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Abstract. In his shire theorem, G. Pólya proves that the zeros of iterated

derivatives of a meromorphic function in the complex plane accumulate on the
union of edges of the Voronoi diagram of the poles of this function. Recasting

the local arguments of Pólya into the language of translation surfaces, we prove

its generalisation describing the asymptotic distribution of zeros of iterations
of a meromorphic function on a compact Riemann surface under the action of

a differential operator of the form f 7→ df
ω
, where ω is a given meromorphic 1-

form. The accumulation set of these zeros is the union of edges of a generalized

Voronoi diagram defined jointly by the initial function f and the singular flat
metric induced ω on the Riemann surface.

1. Introduction

1.1. Short historical account. The classical shire theorem of G. Pólya claims
that for a meromorphic function f with the set S of its poles, the zeros of its
iterated derivatives f (n) asymptotically accumulate when n → ∞ along the edges
of the Voronoi diagram associated with S, see [11]. An illustration of this famous
result is shown in Figure 1.

Figure 1. The Voronoi diagram of the roots of a polynomial f of
degree 8 (left), and zeros of (1/f)(15) (right).

Several prominent mathematicians including N. Wiener, E. Hille, R. P. Boas
have continued Pólya’s line of study soon after the publication of the theorem, see
references in [15]. A number of articles extending and generalising the original shire
theorem appeared over the years, see e.g. [7, 8, 9, 16, 17, 19].
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In [22], Weiss provides a generalization of Pólya’s classical theorem to automor-
phic functions on the half-plane. There are two natural ways to generalize the
geometry of flat tori to surfaces of higher genus:

• hyperbolic surfaces (the metric still has constant curvature but it is not flat
anymore);

• translation surfaces (the metric is still flat but now it has conical singular-
ities).

The approach of Weiss corresponds to hyperbolic surfaces. In contrast, we study
in the present paper a class of linear differential operators corresponding to the
complex-analytic data defining a translation structure (see [?] for background on
translation surfaces).

More recently, using the circle of ideas contained in Pólya’s theorem, several
publications have concentrated on the weak limits of the root-counting measures
for zeros of f (n). In particular, Ch. Hägg and R. Bøgvad obtained a measure-
theoretic refinement of Pólya’s shire theorem for rational functions, see [3, 4]. Using
currents they also proved a similar result for Voronoi diagrams associated with
generic hyperplane arrangements in Cm.

Later Ch. Hägg extended the result of [3] by considering meromorphic functions
of the form f = ReU where R is a rational function with at least 2 distinct zeros
and U is a non-constant polynomial, see [10]. The class of such functions coincides
with the class of meromorphic functions that are quotients of two entire functions
of finite order, each having a finite number of zeros, see [20].

In 2021 V. Keo extended the results of [3] and [10] by studying a particular case
of meromorphic functions f(z) = 1/ (1− ez) having an infinite number of poles and
whose iterated derivatives are related to Eulerian polynomials, see [12]. In addition,
V. Keo considered iterations of rational functions under the action of differential

operators of the form D = g(z)
∂

∂z
where g(z) is a polynomial in z which is closely

related to the topic of the present paper. He mainly studied a particular case of

z
∂

∂z
and formulated some new conjectures.

1.2. Our set-up. In this paper we generalise the classical Pólya shire theorem to
the case of meromorphic functions on compact Riemann surfaces. Namely, let X be
a compact Riemann surface with a fixed meromorphic 1-form ω. We associate to
the pair (X,ω) the linear differential operator Tω acting on meromorphic functions
on X as

Tω : f → df

ω
(1.1)

Now given a meromorphic function f on X, we are interested in the asymptotic
of zeros for the sequence of meromorphic functions (fn)n∈N defined inductively by

f0 = f, fn+1 = Tωfn = Tn+1
ω f, n ≥ 1.

Definition 1.1. For a meromorphic function f on a Riemann surface X and any
operator T acting on the space of meromorphic functions, the limit set L(T, f) ⊆ X
is defined as the set of points z ∈ X such that any open neighborhood of z in X
contains a zero of Tn(f) for infinitely many n.

In the classical theorem of Pólya, the limit set coincides with a Voronoi diagram
associated with the set of the poles of the initial function. In our generalized
settings, the Voronoi diagram is defined with respect to the so-called principal
polar locus.
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Definition 1.2. Consider a (non-vanishing identically) meromorphic 1-form ω and
a fixed meromorphic function f on a Riemann surface X. The principal polar locus
PPL(ω, f) of pair (ω, f) is the subset of X containing:

• the poles of f that are not poles of ω;
• the zeros of ω where f is not locally factorized by ω (see Definition 1.3).

