \), and let \(\nu(i) = \nu_{\{i\}}(i) \).

Proposition 6.5. The dimension of the algebra \(\mathcal{A} \) is given by the following polynomial in the variables \(\{\nu(i) \mid I \in \Sigma, i \in I\} \):
\[
\dim \mathcal{A} = \sum_{I_1 \subseteq \cdots \subseteq I_k} (-1)^k \prod_{i_1 \in I_1} (\nu(i_1) - \nu_{I_1}(i_1)) \times \prod_{i_2 \in I_2 \setminus I_1} (\nu(i_2) - \nu_{I_2}(i_2)) \times \cdots \times \prod_{i_k \in I_k \setminus I_{k-1}} (\nu(i_k) - \nu_{I_k}(i_k)) \times \prod_{i_{k+1} \notin I_k} \nu(i_{k+1}),
\]
where the sum is over all strictly increasing chains \(I_1 \subseteq \cdots \subseteq I_k \) of nonempty subsets in \(\{1, \ldots, n\} \), including the empty chain of size \(k = 0 \).

Proof. Let \(\tilde{\mathcal{M}} \) be the set of monomials \(x_1^{a_1} \cdots x_n^{a_n} \) such that \(a_1 < \nu(1), \ldots, a_n < \nu(n) \). A monomial \(x^\alpha \) vanishes in the algebra \(\mathcal{A} \) unless \(x^\alpha \in \mathcal{M} \). Let \(\tilde{\mathcal{M}} = \mathcal{M} \cap \tilde{\mathcal{M}} \).

Proposition (6.1) for \(\mathcal{M} \) and \(\gamma \equiv 0 \) implies that
\[
\dim \mathcal{A} = |\tilde{\mathcal{M}}| + \sum_{k \geq 1} (-1)^k \sum_{I_1 \subseteq \cdots \subseteq I_k} |\tilde{\mathcal{M}}_{I_1} \cap \cdots \cap \tilde{\mathcal{M}}_{I_k}|.
\]
According to (6), $(-1)^k |\tilde{M}_{I_1} \cap \cdots \cap \tilde{M}_{I_k}|$ is equal to the summand in (7). \qed

Remark that if I_1, \ldots, I_k is not a chain of subsets then $|\tilde{M}_{I_1} \cap \cdots \cap \tilde{M}_{I_k}|$ may not be a polynomial in the $\nu_I(i)$. It can include expressions like $\min(\nu_I(i), \nu_I(i'))$. Thus the inclusion-exclusion principle does not immediately produce a polynomial expression for $\dim A$. Miraculously, all non-polynomial terms cancel each other.

7. Proof of Theorem 2.1

Let us specialize Proposition 6.5 to the algebra A_G, where G is a digraph on the vertices $0, \ldots, n$. Recall that a_{ij} are entries of the adjacency matrix of G.

Corollary 7.1. The dimension of the algebra A_G is given by the following polynomial in the a_{ij}:

$$
\dim A_G = \sum_{I_1 \subseteq \cdots \subseteq I_k} (-1)^k \prod_{i_1 \in I_1} \left(\sum_{j_1 \in I_1} a_{i_1 j_1} \right) \times \prod_{i_2 \in I_2 \setminus I_1} \left(\sum_{j_2 \in I_2 \setminus I_1} a_{i_2 j_2} \right) \times \\
\times \cdots \times \prod_{i_k \in I_k \setminus I_{k-1}} \left(\sum_{j_k \in I_k \setminus I_{k-1}} a_{i_k j_k} \right) \times \prod_{i_k+1 \in \{1, \ldots, n\} \setminus I_k} \left(\sum_{j_k+1 \in \{0, \ldots, n\}} a_{i_k+1 j_k+1} \right),
$$

(8)

where the sum is over all strictly increasing chains $I_1 \subseteq \cdots \subseteq I_k$ of nonempty subsets in $\{1, \ldots, n\}$, including the empty chain of size $k = 0$. In this formula, we assume that $a_{ii} = 0$.

Proof of Theorem 2.1. Let us show that the expression (8) for $\dim A_G$ is equal to the number of oriented spanning trees of G. We will use the involution principle again.

Let us first give a combinatorial interpretation of the right-hand side of (8). The summand s_{I_k} that corresponds to an increasing chain $I_k = I_1 \subseteq \cdots \subseteq I_k$ equal to $(-1)^k$ times the number of subgraphs H of G such that

(i) H contains exactly n directed edges $(i, f(i))$ for $i = 1, \ldots, n$.

(ii) If $i \in I_r \setminus I_{r-1}$ then $f(i) \in I_r$. (Here we assume that $I_0 = \emptyset$.)

For such a subgraph H, let $J_H \subseteq \{1, \ldots, n\}$ be the set of vertices i such $f^p(i) = 0$ for some power p, i.e., J_H is the set of vertices i such that there is a directed path in H from i to the root 0. Notice that if $i \in \bigcup I_r$ then $f^p(i) \in \bigcup I_r$ for any p. Thus $I_1, \ldots, I_k \subseteq J_H = \{1, \ldots, n\} \setminus J_H$. Also notice that H is an oriented spanning tree of G if and only if $J_H = \{1, \ldots, n\}$.

