
HOMOTOPY CLASSIFICATION OF NONDEGENERATE

QUASIPERIODIC CURVES ON THE 2-SPHERE

B. Z. Shapiro

Department of Mathematics

University of Stockholm

Stockholm S-10691, Sweden

B. A. Khesin

Department of Mathematics

University of Toronto

Toronto, ON MS5 3G3, Canada

Abstract. We classify the curves on S2 with fixed monodromy operator and nowhere

vanishing geodesic curvature. The number of connected components of the space of

such curves turns out to be 2 or 3 depending on the corresponding monodromy. This

allows us to classify completely symplectic leaves of the Zamolodchikov algebra, the

next case after the Virasoro algebra in the natural hierarchy of the Poisson structures

on the spaces of linear differential equations.

§1 Introduction.

A curve on the two-dimensional sphere is called nondegenerate if it does not have
inflection points, i.e. if its geodesic curvature is everywhere nonvanishing. The classi-
fication of closed nondegenerate curves up to homotopy was described by J. Little [Li]
in 1970. It turned out that the slightly more general problem of the classification of
quasiperiodic (but not necessarily closed) nondegenerate curves is closely related to
certain problems of conformal field theory, namely, to the classification of symplectic
leaves of the Gelfand–Dickey Poisson algebras. These algebras are defined on the
space of coefficients of nth order linear differential operators on the circle. They are
also called SLn(R) (GLn(R))–Adler–Gelfand–Dickey algebras or generalized n-KdV-
structures ([GD]). In physics literature these structure are also known as the classical
Wn-algebras [PRS].

The first (n = 2) Poisson algebra in this series coincides with the Virasoro algebra
([Kh]). Classification of the Virasoro coadjoint orbits was obtained in different terms
independently by N.H. Kuiper [Ku], V.P. Lazutkin and T.F. Pankratova [LP], G. Segal
[Se],
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A.A. Kirillov [Ki]. In the Virasoro case, the Poisson algebra is linear, while for differ-
ential operators of higher order the corresponding structure is quadratic. The next
object in this hierarchy corresponds to the Zamolodchikov algebra and is generated
by the coefficients of the third order linear differential equations on the circle with
respect to the quadratic Poisson structure ([Za]).

In the paper [OK] classification of the symplectic leaves (or maximal symplectic
submanifolds) of these Poisson brackets for operators of arbitrary order was related
to the homotopy classification of nondegenerate curves on spheres (or on projective
spaces). Namely, an nth order linear differential operator on the circle defines a
nondegenerate quasiperiodic curve in Sn−1, i.e. “projectivization” of its “fundamental
solution curve”. (Quasiperiodicity denotes the usual behavior of the fundamental
solution of a linear ode with periodic coefficients.) It turned out that two differential
operators belong to the same symplectic leaf if and only if the corresponding curves
are homotopically equivalent within the class of nondegenerate quasiperiodic curves.

The only continuous (or “local”) invariant of any symplectic leaf is the mon-
odromy operator of the corresponding differential equation, i.e. the element of the
group SLn(R) up to conjugacy [OK]. The discrete (or “global”) invariant enumerates
connected components in the space of nondegenerate curves with a given monodromy.
In this paper we present the classification of these curves for the Zamolodchikov alge-
bra, i.e. the case of the SL3(R)-bracket. It turns out that the number of connected
components is finite and equals two or three according to the different monodromy
matrices in SL3(R). These values of the discrete invariant split the group SL3(R)
into two parts of nonzero measure. It would be interesting to find a physical meaning
of this “global” invariant.

Relation of the SL3(R)-bracket to the problems of differential geometry was dis-
cussed in [Ov] where the case of the unit monodromy was classified.

One of the crucial notions in classification below is the notion of a disconjugate
curve. Roughly speaking, this is a curve which intersects any great circle on one period
at most twice. The existence of such curves is determined by the given monodromy
operator. The notion of discojugacy can be generalized to higher dimensions and is
responsible for the existence of an extra connected component in the space of closed
nondegenerate curves on even-dimensional spheres S2n ( [ShM]).

It should also be mentioned that the lift a nondegenerate curve to the flag manifold
(by means of taking its osculating flag) is tangent to the left-invariant nonholonomic
distribution of cones. This distribution is called the Cartan distribution. This is a
subdistribution of the nonholonomic distribution of linear subspaces for which the
covering homotopy property was proved by S. Smale [Sm]. As a matter of fact, only
the one-parameter homotopy property holds for the Cartan distribution where the
map is the natural projection to the final tangent elements and this only holds on the
smaller subset of all conjugate curves. See detailes in §5.

In the paper [KZ] the analog of the quadratic Gelfand-Dickey Poisson structure was
defined on the space of pseudodifferential operators of the form ∂α +

∑∞
k uk(x)∂α−k,

where α is a real (or even a complex) number. For an integer α = n and addi-
tional constrains u−n−1 = u−n−2 = · · · = 0 pseudodifferential operators become
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purely differential and the generalized Poisson structure coincides with the usual
GLn-Gelfand–Dickey bracket. Finding of analogs of ”solution curves” for pseudodif-
ferential operators and of a geometrical description the invariants of the symplectic
leaves for an arbitrary α is a very intriguing problem.

The paper is organized as follows. The next section is devoted to the geometric for-
mulation of the main results. In §3 we discuss the Poisson aspect of our consideration.
Parts I,II deal with classifications of nondegenerate curves with a fixed monodromy
matrix and with a fixed monodromy operator (i.e. class of conjugate matrices) re-
spectively. The last section is devoted to the geometry of the train variety and is
of independent interest. The main results of this paper were partially announced in
[KS].

We are deeply grateful to V. I. Arnold, M. Z. Shapiro and especially to R. Mont-
gomery for fruitful discussions and improvements of this text. Boris Khesin expresses
his gratitude to the Swedish Natural Science Research Council supporting his visit
to Stockholm, to the Mathematics Department of the University of Stockholm for its
kind hospitality, and also to the Swedish Embassy in London for reasonable delays in
the visa business. His research was supported in part by the NSF grant DMS-9627782,
NSERC grant OGP-0194132, PREA, and an Alfred P. Sloan Research Fellowship.

Part 0. Formulation of the main results.

§2. Spaces of curves.

Definition 2.1. A curve γ : [0, 1] → S2 is called nondegenerate if its velocity γ̇(t) and
acceleration γ̈(t) are linearly independent at any moment t ∈ [0, 1].

This property of a curve depends only on the image γ([0, 1]) in S2, not on the
particular choice of its parametrization.

Remark 2.2. The motivation of the definition above is as follows. With any third
order linear ordinary differential equation (LDE) Pφ = 0, one can associate a class
Γ

P
of GL3-equivalent curves in R3. To do this let φ1, φ2, φ3 be an arbitrary basis of

solutions to Pφ = 0. Set γ(t) = (φ1(t), φ2(t), φ3(t)). The set of such γ’s as Φ varies
over all bases of solutions forms Γ

P
. The crucial property of such γ is that the vectors

γ(t), γ̇(t), γ̈(t) are linearly independent at any t. In particular, this means that the
radial projection of the curve γ along γ(t) on the standard embedded unit sphere
S2 ⊂ R3 is a nondegenerate curve.

An analogous description is valid in any dimension and allows us to study the topo-
logical properties of the space of nondegenerate curves instead of the corresponding
spaces of LDE’s.

For each LDE on the circle (i.e. LDE with periodic coefficients) we consider its
monodromy operator which transforms fundamental solutions by one period. This
operator is only determined up to its conjugacy class in GLn(R) (two monodromy
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operators taken in different points of the circle can be compared only up to a conju-
gacy). Now we define the monodromy operator of a nondegenerate curve.