Definition 1.3. Given a point z0 on a Riemann surface X, we say that a mero-
morphic function f is locally factorized by a holomorphic 1-form ω if there exist:

• a neighborhood U of z0 in X,
• a holomorphic function ϕ defined on U ;
• a holomorphic function g defined on a neighborhood of ϕ(z0) in C

such that ω = dϕ and f = g ◦ ϕ in U .

Remark 1.4. In the classical Pólya’s shire theorem, the Riemann surface is the
extended complex plane CP 1 = C ∪ {∞}, ω = dz and PPL(ω, f) is the set of the
affine poles of f (i.e. poles different from ∞).

The main result of our paper is as follows.

Theorem 1.5. Consider a (non-vanishing identically) meromorphic 1-form ω on a
compact Riemann surface X, its associated differential operator Tω given by (1.1),
and any meromorphic function f on X such that PPL(ω, f) ̸= ∅. Then the follow-
ing two facts are valid:

(i) the limit set L(Tω, f) coincides with the Voronoi diagram Vω,f defined by
PPL(ω, f), see Definition 2.12 below;

(ii) the asymptotic root-counting measure of (Tω)
nf when n → +∞ is proportional

to the Cauchy measure of the Voronoi diagram Vω,f , see Definition 2.14.

1.3. Organization of the paper.

• ???
• ???
• ???
• ???
• ???
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2. Preliminary notions and results

2.1. Growth of pole orders under iteration of Tω. Unless a function f has a
very specific form, one expects it to develop poles at the zeros of ω under the iter-
ations of the operator Tω : f 7→ df

ω . The following lemma characterizes completely
this case.

Lemma 2.1. We consider a nonzero meromorphic 1-form ω and a meromorphic
function f on a Riemann surface X. For any point z0 ∈ X, the following statements
are equivalent:

• no function in sequence f, Tωf, T
2
ωf, . . . has a pole in z0;

• f is locally factorized by ω in z0 (see Definition 1.3).
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Proof. Up to local biholomorphic change of variable, we can assume that z0 = 0 and
ω = zmdz for some m ∈ N. For an arbitrary locally defined holomorphic function
f written as a series in coordinate z, we have

f(z) =

+∞∑
k=0

akz
k.

Tωf then writes as a Laurent series:

Tωf =

+∞∑
k=0

akkz
k−m−1.

It follows immediately that if no function in sequence f, Tωf, (Tω)
2f, . . . has a pole

in 0, then ak = 0 for any k /∈ (m+ 1)Z.
Introducing local primitive ϕ = zm+1

m+1 of ω, we obtain

f(z) =

+∞∑
k=0

ak(m+1)(m+ 1)kϕk.

Therefore, in a neighborhood of 0, f factorizes as g ◦ ϕ where g is a holomorphic
function defined in a neighborhood of 0 (given by the series above.

Conversely, for any meromorphic function f locally factorizing as g ◦ ϕ, direct
computation proves that for any k, we have:

T k
ωf = g(k) ◦ ϕ.

Therefore no iterate T k
ωf of function f has a pole in z0. □

The following statement establishes a dichotomy between points belonging to
the principal polar locus (see Definition 1.2) for which the orders of the poles grow
linearly and the complement to the principal polar locus for which the total order
of the poles remains bounded. In particular, for the total order of poles (and thus
the total number of zeros) to grow infinitely, the principal polar locus must be
non-empty.

Proposition 2.2. We consider a nonzero meromorphic 1-form ω and a meromor-
phic function f on a compact Riemann surface X. Then there is a bound M > 0
such that:

• for any k > M and any element p of PPL(ω, f), p is a pole of order
αp + k(dp + 1) of T k

ωf (dp is the order of ω in p and αp is some constant);
• for any k > M , the total order of the poles of T k

ωf outside PPL(ω, f) is
constant. All of these poles are also simple poles of ω.

Proof. A reasoning by iteration shows that for any k ∈ N, any pole of (Tω)
kf is

either a pole of f or a zero of ω. Since X is compact, We have finitely many points
to examine.
We first consider the case of a point p that is a pole of order m of f and a pole of or-
der −dp of ω. Direct computation shows that p is a singularity of order −m−1−dp.
Therefore, if p is a simple pole of ω, p remains a pole of order m of (Tω)

kf for any
k ∈ N. In contrast, if p is a pole of order at least two of ω, then (Tω)

kf is holomor-
phic in p provided k is large enough. In both cases, p does not belong to PPL(ω, f).