Let us now construct an involution κ on the set of pairs (I_*, H) such that H is not an oriented spanning tree. In other words, the involution κ acts on the set of pairs (I_*, H) with nonempty J_H. If $J_H \notin I_*$ then define $\kappa : (I_*, H) \mapsto (I_* \cup \{J_H\}, H)$; otherwise define $\kappa : (I_*, H) \mapsto (I_* \setminus \{J_H\}, H)$. The contribution of the pair (I_*, H) to the right-hand side of (8) is opposite to the contribution of $\kappa(I_*, H)$. Thus the contributions of all subgraphs H which are not oriented spanning trees cancel each other. This implies that $\dim A_G$ is the number of oriented spanning trees. \qed

It would be interesting to find a combinatorial proof of Theorem 2.1. In other words, one would like to present a bijection between G-parking functions and oriented spanning trees of G. There are several known bijections between the
usual parking functions and trees. One such bijection is relatively easy to con-
stuct. There is a more elaborate bijection that maps parking functions b with $b_1 + \cdots + b_n = k$ into trees with $\binom{n}{2} - k$ inversions, see [Krew].

8. Algebra C_G

Let G be a graph on the set of vertices $0, \ldots, n$. We will say that a subgraph $H \subset G$ of the graph G is slim if the complement subgraph $G \setminus H$ is connected. Let us associate commutative variables ϕ_e, $e \in G$, with edges of the graph G, and let Φ_G be the algebra over \mathbb{K} generated by the ϕ_e with the defining relations:

$$(\phi_e)^2 = 0, \quad \text{for any edge } e;$$

$$\prod_{e \in H} \phi_e = 0, \quad \text{for any non-slim subgraph } H \subset G.$$

Clearly, the square-free monomials $\phi_H = \prod_{e \in H} \phi_e$, where H ranges over all slim subgraphs in G, form a linear basis of the algebra Φ_G. Thus the dimension of Φ_G is equal to the number of connected subgraphs in G.

For $i = 1, \ldots, n$, let

$$X_i = \sum_{e \in G} c_{i,e} \phi_e,$$

where

$$c_{i,e} = \begin{cases} 1 & \text{if } e = (i, j), \ i < j; \\ -1 & \text{if } e = (i, j), \ i > j; \\ 0 & \text{otherwise}. \end{cases}$$

Define C_G as the subalgebra in Φ_G generated by the elements X_1, \ldots, X_n.

Fix a linear ordering of edges of the graph G. Recall that N^k_G denotes the number of spanning trees of G with external activity k, see Section 3.

Theorem 8.1. (1) The dimension of the algebra C_G as a linear space over \mathbb{K} equals the number of spanning trees in the graph G.

(2) The dimension of the k-th graded component C^k_G of the algebra C_G equals the number $N^k_G = n^k_G$ of spanning trees of G with external activity $|G| - n - k$.

Recall that, for a nonempty subset $I \subset \{1, \ldots, n\}$, $D_I = \sum_{i \in I, j \notin I} a_{ij}$ is the number of edges in G that connect a vertex inside I with a vertex outside of I, see Section 3.

Lemma 8.2. For any nonempty subset $I \subset \{1, \ldots, n\}$, the following relation holds in the algebra C_G:

$$\left(\sum_{i \in I} X_i \right)^{D_I} = 0.$$

This lemma shows that the algebra C_G is a quotient of the algebra B_G. We will eventually see that $B_G = C_G$, but let us pretend that we do not know this yet.

Proof. Let $H_I \subset G$ be the subgraph that consists of all edges that connect a vertex in I with a vertex outside of I. We have $\sum_{i \in I} X_i = \sum_{e \in H_I} \pm \phi_e$. Thus

$$\left(\sum_{i \in I} X_i \right)^{D_I} = \pm \prod_{e \in H_I} \phi_e = 0,$$

because H_I is not a slim subgraph of G. \hfill \Box
Let S_G be the subspace in $K[y_1, \ldots, y_n]$ spanned by the elements

$$
\alpha_H = \prod_{e \in H} \alpha_e,
$$

for all slim subgraphs $H \subset G$, where $\alpha_e = y_i - y_j$, for an edge $e = (i, j)$, $i < j$. Let S_G^k denote the k-th graded component of the space S_G.

Lemma 8.3. For any graph G and any k, we have $\dim C^k_G = \dim S^k_G$.

Proof. Let $b_{H,a}$ be the coefficient $\prod_{e \in H} \phi_e$ in the expansion of $X_1^{a_1} \cdots X_n^{a_n}$, where $a = (a_1, \ldots, a_n)$. Then $\dim C^k_G$ is equal to the rank of the matrix $B = (b_{H,a})$, where H ranges over all slim subgraphs in G with k edges and a ranges over nonnegative integer n-element sequences with $a_1 + \cdots + a_n = k$. On the other hand, $b_{H,a}$ is also equal to the coefficients of $y_1^{a_1} \cdots y_n^{a_n}$ in the expansion of α_H. Thus $\dim S^k_G$ equals the rank of the same matrix $B = (b_{H,a})$. \hfill \Box

For a spanning tree T in G, let T^+ denote the graph obtained from T by adding all externally active edges. In virtue of Lemma 8.3, the following claim implies Theorem 8.1.