Definition 2.3. A curve γ : [0, 1] → S2 ⊂ R3 is said to be subordinated to a given
monodromy matrix M ∈ GL+

3 (R) if the image M(f0) of the flag f0, spanned by
〈γ(0), γ̇(0), γ̈(0)〉 (i.e. of the “extended initial flag”) coincides with the “extended
final flag” f1 = 〈γ(1), γ̇(1), γ̈(1)〉.

Consider the space Γ(M) of all nondegenerate curves starting at the same initial
flag f0 and subordinated to matrices M from a fixed conjugacy class M in GL+

3 (R).
(Notice that the spaces Γ(M) corresponding to different initial flags are naturally
conjugated by operators from GL+

3 .)

The problem under consideration is to describe the topology of the space Γ(M).
This question is closely related to certain problems of infinite-dimensional Lie algebras
and integrable hierarchies (see [OK] or §3).

In 1970 J. Little described the homotopy classification of all closed nondegenerate
curves on S2. This case corresponds to the identity monodromy M = id.

Given orientation on S2 we consider only “right-oriented” curves, i.e. we insist
that (γ(t), γ̇(t), γ̈(t)) forms a right-handed basis for all t .

Proposition 2.4 [Li]. The space of all right-oriented closed curves on S2 consists of
three connected components with the representatives shown on Fig.1.

Our main result is the following classification theorem for nondegenerate curves on
S2 with an arbitrary monodromy M ⊂ GL+

3 (R).

Theorem 2.5. The space of all right-oriented nondegenerate curves on S2 with a
given monodromy M consists of two connected components if the Jordan normal form
of M is one of the following:

(*)





−λ 0
−µ

0 ν



 ,





−λ 0
−λ

0 ν



 ,





λ 0
λ

0 ν



 or





λ 1 0
λ

0 λ





where λ, µ, ν > 0 are distinct real numbers, and the space consists of three components
otherwise.
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Fig.1. Representatives of connected components for right
nondegenerate curves on S

2

Remark 2.6. There is no information so far about the higher homology or homotopy
groups of Γ(M) even in the simplest case when M is identity. The last case seems
to be a very natural generalization of the (free) loop space but is much harder to
study because of the lack of covering homotopy property. The analogous clasification
problem for nondegenerate curves in higher dimensions is still an open question. The
number of connected components of nondegenerate curves is known only for closed
curves on Sn ([ShM]) and turns out to be equal to 3 on any S2k and to 2 on any
S2k+1 for k ≥ 1.

The proof of the theorem is based on the detailed study of (dis)conjugacy, defor-
mations and covering homotopy property of the corresponding curves. The next two
theorems present the main steps of the proof and are of an independent interest.

Definition 2.7. A curve γ : [0, 1] → S2 is called conjugate if there exists a great circle
on S2 having at least three transversal intersections with γ.

The curves violating this property are called disconjugate.

Theorem 2.8. The space of right-oriented curves on S2 with given initial and final
flags consists of three connected components if for these flags there exists a disconju-
gate curve connecting them, and the space consists of two components otherwise.

Denote the space of all right-oriented conjugate curves with a fixed initial flag f0
by C(f0) and the map sending each curve to its final flag by π : C(f0) → FO3. Here
FO3 is the space of all oriented flags on S2 (coinciding with the space of all oriented
flags in the linear space R3).

Definition 2.9. A map η : X → Y is said to satisfy the 1-parameter covering homotopy
property if for any path y(s) ⊂ Y, s ∈ [0, 1] and for any point x ∈ X such that
η(x) = y(0) there exists a path x(s), s ∈ [0, 1] such that x(0) = x and η(x(s)) = y(s)
for all s.

5



Theorem 2.10. For any flag f0 the map π : C(f0) → FO3 satisfies the 1-parameter
covering homotopy property.

Remark 2.11. This map does not satisfy the 2-parameter covering homotopy property
(see Section 5).

§3. Classification of symplectic leaves.

In this section we recall the general definition of the Gelfand–Dickey quadratic
Poisson brackets on the coefficients of LDE and their relation to nondegenerate curves
on spheres. The Poisson algebra of functions on the space of the third order LDE (of
the form ∂3 + u(t)∂ + v(t)) is also called the Zamolodchikov- or W3-algebra.

Definition 3.1. Consider the space L of all differential operators of the form
{L = ∂n +

∑n−1
i=0 ui(t)∂

i}, where ∂ = d/dt, ui ∈ C∞(S1,R). The space of all
linear functionals on L is described in terms of “pseudodifferential symbols” X =
∑n

j=1 aj(t)∂
−j , aj ∈ C∞(S1,R). Namely, associate to each X the linear functional

lX(L) =
∫

S1 res(XL)dt, where res(XL) is a function on S1 which is defined as fol-

lows. Using the Leibnitz rule ∂−1f = f∂−1+
∑∞

i=1(−1)if (i)∂−1−i, we can express the
product X · L as a pseudodifferential operator

∑

m∈Z
pm(t)∂m. Then by definition

res(XL) = p−1(t). The space L is an affine space (rather than a linear one), but all
functionals lX vanish at the point L0 = ∂n, so L0 can be viewed as the origin of L.
Clearly the space L is spanned by the functionals lX .

Definition 3.2. The operator Ω : lX 7→ VX ∈ Vect(L) which sends a linear func-
tional lX to the vector field VX(L) = L(XL)+ − (LX)+L on the space of operators
(here the index + denotes the differential part) is called the operator of the (second)
Gelfand–Dickey Poisson structure associated with GLn(R). This operator defines
quadratic (with respect to L) Poisson bracket on L : {lX , lY }(L) = lY (VX(L)). The
corresponding Poisson algebra of functionals is called the Gelfand–Dickey algebra.

Remark 3.3. The SLn(R)–Gelfand–Dikii bracket is defined on the space L̃ = L ∩

{un−1(t) ≡ 0} = {∂n +
∑n−2

i=1 ui(t)∂
i} by the same formula. The constraints on {X}

are determined explicitly by the condition VX(L) ∈ Vect(L̃), i.e. ∂n + VX(L) ∈ L̃.

In the SL2(R)-case, this bracket turns out to be linear and coincides with the
Lie–Poisson bracket on the dual space to the Virasoro algebra [Kh].

It should be mentioned that the differential operator L can be uniquely recon-
structed if we know the corresponding curve on the sphere and the coefficient un−1(t).
Indeed, the curve on S1 gives us the homogeneous coordinates of the solution set of L.
One complementary condition is provided by the Wronskian W (t) of this set. (W (t)

satisfies the Liouville equation Ẇ = un−1(t)W ). In particular, for the SLn(R)-case
this condition has the form W (t) ≡ const.
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Theorem 3.4 [OK]. The complete set of invariants of symplectic leaves of the second
Gelfand–Dikii brackets associated with the Lie groups GLn(R) and SLn(R) consists
of the monodromy operator (considered up to conjugacy in the group) and of the
homotopy class of the corresponding nondegenerate curves on the sphere Sn−1 which
are subordinated to this monodromy.

In other words, two differential operators on the circle can be connected by some
“Hamiltonian path” in the space L (i.e., by a path such that its velocity vector at
every moment is Hamiltonian with respect to the Gelfand–Dickey bracket) if and only
if they have the same monodromy operator and belong to the same homotopy class of
such curves. In a sense, the monodromy is a “continuous” invariant and the homotopy
class is a “discrete” one.

For the SL2(R)-case, the classification problem of the Virasoro orbits becomes
especially straightforward from this point of view. In this case we have to classify
nondegenerate curves on S1 and for every monodromy there exist a countable number
of such curves distinguished by the total rotation number [OK].