Now, we consider the case of a point p that is a zero of ω where f is locally
factorized by ω. If p is not a pole of f , then Lemma 2.1 proves that p is not a
pole of any function of sequence f, Tωf, (Tω)

2f, . . . . Thus, we have proved that
after finitely many steps, the total order of the poles of (Tω)

kf outside PPL(ω, f)
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stabilizes to the total order of the poles of f at simple poles of ω.

For any point p of PPL(ω, f), it follows from Lemma 2.1 that there exists kp ∈ N
such that (Tω)

kpf has a pole in p. Then direct computation proves that the order
of the pole increases by dp + 1 for each iteration of differential operator Tω. This
ends the proof. □

2.2. Translation structures. On a (possibly open) Riemann surfaceX, a nonzero
meromorphic 1-form ω defines a geometric structure as follows. We denote by:

• X∗ the surface punctured at the poles of ω;
• X∗∗ the surface punctured at the zeros and the poles of ω.

Local primitives of differential ω are locally injective on X∗∗. They form an atlas
of local biholomorphisms to C. Since two local primitives of the same differential
are defined up to the addition of a constant, transition maps between two distinct
charts of the atlas are translations of the complex plane. Therefore, ω endows Rie-
mann surface X with a translation structure. Pair (X,ω) is a translation surface
(see [?] for general background on translation surfaces).

Differential dz endows the complex plane C with the standard Euclidean metric
|dz|. Any chart ϕ of the translation atlas (in other words a local primitive of ω) con-
jugates the standard differential dz of the complex plane with differential ω defined
on X: we have ϕ∗dz = ω. Consequently, we can think about a translation surface
as formed by pieces of the standard flat plane glued together along translations.

Punctured surface X∗∗ is thus endowed with a flat metric |ω|. The latter extends
naturally to zeros of ω. A neighborhoods of a zero of ω of order k is mapped (by
any local primitive) to the complex plane by a ramified cyclic cover of degree k+1.
It follows that the flat metric |ω| extends to such a zero as a conical singularity
of angle 2(k + 1)π. Punctured surface X∗ is an Euclidean surface with conical
singularities (see [21]).

Remarkably, as soon as a meromorphic differential defined on a compact Rie-
mann surface has poles, the metric structure it defines on the surface punctured at
the poles is noncompact.

Lemma 2.3. Let X be a compact Riemann surface endowed with a nonzero mero-
morphic 1-form ω. Then punctured surface X∗ is a complete metric space for the
singular flat metric |ω|.

Proof. We have to prove that any Cauchy sequence (zn)n∈N of X∗ converges to
some limit point in X∗. Since X∗ is locally compact and ω has finitely many poles,
the question reduces to the only case where (zn)n∈N converges in X to a pole z∞
of ω. We will prove that no such sequence is a Cauchy sequence.

Let k ∈ N∗ and λ ∈ C be respectively the order and the residue of ω in pole
z∞. Up to a biholomorphic change of variable, we can assume that z∞ = 0 and
normalize ω to (λz + 1

zk )dz if k ≥ 2 and λdz
z if k = 1 (see [5] for details on local

models for poles in translation surfaces).
Up to taking a subsequence, we assume that sequence (zn)n∈N belongs to the

domain of a unique chart ϕ : z 7→ λln(z) − 1
(k−1)zk−1 if k ≥ 2 and ϕ : z 7→ λln(z)

if k = 1. Sequence (zn)n∈N being a Cauchy sequence with respect to metric |ω|
precisely means that sequence (ϕ(zn))n∈N is a Cauchy sequence of the flat plane
and thus converges to some point of the plane. It is therefore disjoint from any
small enough neighborhood of z∞. This ends the proof. □
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2.3. Locally isometric immersions of branched disks. In order to generalize
Voronoi diagrams to meromorphic functions defined on a translation surface, we
introduce a class of probing objects containing conical singularities.

Definition 2.4. A branched disk (∆, π∆) is a connected open Riemann surface
endowed with a surjective holomorphic map π∆ : ∆ → D where D is a centered
open disk of the usual complex plane.
∆ is endowed with a singular metric obtained by the pullback of the standard
Euclidean metric by the covering map π∆.
We refer to the fiber over the center of disk D by the covering map as the central
fiber of ∆. We define the radius of ∆ as the radius of disk D in the plane.

Provided that the ramification index of any point of ∆ is finite, a branched
disk is a translation surface (with boundary) where every chart of the atlas fac-
torizes through π∆. In the following, we prove that locally isometric immersions
of branched disks in a translation surface define calibrated neighborhoods of any
point.