Proposition 8.4. The collection of elements $\alpha_{G \setminus T^+}$, where T ranges over all spanning trees of G, forms a linear basis of the space S_G.

Let us first prove a weaker version of this claim.

Lemma 8.5. The elements $\alpha_{G \setminus T^+}$, where T ranges over all spanning trees of G, spans the space S_G.

Proof. Suppose not. Let H be the lexicographically maximal slim subgraph of G such that α_H cannot be expressed as a linear combination of the $\alpha_{G \setminus T^+}$. Then there exists a cycle $C = \{e_1, \ldots, e_l\} \subset G$ with the minimal element e_1 such that $H \cap C = \{e_1\}$. Then α_{e_1} is a linear combination of $\alpha_{e_2}, \ldots, \alpha_{e_l}$. Let H_1 be the graph obtained from H by replacing the edge e_1 with e_i. For $i = 2, \ldots, l$, the graph H_i is a slim subgraph of G, which is lexicographically greater than H_i. Then α_H can be expressed as a linear combination of $\alpha_{H_2}, \ldots, \alpha_{H_l}$. Contradiction. \hfill \Box

Proof of Proposition 8.4. Recall that N_G denote the number of spanning trees in the graph G. In view of Lemma 8.5 it is enough to show that $\dim S_G = N_G$. We will prove this statement by induction on the number of edges in G.

If G is a disconnected graph then it has no slim subgraphs and $\dim S_G = N_G = 0$. If G is a tree then $\dim S_G = N_G = 1$. This establishes the base of induction.

Suppose that G is a graph with at least one edge. Pick an edge e of G. Let $G \setminus e$ be the graph obtained from G by removing the edge e, also let G/e be the graph obtained from G by contracting the edge e. Then $N_G = N_{G \setminus e} + N_{G/e}$. Indeed, for a spanning tree T in G, we have either $e \not\in T$ or $e \in T$. The former trees are exactly the spanning trees of $G \setminus e$. The later trees are in a bijective correspondence with spanning trees of G/e. This correspondence is given by contracting the edge e. Assume by induction that the statement is true for both graphs $G \setminus e$ and G/e.

Let $S_G' \subset S_G$ be the span of the α_H's with slim subgraphs $H' \subset G$ such that $e \in H'$ and let $S_G'' \subset S_G$ be the span of the α_H's with slim subgraphs $H'' \subset G$ such that $e \not\in H''$. Then the space S_G is spanned by S_G' and S_G''. Thus

\begin{equation}
\dim S_G = \dim S_G' + \dim S_G'' - \dim (S_G' \cap S_G'').
\end{equation}
We have $S'_G = (y_i - y_j)S_{G/e}$, where $e = (i, j)$. Thus $\dim S'_G = \dim S_{G/e}$. Let $p : f(y_1, \ldots, y_n) \mapsto f(y_1, \ldots, y_n) \mod (y_i - y_j)$ be the natural projection. Then $p(S'_G) = S_{G/e}$ and $S'_G \cap S''_G \subset \ker(p)$. Thus

$$\dim S''_G = \dim S_{G/e} + \dim \ker(p) \geq \dim S_{G/e} + \dim (S'_G \cap S''_G).$$

Combining (9) and (10), we get

$$\dim S_G \geq S_{G/e} + \dim S_{G/e}.$$

By the induction hypothesis, the right-hand side of this expression equals $NG_{G/e} + N_{G'/e} = N_G$. Thus $\dim S_G \geq N_G$. On the other hand, Lemma 8.5 implies that $\dim S_G \leq N_G$. Thus $\dim S_G = N_G$, as needed. \square

9. Proof of Theorems 3.1, 3.2, and 5.2

Let m_I, $I \in \Sigma$, be a monotone collection of monomials, and let $\mathcal{I} \subset \mathbb{K}[x_1, \ldots, x_n]$ be the monomial ideal generated by the m_I, $I \in \Sigma$.

For a subset $I = \{i_1, \ldots, i_r\} \in \{1, \ldots, n\}$, let $\mathbb{K}[x_I] = \mathbb{K}[x_{i_1}, \ldots, x_{i_r}]$, and let Mon denote the set of all monomials in the variables x_i, $i \in I$. For $I \in \Sigma$, let $M_I = m_I \cdot \text{Mon}\{1, \ldots, n\}$ be the set of all monomials in $\mathbb{K}[x_1, \ldots, x_n]$ divisible by m_I. The standard monomial basis R of the algebra $A = \mathbb{K}[x_1, \ldots, x_n]/\mathcal{I}$ is the set of monomials

$$R = \text{Mon}\{1, \ldots, n\} \setminus \bigcup_{I \in \Sigma} M_I$$

that survive in the algebra A.