For the SL3(R)-bracket, this classification is described in the preceding section
and the number of homotopy classes turns out to be finite but depending on the
monodromy:

Theorem 3.5 (= 2.5′). Symplectic leaves of the Zamolodchikov algebra (i.e. SL3(R)–
Gelfand–Dickey bracket) are enumerated by the Jordan normal form of the monodromy
operator (belonging to SL3(R)) and a Z2-invariant for the monodromy of types (∗)
or a Z3-invariant otherwise.

Roughly speaking, the discrete invariant is the parity of the “total rotation number”
of the corresponding nondegenerate curves (which are not closed if the monodromy
M 6= id). Moreover, for some monodromies disconjugate curves form a separate
symplectic leaf.

Remark 3.6. The same classification holds for the GL3(R)–Gelfand–Dikii bracket,
where the monodromy operator belongs to the wider group GL3(R).

The case of identity monodromy on SL3(R) was considered in [Ov].

It would be interesting to find a purely algebraic proof of this result similar to the
Virasoro case. The disconjugacy property (Definition 2.6) is closely related to factor-
ization of differential operators. In the recent work [Wi] the Gelfand–Dikii bracket
was transfered to the space of solutions of differential equations via this factorization.
Perhaps this approach can lead to a Sturmian-type conjugacy theory for differential
equations of higher order.

Part I. Nondegenerate curves on S2 with fixed initial and final flags.

Below we discuss the classification problem for nondegenerate curves on S2 with a
fixed monodromy matrix (or classification of nondegenerate curves with fixed initial
and final flags).
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§4. Basic notions and types of disconjugacy.

Let γ : [0, 1] → S2 →֒ R3 be a right-oriented nondegenerate curve (with respect to
a fixed basis in R3 ).

Definition 4.1.
a) The matrix curve γG : [0, 1] → GL3 is the curve

γG(t) =





γ1(t), γ2(t), γ3(t)
γ̇1(t), γ̇2(t), γ̇3(t)
γ̈1(t), γ̈2(t), γ̈3(t)



 ,

where γi is the ith coordinate of γ. Note that nondegeneracy of γ implies nondegen-
eracy of the above matrix for all t.

b) The flag curve γf : [0, 1] → FO3 consists of the osculating oriented flags to all
points of γ, where FO3 is the 3-dimensional variety of all oriented flags in R3. The
osculating flag γf (t) consists of the line l spanned by γ(t) and the plane p spanned
by γ(t) and γ̇(t).

Definition 4.2. The restriction of the flag γf (t) to S2 consists of the point γ(t) ∈ S2

together with the oriented great circle passing through γ(t) tangent to γ̇(t).

The space FO3 has a remarkable 2-dimensional distribution (see [VG]). For a given
flag f = (l, p) ∈ FO3 one can define two directions in the tangent 3-space. The first is
tangent to the germ (l, p(τ)) ∈ FO3 where plane p(τ) coincides with p for τ = 0 and
contains the line l for all τ ; the other direction is tangent to the germ (l(τ), p) ∈ FO3

where l(τ) is contained in p for all τ and l(0) = l. These directions can be oriented
in the following way. The velocity of the moving line l(τ) (or plane p(τ)) is positive

if orientation of the frame of l (or of p) completed by the velocity vector l̇ (or ṗ) of
the motion coincides with the orientation of the ambient plane p (or of R3).

Definition 4.3. The Cartan distribution C on FO3 is the distribution of quadrants

(R+)
2

spanned by vectors with positive coordinates in the 2-dimensional distribution
discussed above.

Remark 4.4. The flag curve of any 3rd order linear differential equation is everywhere
tangent to the Cartan distribution. This follows from the matrix form of the equation
and also explains the introduction of C. Note also that a Euclidean structure on R3

identifies the space FO3 of complete oriented flags with the group SO3. The Cartan
distribution C is SO3-invariant after such an identification.

Remark 4.5. A change of parameter t for the curve γ(t) implies a reparameterization
of the flag curve γf and a reparametrization together with a multiplication by a family
of upper triangular matrices for the matrix curve γG .

Definition 4.6. The monodromy operator of a parameterized nondegenerate curve
γ : [0, 1] → S2 →֒ R3 is the unique linear operator on R3 which sends the initial
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frame γ(0), γ̇(0), γ̈(0) to the final frame γ(1), γ̇(1), γ̈(1). (Cf. Definition 2.3, where
just the mapping of the corresponding flags was required.)

Definition 4.7. Two flags (l1, p1) and (l2, p2) in R3 are called nontransversal if either
the plane p1 contains the line l2 or the plane p2 contains the line l1.

Now we recall and specify the concept of (dis)conjugacy.

Definition 4.8 (=2.7′). A curve γ : [0, 1] → S2 is called

a) conjugate if there exists a great circle intersecting γ transversally in a least three
inner points;

b) strictly disconjugate if there is no great circle intersecting it more than twice
(counting with multiplicities);

c) nonstrictly disconjugate otherwise.

Note that the last case is borderline between the two previous ones.

Lemma 4.9. A nondegenerate curve γ : [0, 1] → S2 is conjugate if and only if there
exists at least one moment t ∈ (0, 1) such that the osculating flag f(t) is nontransversal
to f(0).

Proof. For sufficiently small τ the curve γ(t), t ∈ [0, τ ] is disconjugate and there exists
some minimal moment τ0 < 1 after which the curve γ becomes conjugate. At that
moment τ0 the segment γ̄ of the curve γ, t ∈ [0, τ0] is nonstrictly disconjugate and
thus there exists a circle intersecting γ̄ at least 3 times with multiplicities but less
than 3 times transversally (see also [ShB]). None of these intersection points can be
internal for [0, τ0] because otherwise a small shift of the initial circle will intersect γ̄
at least 3 times transversally. Therefore this circle passes through the ends of γ̄ and
is tangent to one of them, since the sum of multiplicities on both ends is at least 3.
This means that the corresponding initial and final flags of γ̄ in the linear space R3

are nontransversal.

Theorem 4.10. There exists one type of strictly disconjugate and 5 different types
of nonstrictly disconjugate curves on S2 (see their stereographic projections on fig.2).

Proof. The final flag γ̄(τ0) of nonstrictly disconjugate curve γ̄ cannot be strictly an-
tipodal (i.e. centrally symmetric on S2) to the initial point γ̄(0) (see [Ar]). Moreover
by the lemma above the disconjugate curve lies inside a certain open hemisphere,
the boundary of which is a small shift of the circle tangent to γ at its initial point.
Curves on the hemisphere can be identified with those on the plane by stereographic
projection from the center of the sphere. The corresponding plane classification is
obvious.

Remark 4.11. The generalization of the above lemma to nondegenerate curves on Sn

is given in [ShM].
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A B C

D

Fig.2. Types of (non)strictly disconjugate curves on  

   (all cases except A are nonstrictly disconjugate).

2

E F

S

§5. The space of curves with fixed initial and final flags.

In this section we prove the following statement.

Theorem 5.1. The space of right-oriented curves on S2 with given initial and final
flags consists of three connected components if there exists a (strictly or nonstrictly)
disconjugate curve connecting these flags and consists of two connected components
otherwise.

This theorem immediately follows from two lemmas stated below.

Lemma 5.2. Right-oriented disconjugate curves connecting any two flags form at
most one connected component.

Lemma 5.3. Right-oriented conjugate curves connecting any two flags form two con-
nected components.

Proof of lemma 5.2. Let f and g be initial and final flags. If the arrangement of f and
g does not admit any disconjugate curve the statement is trivial. Otherwise the pair
{f, g} defines one of 6 types of disconjugate curves as described in theorem 4.10. Let
γ0 be one of these curves. Then γ0 lies in an open hemisphere and could be considered
as a planar curve. Let γ be an arbitrary disconjugate planar curve connecting f and
g. Then there exists an open hemisphere containing both γ0 and γ. Indeed the great
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circle of the initial flag f can intersect γ and γ0 only in the initial and final points
(otherwise the disconjugacy is violated). Moreover the points of f and g could not be
antipodal on S2 (see [Ar]). Thus one can shift slightly the great circle of f such that
both these points will be in the same hemisphere. Hence γ and γ0 could be placed of
the same plane. The space of planar disconjugate curves connecting a given pair of
flags is evidently contractible. (This lemma also follows from the desription of train
varieties, see Appendix.)