Lemma 2.5. In a compact Riemann surface X endowed with a nonzero meromor-
phic 1-form ω, for any point z that is not a pole of ω and any radius r > 0, there
is a unique (up to isomorphism) immersion Ψr,z of a branched disk (∆, π∆) such
that:

• Ψr,z is a local isometry between ∆ and X (for the flat metric defined by ω);
• the radius of the branched disk is r;
• z belongs to the image of the central fiber of ∆ (Ψr,z is centered at z).

Proof. We identify z with a point z̃ of the universal cover X̃∗ of the surface punc-
tured at the poles of ω. Let ϕ be a local primitive ϕ of ω defined in a neighborhood
of z and such that ϕ(z) = 0. Primitive ϕ lifts to X̃∗ and extends by analytic

continuation to a univalued holomorphic function ϕ̃ on X̃∗.
For any r > 0, we denote by Dr the open centered disk of radius r > 0 in

the complex plane. Preimage ϕ̃−1Dr is an open Riemann surface endowed with
a holomorphic projection to D◦

r . We denote by Ar the connected component of

ϕ̃−1D◦
r containing z̃. Then Ar endowed with the restriction of ϕ̃ is a branched disk.

Projection of X̃∗ to X∗ provides the locally isometric immersion of the branched
disk.

Conversely, any locally isometric immersion Ψr,z of a branched disk into X∗ lifts

to X̃∗. It is immediate that its image should coincide with Ar. Two such locally
isometric immersions are therefore conjugated by an automorphism of the branched
disk. □

In the classical settings of the complex plane endowed with its Euclidean metric,
Voronoi diagrams can be defined in terms of maximal disk embeddings whose image
is disjoint from the set of the singularities. We introduce a similar notion of locally
isometric immersions of branched disks.

Definition 2.6. We consider a compact Riemann surface X endowed with a
nonzero meromorphic 1-form ω and a meromorphic function f . For any point
z0 that is not a pole of ω, the critical radius rz0 of z0 is the infimum of radii r ∈ R+

such that the image of the (unique up to isomorphism, see Lemma 2.5) locally
isometric immersion centered at z0 of branched disk of radius r is disjoint from
PPL(ω, f).

We refer to a locally isometric immersion centered at z0 of branched disk of
radius rz0 as a critical immersion.
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In a locally isometric immersion of a branched disk whose image is disjoint from
the principal polar locus, the pullback of meromorphic function f to the branched
disk (∆, π∆) is compatible with projection π∆.

Lemma 2.7. We consider a compact Riemann surface X endowed with a nonzero
meromorphic 1-form ω and a meromorphic function f . Let z0 be a point of X that
is not a pole of ω and does not belong to the principal polar locus PPL(ω, f). We
denote by rz0 the (nonzero) critical radius of z0.

For any radius r ≤ rz0 and any locally isometric immersion Ψ centered at z0 of

a branched disk (∆, π∆) of radius r, there is a holomorphic function f̃ defined on
Dr such that the following diagram commutes:

∆ X

Dr C

Ψ

π∆ f

f̃

Proof. Branched disk ∆ is endowed with a meromorphic 1-form Ψ∗ω. Projection
π∆ is a primitive of Ψ∗ω. Besides, since the image of Ψ is disjoint from the poles
of f , function f ◦Ψ is holomorphic on ∆.

Every zero of ω in the image of Ψ is disjoint from PPL(ω, f). It follows that in
any small enough open subset of ∆, f ◦Ψ factorizes through π∆ (see Definition 1.3).
We deduce by analytic continuation that f ◦Ψ is constant on fibers of π∆. Conse-
quently, there exists a holomorphic function f̃ such that f ◦Ψ = f̃ ◦ π∆. □

The critical radius can be characterized analytically as a radius of convergence.
In particular, provided that the principal polar locus is nonempty, every point has
a finite critical radius.

Lemma 2.8. We consider a compact connected Riemann surface X endowed with a
nonzero meromorphic 1-form ω and a meromorphic function f such that PPL(ω, f) ̸=
∅. Any point z that is not a pole of ω and does not belong to PPL(ω, f) has a finite
critical radius rz. Besides, given a locally isometric immersion Ψ of a branched
disk (∆, π∆) of radius rz0 centered in z0 into X, f̃ = f ◦ Ψ ◦ π−1

∆ does not extend
as a holomorphic function to the boundary circle ∂Drz0

.

Proof. ????????????????????????
For any r < rz0 , we consider the locally isometric immersion Ψr of a branched

disk (∆r, π∆r ). If f̃ = f ◦ Ψr ◦ π−1
∆ extends holomorphically to the boundary

circle ∂Dr, then there is a uniform ϵ > 0 such that for any z ∈ ∂Dr, f̃ extends
holomorphically to a disk of center z and radius ϵ.