For $I, J \in \Sigma$, denote by $m_{J/I}$ the monomial obtained from m_J by removing all x_i’s with $i \in I$, and let $M_{J/I} = m_{J/I} \cdot \text{Mon}\mathcal{T}$, where $\mathcal{T} = \{1, \ldots, n\} \setminus I$. Let \mathcal{I}_I be the monomial ideal in the polynomial ring $\mathbb{K}[x_I]$ generated by the monomials $\{m_{J/I} \mid J \in \Sigma, J \not\supset I\}$. It follows from the monotonicity condition (M3) that the ideal \mathcal{I}_I is also generated by the set of monomials $\{m_{J/I} \mid J \in \Sigma, J \supseteq I\}$. Let R_I be the standard monomial basis of the algebra $A_I = \mathbb{K}[x_I]/\mathcal{I}_I$:

$$R_I = \text{Mon}\mathcal{T} \setminus \bigcup_{J \supseteq I} M_{J/I}.$$

Proposition 9.1. The polynomial ring $\mathbb{K}[x_1, \ldots, x_n]$ decomposes into the direct sum of subspaces:

$$\mathbb{K}[x_1, \ldots, x_n] = \langle R \rangle \oplus \bigoplus_{I \in \Sigma} m_I \mathbb{K}[x_I] \langle R_I \rangle,$$

where $\langle R \rangle$ and $\langle R_I \rangle$ denote the linear spans of monomials in R and R_I, respectively.

Lemma 9.2. For any monomial $x^a = x_1^{a_1} \cdots x_n^{a_n}$ in the ideal \mathcal{I} there is a unique maximal by inclusion subset $J \in \Sigma$ such that $x^a \in M_J$.

Proof. Let $\Sigma' = \{I \in \Sigma \mid x^a \in M_I\}$, and let $J = \bigcup_{I \in \Sigma'} I$. Then, by condition (M1), $J \in \Sigma$. According to Lemma 6.3, we have $x^a \in \bigcap_{I \in \Sigma'} M_I \subseteq M_J$. Thus J is the maximal by inclusion element of Σ such that $x^a \in M_J$. \square

Proof of Proposition 9.1. For $I \in \Sigma$, let M_I^{\max} be the following set of monomials:

$$M_I^{\max} = M_I \setminus \bigcup_{J \supseteq I} M_J,$$
i.e., M_I^{max} is the set of monomials $x^a \in \text{Mon}_{\{1,\ldots,n\}}$ such that I is the maximal by inclusion subset $I \in \Sigma$ with $x^a \in M_I$, see Lemma 9.2. Thus the set of all monomials in $\mathbb{K}[x_1,\ldots,x_n]$ decomposes into the disjoint union

\[(11) \quad \text{Mon}_{\{1,\ldots,n\}} = R \cup \bigcup_{I \in \Sigma} M_I^{\text{max}}.\]

Using monotonicity condition (M3), we obtain, for $I \subseteq J$,

\[M_I \setminus M_J = m_I \times \text{Mon}_I \times (\text{Mon}_J \setminus M_J),\]

where the notation “×” means that every monomial in the left-hand side decomposes uniquely into the product of monomials. Thus we have

\[(12) \quad M_I^{\text{max}} = \bigcap_{J \supseteq I} (M_I \setminus M_J) = m_I \times \text{Mon}_I \times \bigcap_{J \supseteq I} (\text{Mon}_J \setminus M_J) = m_I \times \text{Mon}_I \times R_I.\]

Formulas (11) and (12) imply the required statement. \(\square\)

Let $p_I, I \in \Sigma$, be a collection of polynomials such that p_I is an I-deformation of the monomial m_I. Remarkably, a similar statement is valid for the polynomials p_I.

Proposition 9.3. The polynomial ring $\mathbb{K}[x_1,\ldots,x_n]$ decomposes into the direct sum of subspaces:

\[\mathbb{K}[x_1,\ldots,x_n] = \langle R \rangle \oplus \bigoplus_{I \in \Sigma} p_I \mathbb{K}[x_I] \langle R_I \rangle.\]

Proposition 9.3 immediately imply Theorem 5.2, which says that the monomials in R linearly span the algebra $\mathcal{B} = \mathbb{K}[x_1,\ldots,x_n]/\langle p_I \mid I \in \Sigma \rangle$.

Lemma 9.4. Suppose that a polynomial $p \in \mathbb{K}[x_I]$ is an I-deformation of a monomial $m \in \mathbb{K}[x_I]$, see (4). Then for any polynomial $f \in \mathbb{K}[x_I]$ there exists and unique polynomial $g \in \mathbb{K}[x_I]$ such that the difference $m \cdot f - p \cdot g$ contains no monomials divisible by m. The map $f \mapsto g$ is one-to-one.

Proof. According to the generosity condition (4) the polynomial $m \cdot f$, as well as any other polynomial in $\mathbb{K}[x_I]$, can be written uniquely in the form $m \cdot f = p \cdot g + r$, where $g \in \mathbb{K}[x_I]$ and r is in the linear span $\langle R_m \rangle$ of monomials in $\mathbb{K}[x_I]$ not divisible by m. This defines the map $f \mapsto g$.

On the other hand, for any $g \in \mathbb{K}[x_I]$ there exist unique $f \in \mathbb{K}[x_I]$ and $r \in \langle R_m \rangle$ such that $p \cdot g = m \cdot f - r$. Thus the map $f \mapsto g$ is invertible. The statement of the lemma follows. \(\square\)

Proof of Proposition 9.3. Pick any linear ordering I_1,\ldots,I_N of the set Σ compatible with the inclusion relation, i.e., the inclusion $I_s \subseteq I_t$ implies that $s \leq t$. Let $\Sigma(s) = \{I_1,\ldots,I_s\}$ and $\Sigma(s) = \{I_s,\ldots,I_N\}$ be initial and terminal intervals of Σ.