A B C

D

Fig.3. Disconjugate curves form a connected set for all 
arrangements of initial and final flags.

E

F

F

Definition 5.4. A conjugate curve [0, 1] → S2 is called an α-fragment if it has one
transversal self-intersection and, moreover, the sum of local multiplicities of intersec-
tions of the curve with any great circle is at most 3. (It looks like the Greek character
”alpha”, see Fig.4 C.)

Proof of lemma 5.3.

Let γ : [0, 1] → S2 be a conjugate curve connecting f and g. We can assume that
the initial and final flags of γ are in general position, i.e. transversal to each other. If
they are not we will take some shortening γσ : [σ, 1] → S2 of the curve γ which is still
conjugate and its endpoint flags are transversal. Fix a hemisphere containing both
of them as in the previous lemma. Pull into this hemisphere each separate piece of
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γ previously contained in the opposite hemisphere by using the procedure suggested
by J. Little, [Li]. In this way γ can be deformed into a conjugate planar curve with
the same initial and final flags.

The only invariant of connected components for nondegenerate curves on R2 with
fixed initial and final flags is the total rotation angle of the velocity of the curves, see
[Wh].

So once we show that any two conjugate plane curves whose rotation angles differ
by 4π are homotopic on S2 the statement is proved. In other words we show how
to increase the total rotation number of a planar conjugate curves by 2 (or the total
rotation angle by 4π) using deformations on S2 which are nonrealizable on R2. Thus,
the only invariant for conjugate curves with fixed endpoint flags on 2-sphere is the
”parity” of their total ”rotation”.

The rigorous arguments based on the set of pictures on fig. 5. demonstrate how
the α-fragment transforms into the ω-fragment (i.e. the α-fragment with an extra
kink) thus increasing the rotation angle by 4π.

The proof is completed with the remark that any conjugate curve can be deformed
into a curve with an α-fragment while preserving its initial and final flags. Indeed, for
a conjugate curve γ there exists a great circle intersecting it transversally at least 3
times, and therefore such a curve γ necessarily contains one of the 3 fragments shown
on fig. 4. The last of these cases already contains the α-fragment, while other two
can be deformed into that. This finishes the proof of lemma 5.3 and theorem 5.1.

1 3 2 12 3

Fig.4. 3 possible forms of simplest conjugate fragments.

A B

C

In the rest of this section we prove the one-parameter covering homotopy property
for the map π : C(f0) → FO3 taking any conjugate curve (from the space C(f0) of
all conjugate curves with a fixed initial flag f0) to its final flag (see Theorem 2.10.
from introduction).
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Lemma 5.5. Any conjugate curve γ : [0, 1] → S2 can be nondegenerately deformed
preserving its initial and final flags into a curve γ̂ : [0, 1] → S2 whose image is the
union of the image of γ and two small loops attached to the final point.

Fig.5. Basic deformation of  the α -fragment.

Proof. Following the previous lemma we deform γ to obtain an α-fragment. Then
performing the procedure on fig.3 we get an ω-fragment adding two loops to the
curve. And finally we move these loops to the final point of the curve γ.

Remark 5.6. The radius of these extra loops can be increased to some fixed value
(say, one half of the radius of the considered sphere S2) independent of the initial
curve γ.

Let us for the sake of convenience reformulate Theorem 2.10.

Theorem 5.7. An arbitrary one-parameter deformation of the final flag of any con-
jugate curve γ can be covered by a deformation of the curve γ through nondegenerate
conjugate curves.

Proof. First of all we show how to cover any deformation within some fixed neigh-
borhood of the final flag. The radius of this neighborhood will not depend on γ
and therefore an arbitrarily large deformation will be covered by the iteration of this
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procedure. Let the radius of the neighborhood be equal to σ (say σ = 1
4 ). First we

deform γ by adding two circles of a fixed radius 2σ (say, 1
2 ) at the end of γ. Then we

are able to cover any motion of the final flag within its σ-neighborhood by changing
only the added loops, see fig.6. This completes the proof.

Fig. 5. Illustration of the covering homotopy property.

Fig.6. A counterexample to the 2-parameter covering
homotopy property (the 1-parameter family of curves
is obtained by shortening the ends of the central curve).

γ(1/2) γ(1)γ(0)

Remark 5.8. The two-parameter covering homotopy property fails for this map. Given
the one-parameter family of conjugate curves shown in fig.7 consider the one-parameter
deformation of the final flags of these curves which rotates every final flag about its
final point in the anticlockwise direction sufficiently many times. One can show that
this deformation can not be covered by a one-parameter deformation of the initial
family of curves. The proof of this statement is based on the observation that in
order to cover the above deformation it is at least necessary to deform curves in the
initial family (preserving initial and final flags) into curves with a selfintersection
point depending continuously on a parameter of the family. But this is obviously
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impossible in the class of nondegenerate curves, see fig.7.

Part II. Nondegenerate curves on S2 with a given monodromy operator.

This part is devoted to the calculation of the number of connected components in
the space D(M) of all third order linear ordinary differential equations with a fixed
conjugacy class M.

Let us fix a basis in R3 and let M be a monodromy matrix belonging to the
conjugacy class M (notation : M ∈ M). Consider the action of this matrix M on
FO3 and look at the set of all right-oriented curves satisfying the relation f1 = Mf0,
where f0 and f1 denote the initial and final flags of the curve.

Our strategy is rather simple. We consider FO3(= SO3) as the (Hopf) bundle
over S2 with the fibre S1, where the fibre is the set of all oriented flags on S2 passing
through a given point. For each initial flag f0 and fixed M we have already classified
nondegenerate curves connecting f0 and f1 = Mf0 in Part I. Now we study how the
situation changes when we change the point on the base. For generic M the fibre
over a typical point of S2 contains a subset called the arc A consisting of those flags
f which can be connected by a disconjugate curve with its image Mf (see Part I).
One of our aims is to describe connected components of the sets of these arcs in the
ambient space FO3. The main tool is the description of bifurcations of the arcs when
the base point on S2 passes through an invariant subspace of M .

The next section contains the necessary information about the fundamental groups
of conjugacy classes of different Jordan normal forms (JNF) of matrices in GL3(R).
This description of the conjugacy classes gives a classification of the coadjoint orbits
of the GL3(R)-Kac–Moody group and so is of independent interest.

§6. Topology of conjugacy classes in GL3(R).

Here we describe the fundamental groups of conjugacy classes in the universal
coverings GL0

3(R) and SL0
3(R) of the groups GL3(R), and SL3(R) respectively.

First of all let us consider the group SO3(R). Topologicaly this group is the three-
dimensional projective space, and π1(SO3(R)) = Z/2Z. In order to describe the
conjugacy classes in this group, look at the corresponding Lie algebra. The adjoint
orbits in the Lie algebra are two-dimensional spheres (which are simply-connected).
Thus in the neighborhood of the unit element of the group we will see the same
picture. The image of the open ball of the radius π in the Lie algebra (diffeomorphic
to R3) cover under the exponential map the whole Lie group (diffeomorphic to RP3)
except for the projective plane RP2 at infinity. The sphere of the radius π covers
it twice. This plane is the orbit of the rotation of R3 by π under conjugations.
Thus the inverse images of all conjugacy classes in SO3(R) except the above one in
the universal covering SO0

3(R) = S3 for the natural projection SO0
3(R) → SO3(R)
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consist of two connected components. The above non-oriented orbit has a connected
lifting in SO0

3(R).