???
Let rz0 > 0 be the critical radius of z0 (rz0 < +∞, see Lemma 2.8).

□

??????????????????ON VA POUVOIR VIRER CE LEMME
Provided the principal polar locus is nonempty, every point has a finite critical

radius.

Lemma 2.9. For a nonzero meromorphic 1-form ω and a meromorphic function
f defined on a compact connected Riemann surface X such that PPL(ω, f) ̸= ∅,
any point z ∈ X that is not a pole of ω satisfies rz < +∞.

Proof. We assume by contradiction that for some z0 ∈ X∗, we have rz0 = +∞.
Since X is connected and PPL(ω, f) ̸= ∅, there is a path γ between z0 and some
point z1 ∈ PPL(ω, f).
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Following Lemma 2.5 and Definition 2.6, path γ is contained in the image of
some locally isometric immersion Ψ of a branched disk (∆, π∆) centered at z0.
Lemma 2.7 then implies that f ◦ Ψ is holomorphic and constant on fibers of π∆.
Therefore, z1 cannot belong to PPL(ω, f) and we get a contradiction. □

The critical radius is a radius of convergence.

Lemma 2.10. For any point z0 that is not a pole of ω and does not belong to
PPL(ω, f), we have νz ≥ 1.

Proof. Let rz0 > 0 be the critical radius of z0 (rz0 < +∞, see Lemma 2.8). If

f̃ = f ◦Ψ ◦ π−1
∆ extends holomorphically to the boundary circle ∂Drz0

, then there
is a uniform ϵ > 0 such that for any z ∈ ∂Drz0

, f extends holomorphically to a disk
of center z and radius ϵ.

Translation surface (X,ω) is in particular a complete metric space (see Lemma 2.3).
Therefore, any point of the closure of the image of immersion Ψ is contained in the
image of the immersion of a branched disk of radius ϵ. It follows that for any radius
r smaller than rz0 + ϵ, the image of a locally isometric immersion centered at z0
of a branched disk of radius r is disjoint from PPL(ω, f). This is a contradiction.

Therefore, there is at least one point in ∂Drz0
, where f̃ = f ◦ Ψ ◦ π−1

∆ does not
extend holomorphically. □

2.4. Voronoi diagrams. Translation surface (X,ω) is stratified according to the
values of a Voronoi index ν defined in terms of immersions of branched disks.

Definition 2.11. We consider a compact connected Riemann surface X endowed
with a nonzero meromorphic 1-form ω and a meromorphic function f such that
PPL(ω, f) ̸= ∅. For any point z of critical radius rz that is not a pole of ω and
does not belong to PPL(ω, f), we define the Voronoi index νz of z in the following
way.

Let Ψ be a locally isometric immersion of a branched disk (∆, π∆) of radius rz
centered in z into X. The Voronoi index ν(z) of z is the number of points of the

boundary circle ∂Drz where f̃ = f ◦ Ψ ◦ π−1
∆ does not extend as a holomorphic

function.

Assuming that the principal polar locus is nonempty, it follows from Lemma 2.8
that every point of the surface satisfies ν ≥ 1. The Voronoi index decomposes to
underlying surface into:

• Voronoi cells (where ν = 1);
• Voronoi edges (where ν = 2);
• Voronoi vertices (where ν ≥ 3).

Definition 2.12. We consider a compact Riemann surface X endowed with a
nonzero meromorphic 1-form ω and a meromorphic function f such that PPL(ω, f) ̸=
∅. The Voronoi diagram Vω,f of pair (ω, f) is the union of the points z of X such
that νz ≥ 2.

Voronoi edges are straight segments with respect to the singular flat metric
induced by differential ω.

Proposition 2.13. We consider a compact Riemann surface X endowed with a
nonzero meromorphic 1-form ω and a meromorphic function f such that PPL(ω, f) ̸=
∅. Then Vω,f is a union of geodesics of singular flat metric |ω|.

Proof. ????????????????????? For any point z0 ∈ Vω,f , there is a locally isometric
immersion Ψ centered at z0 of a branched disk (∆, π∆) whose radius is the critical
radius of z0 (see Lemma 2.5).
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We first consider the case νz0 = 2. Let α, β be the two points of ∂Drz0
where

f ◦Ψ does not extend holomorphically. Then, then there is ϵ > 0 such that
??? CRITICAL IMMERSION □

2.5. Cauchy measure of a Voronoi diagram. Using central angles at points of
PPL(ω, f), we define the so-called Cauchy measure µω,f of Voronoi diagram Vω,f .