We will prove by induction on $N - s$ that the polynomial ring $\mathbb{K}[x_1,\ldots,x_n]$ decomposes into the direct sum of subspaces

\[(13) \quad \mathbb{K}[x_1,\ldots,x_n] = \langle R \rangle \oplus \bigoplus_{I \in \Sigma(s)} m_I \mathbb{K}[x_I] \langle R_I \rangle \oplus \bigoplus_{I' \in \Sigma(s+1)} p_{I'} \mathbb{K}[x_{I'}] \langle R_{I'} \rangle.\]

If $s = N$ then (13) is true according to Proposition 9.1. This gives the base of induction.
Assume that the induction hypothesis that (13) holds for some \(s \) and derive the same statement for \(s - 1 \). Let \(I = I_s \). For a polynomial \(\phi \in \mathbb{K}[x_1, \ldots, x_n] \), write its unique presentation

\[
\phi = r + \sum_{I' \in \Sigma_{-1}} m_{I'} \cdot f_{I'} \cdot r_{I'} + m_I \cdot \bar{f}_I \cdot r_I + \sum_{I' \in \Sigma_{+1}} p_{I''} \cdot f_{I''} \cdot r_{I''},
\]

where \(r \in \langle R \rangle \) and \(f_I, r_I \in R_I, \) for any \(J \in \Sigma \).

Let \(\tilde{f}_I \in \mathbb{K}[x_I] \) be the unique polynomial, provided by Lemma 9.4, such that the difference \(d = m_I \cdot \tilde{f}_I - p_I \cdot \bar{f} \in \mathbb{K}[x_I] \) contains no monomials divisible by \(m_I \). Let \(\bar{f}_I \in \mathbb{K}[x_I] \) be the polynomial obtained from \(\phi \) by keeping all terms in (14) except for \(m_I \cdot \bar{f}_I \cdot r_I \) which we substitute by the term \(p_I \cdot \tilde{f}_I \cdot r_I \). Then \(\phi - \psi = d \cdot r_I \). Pick any monomial \(e \) in \(d \). Remind that, according to (12), \(M_J^{\text{max}} \) is the set of all monomials in \(m_J \mathbb{K}[x_J] \langle R_J \rangle \). If \(e \cdot r_I \notin M_J^{\text{max}} \) for all \(J \in \Sigma \), then \(e \cdot r_I \in \langle R \rangle \). Otherwise, suppose that \(e \cdot r_I \in M_J^{\text{max}} \) for some \(J \). If \(J \notin I \), then \(e \cdot r_I \in M_J^{\text{max}} \subset M_J \) implies that \(r_I \in M_{J/I} \), which is impossible. Thus \(J \subseteq I \). Also \(J \neq I \) because \(e \) is not divisible by \(m_I \). This shows that

\[
\phi - \psi \in \langle R \rangle \oplus \bigoplus_{J \subseteq I} (M_J^{\text{max}}).
\]

Therefore, \(\phi \) can be written as

\[
\phi = \bar{r} + \sum_{I' \in \Sigma_{-1}} m_{I'} \cdot \tilde{f}_{I'} \cdot \bar{r}_{I'} + p_I \cdot \tilde{f}_I \cdot r_I + \sum_{I' \in \Sigma_{+1}} p_{I''} \cdot f_{I''} \cdot r_{I''},
\]

where \(\bar{r} \in \langle R \rangle \), \(\tilde{f}_{I'} \in \mathbb{K}[x_{I'}] \), \(\bar{r}_{I'} \in R_{I'} \), and \(f_{I''} \) and \(r_{I''} \) are the same as before.

Notice that all steps in the transformation of the presentation (14) to the presentation (15) are invertible. Also if \(p_I \cdot \tilde{f}_I \cdot r_I = 0 \) then all summands in (14) and (15) coincide. So, if at least the one of the summands in the presentation (15) of \(\phi = 0 \) is nonzero, then we can also find a nonzero presentation of the form (14) for \(\phi = 0 \), which is impossible by the induction hypothesis. This shows that the presentation (15) of \(\phi \) is unique.

This proves (13). For \(s = 0 \) we obtain the claim of Proposition 9.3. \(\square \)

Finally we can put everything together and prove Theorems 3.1 and 3.2.