Generalizations of this observation are given by the following two theorems.

Theorem 6.1. The conjugacy class of any element M ∈ GL+
3 (R) with one of the

following Jordan normal forms (JNF)





−λ 0 0
0 −µ 0
0 0 ν



 or





−λ 0 0
0 −λ 0
0 0 ν





(where λ, µ, ν > 0 are distinct) has a connected inverse image in the universal covering
GL0

3 for the natural projection GL◦
3 → GL+

3 (R); otherwise the pull-back in GL◦
3 of

the conjugacy class of M ∈ GL+
3 (R) consists of two connected components.

Remark 6.2. The same statement is valid for SL3(R) since GL+
3 (R) splits into SL3(R)

and scalar matrices lying in the center.

Remark 6.3. For GL2- and SL2-cases the number of connected components in the
inverse image is infinite for any monodromy operator.

Proof of theorem 6.1. First of all we show that theorem 6.1 is equivalent to the
following statement.

Let CM ∈ GL+
3 (R) denote the conjugacy class of the operator M .

Proposition 6.4. For operators M with JNF:





−λ 0 0
0 −µ 0
0 0 ν



 or





−λ 0 0
0 −λ 0
0 0 ν





where λ, µ, ν > 0 are distinct, the embedding CM →֒ GL+
3 induces an epimorphism

φ : π1(CM ) → π1(GL+
3 ) = Z/2Z. For other operators the induced homomorphism

φ : π1(CM ) → 0 ∈ π1(GL+
3 ) is trivial.

Equivalence of this proposition to Theorem 6.1 is obvious since CM ⊂ GL+
3 has

connected inverse image in GL0
3 only in the case when there exists a closed path

γ ∈ CM representing the generator of π1(GL+
3 ).

Our proof is based on the explicit consideration of all 10 real Jordan normal forms
16



in GL+
3 .

a)





λ 0 0
0 µ 0
0 0 ν



 b)





−λ 0 0
0 −µ 0
0 0 ν



 c)





λ cosα λ sinα 0
−λ sinα λ cosα 0

0 0 ν





d)





λ 1 0
0 λ 0
0 0 ν



 e)





−λ 1 0
0 −λ 0
0 0 ν



 f)





λ 1 0
0 λ 1
0 0 λ





g)





λ 0 0
0 λ 0
0 0 ν



 h)





−λ 0 0
0 −λ 0
0 0 ν



 i)





λ 1 0
0 λ 0
0 0 λ





j)





λ 0 0
0 λ 0
0 0 λ





Lemma 6.5. Suppose that operators M0 and M1 can be connected by a continuous
path Ms ∈ [0, 1], where Ms has the same Jordan type for s ∈ (0, 1] as M1 (i.e. belongs
to the same class a),b),... etc given above but not necessarily with the same λ, µ, ν, α).
Suppose also that φ(π1(CM0

)) = 0. Then φ(π1(CM1
)) = 0.

Proof. Let γ = {θ(τ), τ ∈ [0, π]} ∈ CM1
be an arbitrary closed path in the conjugacy

class of M1. We will prove that it is contractible. For any path θ(τ) ∈ CM1
there

exists a path g(τ) ∈ GL+
3 , g(0) = e such that θ(τ) = g−1(τ)M1g(τ) by definition

of conjugacy classes. The fact that the path is closed ( θ(π) = θ(0) ) means that
g(π) belongs to the stabilizer St(M1) of the matrix M1. The assumption that Ms

for any s 6= 0 has the same type as M1 means that their stabilizers are conjugated
and one can choose a continuous path gs(π) such that gs(π) ∈ St(Ms) for any s 6= 0.
Then gt0(τ) for any t0 defines the closed path θs0

= g−1
s0

(τ)Ms0
gs0

in the orbit CM0

(the path is closed since gs(π) ∈ St(Ms)). Therefore one-parameter family of closed
paths θs(τ) defines the homotopy of the path γ to some closed path γ′ in CM0

. The
condition φ(π1(CM0

)) = 0 means that γ′ is contractible on the group GL+
3 . Thus γ

is also contractible.

Corollary 6.6. For operators M of the types c), f), i), j) and d), a), g) with positive
eigenvalues arbitrary closed paths in CM are contractible on GL+

3 , i.e. φ(π1(CM )) =
0.

Proof. The scalar matrix λE belongs to the center and its orbit consists of one point.
Thus obviously φ(π1(CλE)) = 0. The other mentioned matrices can be connected
with a scalar matrix by some rather obvious paths within their types.

We have not handled yet the following three types of M :

b)





−λ 0 0
0 −µ 0
0 0 ν



 , h)





−λ 0 0
0 −λ 0
0 0 ν



 , e)





−λ 1 0
0 −λ 0
0 0 ν




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Lemma 6.7. The first two types b) and h) represent a nontrivial element of π1(GL+
3 ),

i.e. φ(π1(CM )) 6= 0.

Proof. Indeed, the stabilizer of these types contains the following element:

σ =





1 0 0
0 −1 0
0 0 −1



 .

Therefore the curve g(τ) such that g(0) = e, g(π) = σ,

g(τ) =





1 0 0
0 cos τ sin τ
0 − sin τ cos τ



 ,

defines closed paths θ(τ) = g−1(τ)Mg(τ) in the corresponding orbits CM . These
paths on CM are noncontractible since g(π) inverts the direction of the positive eigen-
vector of M and preserves its invariant 2-dimensional ”negative” subspace. Note that
corresponding orbits are non-orientable.

Finally the Theorem 6.1. follows from the following proposition.

Lemma 6.8. The orbit of

M =





−λ 1 0
0 −λ 0
0 0 ν





is simply-connected:
φ(π1(CM )) = 0.

Proof. The stabilizer of M consists of the matrices of the form




a b 0
0 a 0
0 0 c





where c > 0. Let g(x) be a curve with g(0) = e, g(π) ∈ St(M) defining a closed path
θ in CM . The family

Ms =





−λ s 0
0 −λ 0
0 0 ν



 , s ∈ [0, 1]

defines the 2-chain θs(τ) = g−1(τ)Msg(τ) since g(π) ∈ St(M1) = St(Mτ ) for τ 6= 0.
However, the matrix

M0 =





−λ 0 0
0 −λ 0
0 0 ν




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under the action of the path g(τ) with g(π) ∈ StM1
spans a contractible path. Indeed,

the upper (2 × 2)-block of the stabilizer acts trivially on the scalar (2 × 2)− block of
matrix M0. We have just mentioned that the path generated by M0 is noncontractible
for the paths g(τ) where g(π) has a negative element c only.

This finishes the proof of Lemma 6.8 and Theorems 6.1.

Remark 6.9. It turns out that the problems discussed in this section are closely related
to the following classification problem for the affine Lie algebra orbits.

An affine (nontwisted Kac–Moody) Lie algebra Ĝ, where G is a reductive (matrix)

Lie algebra is a one-dimensional central extension of the current Lie algebra G̃ =
C∞(S1,G)). The commutator in Ĝ is defined by [(A(x), a), (B(x), b)] = ((AB −
BA)(x),

∫

Tr(A′(x) B(x))dx). It is known ([RS]) that the space of matrix differential

operators {a d
dx

+ A(x), A ∈ C∞(S1,G)} can be naturally identified with dual space

Ĝ
∗ to the affine Lie algebra Ĝ. Under this identification the coadjoint action of P ∈ G̃

on Ĝ
∗ coincides (for a 6= 0) with the gauge action on differential operators. Thus the

gauge classification of differential operators is equivalent to the classification of the
orbits of the coadjoint action on the affine Lie algebras. These orbits are maximal
nondegenerate submanifolds of the linear Poisson structure, i.e. the symplectic leaves
of the Poisson-Lie bracket, also known as Berezin-Kirillov bracket.