Definition 2.14. ???The Cauchy measure of each segment is the central angle of
the incident poles. Since there are finitely many edges (and the measure of each of
them is at most π), this measure is finite.???

Remark 2.15. Cauchy measure µω,f is invariant under scaling ω 7→ λω (with λ ∈
C∗).

3. Zero-free regions

??? Two cases depending whether νz = 1 because of a regular pole of f or a zero
of ω. In the first case, the classical proof works (with Cauchy formula).

3.1. Disk Lemma.

Lemma 3.1. In the open centered disk Dr of radius r > 1, we consider a mero-
morphic function f with a pole in 1 and no other pole in Dr.

For any ϵ satisfying ϵ < r−1
2 there exists M > 0 such that for any n ≥ M , no

zero of f (n) belongs to the open centered disk Dϵ of radius ϵ.

Proof. There are λ ∈ C∗ and m ∈ N∗ such that function g defined by g(z) =
f(z)− λ

(z−1)m is holomorphic on Dr. We consider some radius t satisfying 1 < t < r

and denote by G the maximal value of g(z) when |z| = t.
For some ϵ > 0, n ∈ N and z ∈ Dϵ, we apply Cauchy’s integral formula to g(n)(z)

and obtain g(n)(z) = n!
2iπ

2π∫
θ=0

g(teiθ)
(teiθ−z)n+1 . It follows that |g(n)(z)| ≤ n!G

(t−ϵ)n+1 .

Since f (n)(z) = g(n)(z)+ λ(−1)nn!
(z−1)m+n , we deduce that

|f(n)(z)|
n! ≥ |λ|

(1+ϵ)m+n − G
(t−ϵ)n+1 .

If ϵ < t−1
2 , there exists a constant M such that fn(z) ̸= 0 for any z ∈ Dϵ. □

Lemma 3.2. Let f be a meromorphic function in an open disk Dr of radius R
centered at 0, where 0 < R ≤ ∞. Suppose that f has at least 2 poles in Dr. Then,
for any z on the Voronoi diagram determined by the poles of f and ϵ > 0, there
exists a positive integer ℓ0 such that B(z, ϵ) contains a zero of f (ℓ) for any positive
integer ℓ0 > ℓ.

Proof. Let z0 be such that ∂B(z0, r) contains two poles ξ1 and ξ2 of f and has no
other pole in the interior. Then, in this disk we may write f as

f(z) =
c1

(ξ1 − z)d1
+

c2
(ξ2 − z)d2

+ ϕ(z)

where ϕ is analytic in the open disk B(z0, r), c1, c2 ∈ C, and d1, d2 are the orders
of ξ1, ξ2, respectively. We have

1

n!
f (n)(z) =

c1(d1)n
n!(ξ1 − z)d1+n

+
c2(d2)n

n!(ξ2 − z)d2+n
+

ϕ(n)

n!

=
c1(d1)n(ξ2 − z)d2+n + c2(d2)n(ξ1 − z)d1+n + ϕ(n)(z)(ξ1 − z)d1+n(ξ2 − z)d2+n

n!(ξ1 − z)d1+n(ξ2 − z)d2+n

(3.1)
Here, (a)n is the Pochhammer symbol denoting the ascending product of n consec-
utive integers, starting from a.

We will now try to apply Rouche’s theorem.
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Consider the polynomial

Gn(z) = c1
(d1)n
n!

(ξ2 − z)d2+n + c2
(d2)n
n!

(ξ1 − z)d1+n.

The generating function of Gn(z) is
c1(ξ2−z)d2

(1−ξ2+z)d1
+ c2(ξ1−z)d1

(1−ξ1+z)d2
.

So, Gn(z) satisfies

Gn(z) = α1(z;n)(ξ1 − z)n + α2(z;n)(ξ2 − z)n

Then, by BKW theorem, z belongs to the final set of Gn(z).
Claim: On ∂B(z0, ϵ), we have

|Gn(z)| >
1

n!
|ϕn(z)(ξ1 − z)d1+n(ξ2 − z)d2+n|

for n large.
In particular, B(z, ϵ) contains a zero of 1

n!f
n(z) for n large.

□

Corollary 3.3. For any meromorphic function f on C, the accumulation set of
the zeros of f (n) is contained in the edges of the Voronoi diagram determined by
the poles of f .

Proof. For any point z contained in the interior of the Voronoi cell of some pole p
of f , there is disk centered in z containing p and no other pole of f . Lemma 3.1
proves the existence a small disk centered in 0 containing no zero of f (n) provided
n is large enough. It follows that the accumulation set of the zeros of iterated
derivatives of f is disjoint from the interiors of Voronoi cells. □

4. Asymptotic distribution on Voronoi edges

Three cases depending whether ν(z) = 2 because of two, one or zero regular
poles of f .