\textbf{Proof of Theorems 3.1 and 3.2.} For a graph \(G \), let \(\mathcal{A}_G, \mathcal{B}_G, \) and \(\mathcal{C}_G \) be the algebras defined in Sections 2, 3, and 8. Then we have the following termwise inequalities of Hilbert series

\[
\text{Hilb} \mathcal{A}_G \geq \text{Hilb} \mathcal{B}_G \geq \text{Hilb} \mathcal{C}_G.
\]

The first inequality follows from Theorem 5.2 because \(\mathcal{I}_G \) is a monotone monomial ideal and, by Lemma 5.1, \(\mathcal{J}_G \) is its deformation. The second inequality follows from Lemma 8.2 that says that \(\mathcal{C}_G \) is a quotient of \(\mathcal{B}_G \). Theorem 2.1 claims that \(\dim \mathcal{A}_G = N_G \) is the number of spanning trees of the graph \(G \). On the other hand, by Theorem 8.1, \(\dim \mathcal{C}_G = N_G \). Thus all inequalities in (16) are actually equalities. Moreover, by Theorem 8.1, the dimensions of \(k \)-th graded components are equal to

\[
\dim \mathcal{A}_G^k = \dim \mathcal{B}_G^k = \dim \mathcal{C}_G^k = N_G^{|G| - n - k},
\]

the number of spanning trees of \(G \) with external activity \(|G| - n - k \). \(\square \)

\textbf{Corollary 9.5.} The algebras \(\mathcal{B}_G \) and \(\mathcal{C}_G \) are isomorphic.
10. Algebras related to forests

Definitions of the algebras B_G and C_G and the proof of Theorem 8.1 are similar to constructions from [PSS1]. Let us briefly review main results of [PSS1].

Let G be a graph on the vertices $0, \ldots, n$. Let \mathcal{J}_G be the ideal in $\mathbb{K}[x_1, \ldots, x_n]$ generated by the polynomials

$$\hat{p}_I = \left(\sum_{x_i \in I} x_i \right)^{D_I + 1},$$

where I ranges over all nonempty subsets in $\{1, \ldots, n\}$ and the number D_I is the same as in Section 3, cf. (3). Let $B_G = \mathbb{K}[x_1, \ldots, x_n]/\mathcal{J}_G$.

Let \mathcal{F}_G be the commutative algebra generated by the variables $\hat{\phi}_e$, $e \in G$, with the defining relations:

$$(\hat{\phi}_e)^2 = 0, \quad \text{for any edge } e.$$

And let \hat{C}_G be the subalgebra of $\hat{\Phi}_G$ generated by the elements

$$\hat{X}_i = \sum_{e \in G} e_{i,e} \hat{\phi}_e,$$

for $i = 1, \ldots, n$, cf. Section 8.

A forest is a graph without cycles. The connected components of a forest are trees. A subforest in a graph G is a subgraph $F \subset G$ without cycles. Fix a linear order of edges of G. An edge $e \in G \setminus F$ is called externally active for a forest F if there exists a cycle C in G such that e is the minimal element of C and $(C \setminus \{e\}) \subset F$. The external activity of F is the number of externally active edges for F.

Theorem 10.1. [PSS1] The algebras \hat{B}_G and \hat{C}_G are isomorphic to each other. Their dimension is equal to the number of subforests in the graph G.

The dimension $\dim B_G^k$ of the k-th graded component of the algebra \hat{B}_G equals the number of subforests F of G with external activity $|G| - |F| - k$.

In [PSS2] we investigated the algebra \hat{B}_G for the graph $G = K_{n+1}$. Let $\mathcal{L}_n = \langle \hat{m}_I \rangle$ and $\mathcal{J}_n = \langle \hat{p}_I \rangle$ be two ideals in the polynomial ring $\mathbb{K}[x_1, \ldots, x_n]$ generated by the monomials \hat{m}_I and the polynomials \hat{p}_I, correspondingly, given by

$$\hat{m}_I = (x_{i_1} \cdots x_{i_r})^{n-r+1} x_{i_1},$$

$$\hat{p}_I = (x_{i_1} + \cdots + x_{i_r})^{r(n-r+1)+1},$$

where $I = \{i_1 < \cdots < i_r\}$, ranges over nonempty subsets of $\{1, \ldots, n\}$, cf. Subsection 4.1. Notice that \mathcal{L}_n is a monotone monomial ideal and \mathcal{J}_n is its deformation. Let $\mathcal{A}_n = \mathbb{K}[x_1, \ldots, x_n]/\mathcal{L}_n$ and $\mathcal{B}_n = \mathbb{K}[x_1, \ldots, x_n]/\mathcal{J}_n$.

Let us say that a nonnegative integer sequence $b = (b_1, \ldots, b_n)$ is an almost parking function of size n if the monomial $x^b = x_1^{b_1} \cdots x_n^{b_n}$ does not belong to the ideal \mathcal{L}_n. Clearly the class of almost parking functions includes usual parking functions.

For a forest F on the vertices $0, \ldots, n$, an inversion is a pair of vertices labelled i and j such that $i > j$ and the vertex i belong to the path in F that joins the vertex j with the minimal vertex in its connected component.
Theorem 10.2. [PSS1, PSS2] The algebras \hat{A}_n and \hat{B}_n have the same Hilbert series. The dimension of these algebras is equal to the number of forests on $n+1$ vertices.

Moreover, the dimension $\dim \hat{A}_n^k = \dim \hat{B}_n^k$ of the k-th graded components of the algebras \hat{A}_n and \hat{B}_n is equal to

(A) the number of almost parking functions b of size n such that $\sum_{i=1}^{n} b_i = k$;
(B) the number of forests on $n+1$ vertices with external activity $\left(\begin{array}{c} n+1 \\ 2 \end{array}\right) - k$;
(C) the number of forests on $n+1$ vertices with $\left(\begin{array}{c} n+1 \\ 2 \end{array}\right) - k$ inversions.