On the other hand description of the classes for the first order matrix linear
differential equations {a d

dx
Ψ + A(x)Ψ = 0, A ∈ C∞(S1,G)} of the above type

with respect to gauge equivalence: Ψ → PΨ (or A 7→ P−1 d
dx
P + P−1AP ), where

P ∈ G̃ = C∞(S1, G) is a well known problem of analysis (here G is the Lie group

of the Lie algebra G). Denote by G̃◦ = C∞
◦ (S1, G) the connected component of G̃

containing the trivial map of S1 onto the unit matrix (connected components of the

entire group G̃ are enumerated by the elements of π1(G)).

Definition 6.10. The monodromy operator M of the linear matrix operator with π-
periodic coefficients {a d

dx
+ A(x), A ∈ C∞(S1,G)} is the operator which sends each

solution ψ(t) of the corresponding differential equation to the solution ψ(t+ π).

Floquet’s theorem, ([Ha]). The only invariant of the matrix differential equation

on the circle under the action of gauge group G̃ is the conjugacy class of the mon-
odromy operator (belonging to G ) of this equation; for gauge transformations from G̃◦

the only invariant is the conjugacy class of the monodromy operator in the universal
covering G◦ of the group G.

G̃-equivalence classes as well as the group G̃ itself generally contain several con-
nected components while for the G̃◦-equivalence these classes are connected by defi-
nition. Therefore, the latter equivalence is often preferable.

The main result of this section can be reformulated using Floquet’s theorem as
a result on the orbits of infinite-dimensional Lie algebras. We obtain the following
classification of the symplectic leaves in the third order affine Lie algebras related to
GL3 and SL3.
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Theorem 6.11. Symplectic leaves of the linear Poisson structure on the Kac-Moody
algebras related to GL+

3 (R) and SL3 are enumerated by the real parameter a 6= 0,
JNF of operators and an invariant from Z/2Z for any JNF except the two described
in the Proposition 6.4. Each of those forms correspond to the unique symplectic leaf.

In conclusion we recall the proof of Floquet’s theorem.

Proof ( [RS]). Let Ψ : R → G be the fundamental solution and M be its monodromy
matrix. Then multiplication of the fundamental solution by a periodic matrix function
changes the monodromy operator M only within its conjugacy class. For a multipli-
cation by a matrix function P ∈ G̃◦ the homotopy type of the path on G given by
the map Ψ on the period is also preserved. Then the congugacy class of M is the only
invariant of the fundamental solution, and thus of the equation itself.

§7. Classification of curves subordinated to given monodromy operator.

Recall that the space D(M) consists of all right-oriented nondegenerate curves on
S2 with a fixed initial flag f0 and subordinated to matrices M from the conjugacy
class M (notation: M ∈ M). This means that for any curve γ ∈ D(M) there exists
a matrix M ∈ M such that initial flag f0 and final flag f1 = Mf0.

Let us fix a matrix M ∈ M. Consider the space Df0
(M) of all nondegenerate

right-oriented curves with an initial flag f0 and subordinated to M (i.e. for any
γ ∈ Df0

(M) the relation f1 = Mf0 holds).

Lemma 7.1. The space D(M) is naturally identified with
⋃

f∈FO3
Df (M)/St(M),

where M is an arbitrarily chosen matrix from the conjugacy class of M and St(M) ⊂
GL+

3 denotes its stabilizer subgroup.

Proof. Consider the map η :
⋃

f∈FO3
Df (M) → D(M) shifting any curve by the

unique orthogonal transformation sending the initial flag f of this curve to some fixed
flag f0. Then two curves from

⋃

f∈FO3
Df (M) are mapped to the same element of

D(M) if and only if they differ by a matrix from St(M).

Thus in order to calculate the number of connected components in D(M) we can
consider it as

⋃

f∈FO3
Df (M)/St(M). By theorem 6.1. the number of connected com-

ponents in Df (M) could be either 2 or 3 determined by the existence of disconjugate
curves in Df (M).

To prove Theorem 2.5 from the introduction we first consider the number of con-
nected components in the set

⋃

f∈FO3
Dcon

f (M), where Dcon
f (M) denotes the set of

all conjugate curves starting at f and ending at Mf and then find the number of
components in the quotient

⋃

f∈FO3
Dcon

f (M)/St(M).
Theorem 2.10. implies that an arbitrary 1-parameter deformation of the final flag

of any conjugate curve can be covered by its deformation within the class of conju-
gate curves. The appropriate choice of parametrization enables us also to cover any
1-parameter deformation of the final matrix M within the conjugacy class M. There-
fore the number of connected components in the set of all right-oriented conjugate
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curves subordinated to a given conjugacy class M coincides with the number of con-
nected components in the universal covering of the conjugacy class of M. Connected
components of conjugacy classes in the universal covering of GL3 were carefully stud-
ied in §6. Finally note that the stabilizer St(M) respects these components and thus
the number of connected components of the quotient

⋃

f∈FO3
Dcon

f (M)/St(M) is the

same as in
⋃

f∈FO3
Dcon

f (M).
We present below the list of all Jordan normal forms and the number of components

both in the set of conjugate curves and in the set of disconjugate curves. By the above
remark the number #Conj of connected components in the space of conjugate curves
can be taken from §6 (see Theorem 6.1). The column #Disconj will be discussed
later. The total column is summarized in the Theorem 2.5.

JNF #Conj #Disconj Total
a 2 1 3
b 1 1 2
c 2 1 3
d 2 1 3
e 2 1 3
f 2 1 3
g 2 0 2
h 1 1 2
i 2 0 2
j 2 1 3

So it remains to study the number of connected components in the set
⋃

f∈FO3
Ddis

f(M)/

St(M) where Ddis
f (M) denotes the set of all disconjugate curves starting at f and

ending at Mf , and to define which of them form a separate connected component
and which are connected with

⋃

f∈FO3
Dcon

f (M)/St(M).

Our nearest goal is to determine for which pairs f andM the spaceDf (M) contains
right-oriented disconjugate curves. It should be mentioned that together with the M -
action in R3 we consider its induced action on the sphere S2.

Definition 7.2. The flag f is called M -disconjugate if there exists a disconjugate curve
connecting f and Mf .

In order to describe the set of M -disconjugate flags in FO3 we need several defini-
tions.

Definition 7.3. The set I(M) of all x ∈ S2 ⊂ R3 such that x,Mx and M2x are
linearly dependent in R3 is called the degeneration set of the matrix M .

Remark 7.4. The set I(M) is the union of all invariant subspaces of M of positive
codimension. The set I(M) is preserved by the action of St(M).

Remark 7.5. The set I(M) consists of
1) three transversal great circles if M has the Jordan normal form of the types a)

or b) (see §6);
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2) one great circle and a pair of antipodal points for the JNF c);

3) two great circles (one of which is double) for the JNF d) or e);

4) one great circle for the JNF f);

5) the whole S2 otherwise.

Definition 7.6. A vector x /∈ I(M) is called M -positive if the orientation of the triple
x,Mx,M2x coincides with the fixed orientation of R3, and M -negative otherwise.

Remark 7.7. For a fixed orientation on S2 the circle Cx of all flags passing through
any given x (i.e. the fiber Cx of the bundle FO3 → S2) has a natural orientation
induced from the tangent bundle of S2.

For any point x /∈ I(M) we define two pairs of flags (fx, F̄x) and (fx−1 , F̄x−1)
passing through x. The flags of each pair have the same point x and the same great
circles but with the opposite orientations.