5. Examples and applications

5.1. Rational 1-forms. Let X = P1 and ω(z) = R(z)dz, where R(z) is a rational
function. where z is an affine coordinate of P1. Then the operator Tω in the affine
coordinate z is given by

Tω :=
1

R(z)

d

dz
.

In the previous sections we discussed the asymptotic zero distributions of Tn
ω (f)

which we illustrate below in several special cases.

5.2. Monomial linear operator applied to a function with one simple pole.

For any ℓ ∈ Z, set ωℓ = z−ℓdz and Tℓ = zℓ d
dz . Let us calculate Tn

ℓ

(
− 1

z+a

)
, where

a ̸= 0.

Lemma 5.1. For ℓ ≥ 1, one has Tn
ℓ

(
− 1

z+a

)
= z(ℓ−1)n+1Un(z,a)

(z+a)n+1 . Here Un(z, a) is

a binary form of degree n− 1 satisfying the recurrence relation

Un+1(z, a) = ((ℓ− 2)nz + ((ℓ− 1)n+ 1)a)Un(z, a) + z(z + a)
∂Un(z, a)

∂z
,

with the initial condition U1(z, a) = 1.

IT SEEMS THAT THE FORMULA WORKS EVEN FOR NEGATIVE ℓ!



THE TRANSLATION GEOMETRY OF PÓLYA’S SHIRES 11

Proof. We use induction on n. For n = 1, one has zℓ d
dz

(
− 1

z+a

)
= zℓ

(z+a)2 which

gives the base of induction. Now assuming that the result holds for indices up to n
let us apply D4 to the same function (n+ 1) times. One has

Tn+1
ℓ

(
− 1

z + a

)
= Tℓ

(
Tn
ℓ

(
− 1

z + a

))
= Tℓ

(
z(ℓ−1)n+1Un(z, a)

(z + a)n+1

)
.

Further,

Tℓ

(
z(ℓ−1)n+1Un(z, a)

(z + a)n+1

)
= z(ℓ−1)(n+1)+1 (((ℓ− 1)n+ 1)Un + U ′

n)(z + a)n+1 − (n+ 1)(z + a)nzUn

(z + a)2n+2

= z(ℓ−1)(n+1)+1 (((ℓ− 1)n+ 1)Un + zU ′
n)(z + a)− (n+ 1)zUn

(z + a)n+2

= z(ℓ−1)(n+1)+1 ((ℓ− 1)nz + ((ℓ− 1)n+ 1)a)Un + z(z + a)U ′
n

(z + a)n+2
,

where U ′
n = ∂

∂zUn. Thus Un+1(z, a) = ((ℓ−2)nz+((ℓ−1)n+1)a)Un+z(z+a)U ′
n. □

An illustration of the above root distribution can be found in Fig. 2.

-1.2 -1.0 -0.8 -0.6 -0.4

-0.4

-0.2

0.2

0.4

Figure 2. Roots of Un(z, a) for T
65
4 and a = 1.

Guillaume’s receipt for the formula of the respective lemniscate!

5.3. T2 = z2
d

dz
applied to an arbitrary rational function. The simplest sit-

uation occurs for ω2 = z−2dz, i.e. T2 = z2 d
dz . In this case the coordinate for the

flat metric induced by ω2 is simply given by a new variable y = −1

z
⇔ yz = −1.

In other words,
d

dy
= z2

d

dz
⇔ dy

dz
=

1

z2
.

Consider the operator T2 = z2
d

dz
and a rational function f(z) =

∑k
i=1

αi

z−zi
, αi ̸=

0. The limit set of Dn
2 (R(z)) is obtained as follows:

Theorem 5.2. In the above notation, take y = −1

z
, and let S∗ =

{
1

z1
, . . . ,

1

zk

}
⊂

Cy be the set of the inverses to the poles of R(z) in the y-plane. Take the Voronoi
diagram V ∗ of S∗ in the y-plane and consider its minus inverse in the z-plane.
This is the limit set.
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Proof. With respect to the variable y = − 1
z the operator D2 coincides with d

dy .

Thus

Dn
2

(
k∑

i=1

αi

z − zi

)
=

dn

dyn

(
k∑

i=1

αi

(− 1
y − zi)

)
= − dn

dyn

(
k∑

i=1

αiy

1 + ziy

)
.