The images of the monomials x^b, where b ranges over almost parking functions of size n, form linear bases in both algebras \hat{A}_n and \hat{B}_n.

Theorem 10.2, first stated in [PSS2], follows from results of [PSS1]. The algebra \hat{B}_n is the algebra generated by curvature forms on the complete flag manifold. It was introduced in an attempt to lift Schubert calculus on the level of differential forms, see [PSS1, PSS2, ShSh]. This example related to Schubert calculus was our original motivation.

11. ρ-ALGEBRAS AND ρ-PARKING FUNCTIONS

In this section we discuss a special class of monotone monomial ideals and their deformations.

Let $\rho = (\rho_1, \ldots, \rho_n)$ be a weakly decreasing sequence of nonnegative integers, called a degree function. Let $I_\rho = \langle m_I \rangle$ and $J_\rho = \langle p_I \rangle$ be the ideals the ring $K[x_1, \ldots, x_n]$ generated by the monomials m_I and the polynomials p_I, correspondingly, given by

$$m_I = (x_{i_1} \cdots x_{i_r})^{\rho_r},$$
$$p_I = (x_{i_1} + \cdots + x_{i_r})^{\rho_r},$$

where in both cases $I = \{i_1, \ldots, i_r\}$ runs over all nonempty subsets of $\{1, \ldots, n\}$.

Let $A_\rho = K[x_1, \ldots, x_n]/I_\rho$ and $B_\rho = K[x_1, \ldots, x_n]/J_\rho$.

Let us say that a nonnegative integer sequence $b = (b_1, \ldots, b_n)$ is a ρ-parking function if the monomial $x_1^{b_1} \cdots x_n^{b_n}$ does not belong to the ideal I_ρ. More explicitly, this condition can be reformulated as follows. A nonnegative integer sequence $b = (b_1, \ldots, b_n)$ is a ρ-parking function if and only if, for $r = 1, \ldots, n$, we have

$$\#\{i \mid b_i < \rho_{n-r+1}\} \geq r.$$

This condition can also be formulated in terms of the increasing rearrangement $c_1 \leq \cdots \leq c_n$ of the elements of b as $c_i < \rho_{n+1-i}$. The ρ-parking functions were studied in [PiSt] and in [Yan]. They also appeared under a different name in [PP]. Notice that $(n, \ldots, 1)$-parking functions are exactly the usual parking functions of size n.

The monomials x^b, where b ranges over ρ-parking functions, form the standard monomial basis of the algebra A_ρ. Thus the Hilbert series of the algebra A_ρ equals

$$\text{Hilb} A_\rho = \sum_b q^{b_1+\cdots+b_n},$$

where the sum is over ρ-parking functions. The dimension $\dim A_\rho$ of this algebra is equal to the number of ρ-parking functions.

Theorem 5.2 specializes to the following statement.
Corollary 11.1. The monomials x^b, where b ranges over ρ-parking functions, linearly span the algebra B_ρ. Thus we have the termwise inequality of Hilbert series:

$$\text{Hilb} A_\rho \geq \text{Hilb} B_\rho.$$

It would be interesting to describe the class of degree functions ρ such that $\text{Hilb} A_\rho = \text{Hilb} B_\rho$. If $\rho_r = l + k(n-r)$ is a linear degree function then, according to Corollary 4.3, the Hilbert series of A_ρ and B_ρ are equal to each other and

$$\dim A_\rho = \dim B_\rho = l(l + kn)^{n-1}.$$

Let us say that a degree function ρ is almost linear if there exists an integer k such that $\rho_i - \rho_{i+1}$ equals either k or $k+1$, for $i = 1, \ldots, n-1$. Computer experiments show that the equality $\text{Hilb} A_\rho = \text{Hilb} B_\rho$ often holds for almost linear degree functions ρ. The table below lists some almost linear degree functions, for which the equality $\text{Hilb} A_\rho = \text{Hilb} B_\rho$ holds.

<table>
<thead>
<tr>
<th>ρ</th>
<th>$\dim A_\rho$</th>
<th>ρ</th>
<th>$\dim A_\rho$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4, 2, 1)</td>
<td>25</td>
<td>(8, 5, 3)</td>
<td>306</td>
</tr>
<tr>
<td>(6, 4, 3)</td>
<td>153</td>
<td>(11, 7, 2)</td>
<td>596</td>
</tr>
<tr>
<td>(9, 5, 2)</td>
<td>290</td>
<td>(12, 8, 3)</td>
<td>855</td>
</tr>
<tr>
<td>(6, 4, 3, 2)</td>
<td>632</td>
<td>(8, 7, 5, 3)</td>
<td>3021</td>
</tr>
<tr>
<td>(9, 6, 4, 2)</td>
<td>2512</td>
<td>(9, 7, 6, 5)</td>
<td>4925</td>
</tr>
<tr>
<td>(8, 6, 5, 3)</td>
<td>2643</td>
<td>(11, 8, 6, 3)</td>
<td>7587</td>
</tr>
<tr>
<td>(8, 6, 5, 4)</td>
<td>2832</td>
<td>(12, 9, 7, 4)</td>
<td>12460</td>
</tr>
<tr>
<td>(9, 8, 6, 4, 2)</td>
<td>31472</td>
<td>(10, 9, 7, 5, 3)</td>
<td>65718</td>
</tr>
</tbody>
</table>

On the other hand, the equality of Hilbert series fails for the almost linear degree functions $\rho = (9, 6, 3, 1)$ and $\rho = (9, 7, 5, 4, 3)$. We do not know an example when $\text{Hilb} A_\rho = \text{Hilb} B_\rho$ and ρ is not almost linear.