The 4 flags fx, F̄x, fx−1 , F̄x−1 are defined as follows.

a) The flag fx has fot its point x and its great circle passes through x and Mx and
is oriented so that the motion from x to Mx along the shortest of the two pieces of
the great circle is positive. (Recall that we consider the induced action on S2, and x
and Mx can not be antipodal due to condition x /∈ I(M).)

b) The flag F̄x coincides with fx except that its great circle has the opposite
orientation;

c) The flag fx−1 has for its point M−1x and its great circle is M−1(fx), i.e. the
great circle passing through M−1x and x;

d) The flag F̄x−1 coincides with fx−1 except that its great circle is oriented oppo-
sitely.

In fig.7. we give locations of M -positive and M -negative domains of S2 \ I(M) for
all JNF a) -f) of M . One can easily check that in all these cases the stabilizer St(M)
acts transitively on M -positive and M -negative domains.

Now we are ready to describe the arc Ax consisting of all M -disconjugate flags
passing through a given point x /∈ I(M) on the sphere. Recall that the set of all flags
passing through x form a circle Cx.

Lemma 7.8. If x /∈ I(M) then the arc Ax of all M -disconjugate flags passing through
x coincides with

a) the open interval (fx−1 , fx) ⊂ Cx if x is M -positive;

b) the closed interval [F̄x, F̄x−1 ] ⊂ Cx if x is M -negative.

Proof. Since x /∈ I(M) we can choose R2 ⊂ R3 so that the points x,Mx and M2x
lie in the same hemisphere. We use central stereographic projection to identify this
hemisphere with R2. Then the pair of vectors (Mx − x,M2x − x) defines the same
orientation of R2 if x is M -positive and the opposite orientation if x is M -negative
(see fig.8).
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Fig.7. The structure of M-positive and M-negative 
domains for different JNF's.
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The orientation of R3 and of the great circle C = R2
⋂

S2 define the upper and
lower hemispheres H+ and H− of S2 \ C as follows. Add to a pair of right-oriented
vectors (v1, v2) on the plane R2 ⊃ C the third vector v3 such that the triple (v1, v2, v3)
forms a right-oriented basis in R3. Then v3 is directed to the upper hemisphere H+.
The opposite hemisphere H− is called the lower one.

One can easily see that a flag f ∈ Cx passing through x is strictly M -disconjugate
if the following two conditions are satisfied:

a) the point Mx lies in the upper hemisphere with respect to the great circle of f ;

b) the point x is in the upper hemisphere with respect to the great circle of Mf .
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This means that if x is M -positive then all the flags between fx−1 and fx are M -
disconjugate, excluding the endpoints because they do not correspond to any of five
types of nonstrictly disconjugate curves on fig.2.

For M -negative x the set of M -disconjugate f ’s is formed by the flags between
F̄x and F̄x−1 including the endpoints which correspond to nonstrictly disconjugate
curves.

Let us finally prove Theorem 2.5. We describe now the connected components of
the set of disconjugate curves for all JNF’s.

Let us consider first the Jordan normal forms a) -f) where the set I(M) differs
from the whole space S2. By the Lemma 7.8. for each point x /∈ I(M) the arc Ax is
nonempty and depends continuously on x.

If x is M -negative then the set of disconjugate curves starting at x is connected
with the set of conjugate curves starting at x since the boundary flags of Ax could be
connected with conjugate curves via nonstrictly disconjugate curves. Namely, rotating
the initial flag at x it is possible to connect a strictly disconjugate curve passing
through a nonstrictly discongugate one with a conjugate curve. Hence, M -negative
points x give no new connected components compared to the set

⋃

f∈FO3
Dcon

f (M)/

St(M). So it remains to consider the case of M -positive points.

Lemma 7.9. If x(τ), τ ∈ [0, 1) is a path consisting of M -positive points on S2 such
that x(1) belongs to I(M) then the arc Ax vanishes as τ tends to 1.

Proof. We consider separately the following 3 cases depending on the structure of
I(M):

a) x(1) is a point on a great circle of I(M);
b) x(1) is a point on a double great circle of I(M);
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c) x(1) is an isolated point of I(M);

Using Lemma 7.8. we have to prove that in all these cases the open segment
(fx−1(τ), fx(τ)) vanishes when τ → 1.

In the cases a) and b) the points x(1),M(x(1)) and M2x(1) form an order pre-
serving triple on the same great circle. Hence by the definition fx(1) = fx−1(1), and
thus fx(τ) tends to fx−1(τ) when τ → 1. Moreover the set Ax(1) is empty, i.e. there
are no disconjugate curves connecting x(1) and M(x(1)). This gives the necessary
statement.

In the case c) let x(1) be an isolated point of I(M) within a domain of M -positive
points. For any flag f passing through x(1) its image Mf has the same base point
x(1) and its great circle is obtained by rotation in a positive direction by some angle
less than π. The set Ax(1) is also empty in this case. This means that the segment
(fx−1(τ), fx(τ)) vanishes when the path x(t) tends to the point x(1) and finishes the
proof of Lemma 7.9.

Corollary 7.10. For the JNF a)-f) the number of connected components formed
by disconjugate curves in the space

⋃

f∈FO3
Ddis

f (M) is equal to the number of M -

positive components in S2 \ I(M). The number of those components in the quotient
⋃

f∈FO3
Ddis

f (M)/St(M) equals one.

Indeed eachM -positive component in S2\I(M) gives rise to a connected component
formed by the union of all arcs in FO3 projected on this component. This set is sepa-
rated from the rest of the space of nondegenerate curves by lemma 7.9. The stabilizer
acts transitively on M -positive components and this implies the existence of exactly
one disconjugate connected component in the quotient

⋃

f∈FO3
Ddis

f (M)/St(M).

The remaining cases g)- j) will be considered separately.

The case j) corresponding to the identity monodromy was investigated by J. Little
[Li]. According to his results there exists a separate component formed by strictly
disconjugate curves.

In the case g) consider on S2 the great circle E formed by the eigenvectors with
the eigenvalue λ. After identification of both hemispheres S2 \E with R2 via central
projection the operator M acts as a homothety with the coefficient λ/ν. For each
point x of R2 different from the origin (which corresponds to the eigenvector with
the eigenvalue ν on S2) there exists only one flag fx such that it can be connected
with Mfx by a (nonstrictly) disconjugate curve, namely, the great circle of fx passes
through x and the origin. See cases λ/ν > 1 and 0 < λ/ν < 1 in fig. 9. The set
of such disconjugate curves is connected to the set of conjugate curves. Indeed, an
arbitrarily small perturbation of the line of the flag fx implies a deformation of any
disconjugate curve of the arc Ax into a conjugate one. Thus disconjugate curves do
not form a separate component in this case.

In the case h) the action of M on the same hemispheres constructed as above is
the dilation with the negative coefficient −λ

ν
. For each point x ∈ R2 the set of fx

with a nonempty arc Ax consists of the flags the oriented lines of which together with
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the radius vector of x form the given positive orientation of R2, see fig.9. They form
a separate connected component.

In the last remaining case i) on each hemisphere of the complement S2 \ E the
operator M acts as a Jordan block with the unit eigenvalue. Analogously to the case
g) for each point x ∈ R2, x 6= 0 there exists the unique flag fx through x such that fx

and Mfx can be connected by a discojugate curve, see fig.9. These curves also become
conjugate after a small shift of the line of fx. Thus there is no extra disconjugate
component in this case.

This was the last case to consider and the proof of Theorem 2.5. is finally finished.

JNF g) JNF g)
λ/ν>1 0<λ/ν<1

x

Mx

x

Mx

JNF h) JNF i)

x

Mx

Fig.10. Special flags and their disconjugate curves 
for JNF g), h) and i).

Ο
Ο

Ο

Appendix: Geometry of trains in the space of complete flags.