The set of poles for
(∑k

i=1
αiy

1+ziy

)
is given by −S∗ =

{
− 1

z1
, . . . ,− 1

zk

}
⊂ Cy. By

the original Pólya’s shire theorem the limiting root-counting measure of dn

dyn

(∑k
i=1

αiy
1+ziy

)
when n → ∞ is supported on the Voronoi diagram of −S∗ =

{
− 1

z1
, . . . ,− 1

zk

}
.

Since the map z = − 1
y is a biholomorphism between CP 1

z and CP 1
y the result

follows. □

5.4. Examples in genus 1. Sangsan’s section!

6. Outlook

1. Relevance for other fields: Lee-Yang zeros
Stationary phase approximation
Quantized potential theory

2. Since any rational function in 1 variable has more or less explicit primitive one
can obtain rather explicit formulas for the accumulation set in case of genus 0.
3. The original shire theorem deals with C which is open and meromorphic func-
tions on it. In particular, the main result of [10] shows that for an entire function
of the form R(z)EU(z) with polynomial U a certain part of the total mass of the
limiting root-counting measure will be placed at ∞. In the present paper we only
consider compact Riemann surface X, but appropriate modifications of our results
should work for open X as well.

6.1. The global geometry of translation surfaces. An essential feature of the
theory of translation surfaces is that the same objects have a complex-analytic
side (a Riemann surface endowed with a holomorphic differential) and a geometric
side (a polygon with pairs of sides identified by translations). Although these two
descriptions are theoretically equivalent, going from one side to another is a delicate
question in practice.

In a translation surface obtained by the gluing of a family of triangles, the lengths
and the slopes of the edges are respectively the module and the argument of peri-
ods of the differential corresponding to these relative homology classes. However,
starting with a complex structure (defined by a Fuchsian group for example) and
an explicit holomorphic differential (in terms of modular forms), it is a difficult
problem to determine which relative homology classes are represented by simple
geodesic segments (in order to construct a triangulation).

In the current state of the art, the standard approach to obtain a geometric
presentation of a translation surface is to discretize the circle of directions and
integrate the differential equation corresponding to the differential form to find
saddle connections.

If we can call the latter approach ”classical”, Theorem 1.5 suggests a ”quantum”
way from the complex-analytic data to the flat picture. For a given translation
surface (X,ω), we consider a meromorphic function f with poles located at the
zeros of ω. As k → +∞, zeros of T k

ωf accumulate on the Voronoi diagram defined
with respect to the zeros of ω. After an adequate number of iterations, the relative
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homology classes of the Delaunay triangulation (dual to the Voronoi tessellation)
are characterized with a low error rate. EXAMPLE FIGURE GENUS ONE

6.2. Fuchsian meromorphic connections. Generalization to a even broader set-
tings can be made as follows. Let X be a compact Riemann surface with a Fuchsian
meromorphic connection ∇ on a line bundle L. We can investigate the limit set of
a global meromorphic section of L under iteration of ∇.

Fuchsian meromorphic connections induce complex affine structures (see [13])
providing local coordinates where ∇ is conjugated with d

dz . We still have a mean-
ingful notion of affine disk immersion so Voronoi diagrams can be defined. Besides,
the definition of Cauchy measures in terms of angles is suitable for a generalization
to a complex affine settings (see Section 2.5). Nevertheless, an important difference
with the current settings is that in most cases, meromorphic connections fail to be
geodesically complete, as in the case of the Hopf torus C∗/⟨z 7→ 2z⟩.

A family of Fuchsian meromorphic connection can already be handled with the
methods of the current paper. A k-differential ω is a global meromorphic section
of the kth tensor power K⊗k

X of the canonical bundle. In local coordinates, it is a
complex analytic object of the form h(z)dzk where h is a meromorphic function. A
kth root ω1/k of ω can be thought as a global meromorphic section of a line bundle
twisted by some character χ valued in the complex multiplicative group (C∗,×).

Operator T : f 7→ df
ω1/k acting on the space of global sections of a suitable line

bundle coincides with a Fuchsian meromorphic connection.
For a compact Riemann surface X endowed with a k-differential ω, the canonical

k-cover (see [2] for details) is the smallest ramified cover π : (X̃, ω̃) → (X,ω) such
that ω the kth power of a globally defined meromorphic 1-form. This way, the limit
set associated with operator T and some meromorphic section f of a line bundle L is
the quotient of the limit set associated with an operator Tω̃1/k and a section of π∗L
defined on a surface of higher genus X̃. The latter is obtained using Theorem 1.5.

References

[1] H. Asmar and L. Grafakos, Complex Analysis with Applications, Undergraduate Texts in
Mathematics, Springer International Publishing, 2018.

[2] M. Bainbridge, D. Chen, Q. Gendron, S. Grushevsky, M. Möller. Strata of k-differentials.
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