Proposition 6.2 specializes to an expression for the Hilbert series $\text{Hilb} A_\rho$ with alternating signs. Actually, in this case it is possible to give a simpler subtraction-free expression for the Hilbert series.

Proposition 11.2. The Hilbert series of the algebra A_ρ equals

$$\text{Hilb} A_\rho = \sum_{a} \prod_{i=1}^{n} \frac{q^{a_{n-i+1} - a_{n}}}{1 - q},$$

where the sum is over $(n+1)^{n-1}$ usual parking functions $a = (a_1, \ldots, a_n)$ of size n. Here we assume that $\rho_{n+1} = 0$. Thus the dimension of A_ρ, which is the number of ρ-parking functions, is given by the following polynomial in ρ_1, \ldots, ρ_n:

$$\dim A_\rho = \sum_{a} \prod_{i=1}^{n} (\rho_{n-a} - \rho_{n-a+1}),$$

where again the sum is over usual parking functions of size n.

Proof. For $i = 0, \ldots, n$, let Z_i be the interval of integers $Z_i = [\rho_{n-i+1}, \rho_{n-i}]$, where we assume that $\rho_0 = +\infty$ and $\rho_{n+1} = 0$. Then the set of positive integers is the disjoint union of Z_0, \ldots, Z_n. Let $f: b \mapsto a$ be the map that sends a positive integer sequence $b = (b_1, \ldots, b_n)$ to the sequence $a = (a_1, \ldots, a_n)$ such that $b_i \in Z_{a_i}$, for
i = 1, . . . , n. Then b is a ρ-parking function if and only if a is a usual parking function of size n. Fix a parking function a of size n. Then
\[
\sum_{b: f(b) = a} q^{b_1 + \cdots + b_n} = \prod_{i=1}^{n} \sum_{b_i \in \mathbb{Z}} q^{b_i}.
\]
is exactly the summand in (17). \(\Box\)

For example, the Hilbert series of \(A_\rho\), for \(n = 2\) and \(n = 3\), are given by
\[
\text{Hilb } A_{\rho_1, \rho_2}(q) = [\rho_2]^2 + 2q^{\rho_2} [\rho_1 - \rho_2] [\rho_2],
\]
\[
\text{Hilb } A_{\rho_1, \rho_2, \rho_3}(q) = [\rho_3]^3 + 3q^{\rho_3} [\rho_2 - \rho_3] [\rho_3] + 3q^{2\rho_3} [\rho_2 - \rho_3]^2 + 3q^{\rho_2} [\rho_1 - \rho_2] [\rho_3]^2 + 6q^{\rho_2 + \rho_3} [\rho_1 - \rho_2] [\rho_2 - \rho_3] [\rho_3],
\]
where \([s] = 1 + q + \cdots + q^{s-1}\) denotes the \(q\)-analogue of an integer \(s\).

Finally, we formulate a theorem that gives a combinatorial interpretation of the value of the Hilbert series \(\text{Hilb } A_\rho\) at \(q = -1\). This theorem follows from results of [PP] on \(\rho\)-parking functions.

Theorem 11.3. [PP] The number \((-1)^{\rho_1 + \cdots + \rho_n - n}\) \(\text{Hilb } A_\rho(-1)\) equals the number of permutations \(\sigma_1, \ldots, \sigma_n\) of \(1, \ldots, n\) such that
\[
\sigma_1 \lor^{\rho_1} \sigma_2 \lor^{\rho_2} \cdots \lor^{\rho_{n-1}} \sigma_n \lor^{\rho_n} 0,
\]
where the notation \(a \lor^k b\) means that \(a < b\) for even \(k\) and \(a > b\) for odd \(k\). In particular, \(\text{Hilb } A_\rho(-1)\) is zero if and only if \(\rho_n\) is even.

This theorem basically says that \(\text{Hilb } A_\rho(-1)\) is either zero or plus/minus the number of permutations with prescribed descent positions.

For the case of usual parking functions of size \(n\), i.e., for \(\rho = (n, \ldots, 1)\), this theorem amounts to the well-known fact that the value of the inversion polynomial \(I_n(1) = (-1)^{\binom{n}{2}}\) \(\text{Hilb } A_{(n, \ldots, 1)}(-1)\) is the number of alternating permutations of size \(n\), see [Krew].

References

DEPARTMENT OF MATHEMATICS, M.I.T., CAMBRIDGE, MA 02139, U.S.A.
E-mail address: apost@math.mit.edu
URL: http://www.math.mit.edu/~apost/

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF STOCKHOLM, STOCKHOLM, S-10691, SWEDEN
E-mail address: shapiro@matematik.su.se
URL: http://www.matematik.su.se/~shapiro/