This section is not a part of the proof of main theorems, but is still closely related to
the topic of this paper. We think that geometry of the train variety in FO3 discussed
here is of independent interest.

Definition A1. The set Tnf of all flags in FO3 nontransversal to a flag f is called
the train of f .
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Definition A2. A positively oriented basis e1, e2, e3 in R3 is called adjusted to an
oriented flag f = (l, p) if e1 spans the line l and the pair (e1, e2) spans the plane p
with proper orientations. Let us fix an arbitrary flag f and some basis adjusted to f .

Consider the natural SL3-action on the space FO3. The stabilizer subgroup of
any flag f can be identified with the subgroup of upper triangular matrices with
positive entries on the main diagonal (in any basis adjusted to f). The orbits
of St(f)-action on FO3 are cells containing the unique coordinate flag, (see [Fu]).
These cells are enumerated by the elements of the group D3 (see [Br]) and their
total number equals 24. Namely, each cell corresponds to a signed parmutation on
3 elements with even number of minuses, i.e. to an arbitrary set (a, b, c), where
{a, b, c} ∈ ±1,±2,±3 and abc = 6. The oriented coordinate flag corresponding to
(a, b, c) is ((sign a)e|a|, (sign b)e|b|, (sign c)e|c|) (for example (2,−3 − 1) gives the flag
(e2,−e3,−e1)). Adjacency of FO3-cells can be easily obtained from the classical
Bruhat ordering, see Fig. 10 and [St]. By the definition Tnf coincides with the union
of all positive codimensional cells of the Schubert decomposition of FO3 associated
with f , i.e. all cells except the 4 cells of dimension 3. There are eight 2-cells, eight
1-cells and four 0-cells.

3-2-1

2 3 1 -2 3 1 3 1  2 3 -1 -2

2 1 3 2 -1-3 -2 -13 1 32 -1 3-2 -1 -32-2 1 -3 1 -3 -2

1 2  3 1 -2 -3 -1 2 -3 -1 -2 3

Fig.11. The closure of the 3-cell (reachable strata are placed 
in boxes).

The equation for Tnf is as follows. The identification of FO3 with SO3 in any
basis adjusted to f takes f onto the unit matrix. An arbitrary matrix (ai,j) ∈ SO3
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belongs to the train Tnf if and only if

∆ = ∆1(X)∆2(X) = 0,

where ∆i is the right principle (i× i)-minor of the orthogonal matrix (ai,j).
To describe the germ of Tnf in a neighborhood of f we identify the standard affine

chart in SO3 with the space of upper triangular matrices of the form





1 x z
0 1 y
0 0 1



.

Then the equation of the train of the unit matrix is z(z − xy) = 0.
Globally the space FO3 = SO3 is diffeomorphic to RP3. Each of ∆1 = 0 and ∆2 =

0 is diffeomorphic to the 2-torus which is cut by four circles into four 2-dimensional
cells. These circles consist of eight 1-cells forming the 1-skeleton of Tnf .

Remark A3. The surfaces ∆1 = 0 and ∆2 = 0 are defined by the following homoge-
neous equations in R4 = {(u1, u2, v1, v2)}:

u2
1 + u2

2 = v2
1 + v2

2

(u1 − v1)
2

+ (u2 − v2)
2

= (u1 + v1)
2

+ (u2 + v2)
2
.

Thus there are four 3-dimensional cells in FO3. Each one is bounded by a pair of
2-dimensional cells. Cells from the same pair belong to one torus and intersects each
other in four vertices thus forming a ”pillow”. Four ”pillows” are glued to each other
in a special way which one can restore from the Bruhat order.

a b c d c a d b

d

c

b

a

d

b

a

c

Fig.12.  Glueing pattern for ¨pillows¨ (edges marked 
by the same letter belong to one 2-cell).

Remark A4. We have mentioned in §4 that the flag curves of nondegenerate curves
are tangent to the SO3-invariant Cartan distribution C in FO3. Properties of trains
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are closely related to those of C. For example if we consider the space of all germs of
flag curves starting at f then they fill the germ of a domain called the local reachable
domain. It coincides with one of the local components of FO3 \Tnf . The reachable
domain for the flag corresponding to the unit matrix coincides with the component
of the complement to the surface z(z − xy) = 0 given by the system of inequalities
z > 0, z > xy, x > 0, y > 0.

Lemma 4.9. can be reformulated as follows. A nondegenerate curve γ(t) : [0, 1] →
S2 is disconjugate until the moment τ0 ∈ (0, 1] when the corresponding flag curve f(t)
reaches the train of f(0): f(τ0) ∈ Tnf(0). Thus all nondegenerate curves starting at
f lie in one connected component of FO3 \ Tnf and remain disconjugate until they
reach its boundary. This component is called the disconjugate domain of the flag f
and denoted by Disf .

If we associate the flag f with the unit matrix then the domain Disf is given by
inequalities ∆i > 0, i = 1, 2.

The following proposition describes which strata of the Disf -boundary are reach-
able, i.e. which flags in ∂Disf could be the final flags of nonstrictly disconjugate
curves.

Proposition A5. A generic point p of the Disf -boundary is reachable if some (and
therefore any) vector v ∈ C|p points outside the domain Disf and is nonreachable

otherwise. A stratum S ⊂ Disf of positive codimension is reachable by nonstrictly
disconjugate curves iff S lies in the intersection of the closures of reachable strata.

We skip the proof. Fig. 10 contains the adjacency diagram of strata in FO3 where
signed permutations corresponding to reachable strata are placed in boxes.

Final Remarks.

As we have mentioned in §4 the flag curves of nondegenerate curves on S2 are tan-
gent to the Cartan distribution C which is the left invariant distribution of quadrants

(R+)
2

on FO3 = SO3. Let us formulate the following general question.
Let Mn be a compact n-dimensional manifold and F be a nonholonomic distribu-

tion of cones, i.e. a distribution of cones such that its associated distribution of linear
subspaces is nonholonomic, see [VG]). Let Regf denotes the space of all regular i.e.
smooth and everywhere tangent to F curves {γ : [0, 1] →Mn} starting at some fixed
tangent element f = γ(0) and ending elsewhere on Mn, and let π : Regf → TMn be
the map sending a regular curve to its final tangent element. What kind of homotopy
properties holds for the map π?

Recall that for nonholonomic distributions of linear subspaces (instead of cones)
the covering homotopy property is always valid by results of S. Smale but only in
C0-topology.

However for a distribution of cones germs of reachable domains of which are dif-
ferent from the complete neighborhood of initial points the situation at least locally
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is different, i.e. short curves can not satisfy the covering homotopy property (even in
1-parameter families). Indeed, if we choose a deformation of the final tangent element
pulling the point on the base outside the reachable domain then such a deformation
can not be covered by any deformation of the original short curve. If this local sit-
uation is preserved globally (as it holds for example for a nonholonomic distribution
of narrow parallel cones in Rn) then the covering homotopy fails completely. Still
in the case when the global reachable domain of any point coincides with the whole
manifold and there exist closed contractible curves tangent to the distribution and
passing through each tangent element one can hope that the k-parameter covering
homotopy is valid for some k for sufficiently long ’conjugate’ curves as it happened in
the situation considered in this paper. It will be very interesting to study the case of
left-invariant distributions on compact Lie groups and homogeneous spaces.

Another class of questions concerning the Poisson aspect of classification of curves
is the homotopy classification of quasiperiodic curves on spheres and projective spaces
in higher dimensions. The classification of quasiperiodic curves is helpful in the study
of topology of symplectic leaves of infinite-dimensional Poisson structures.

Finally the last and probably the most interesting question is to obtain any in-
formation about the higher homology or homotopy groups of the space of all closed
nondegenerate curves on S2.
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