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INTRODUCTION

The results of this thesis are published in the following 6 papers:

[1]. B. Z. Shapiro, Spaces of linear ordinary differential equations and flag varieties, Izvesti
Akad.Nauk USSR 54 1 (1990), p. 25-37,

[2]. B. Z. Shapiro, Classification of symplectic leaves in Kac-Moody algebras él\,;; and S/(-)\,
Funkt. Analyz i ego Prilozh. (to appear).

[3]. B. Z. Shapiro, Discrete invariants of symplectic leaves for Zamolodchikov algelra an
nondegenerate curves on S%, preprint, Moscow State University.

[4]. B. Z. Shapiro, On the my of the space of closed nondegenerate curves on S™, Eull. ¢
Amer, Math. Soc. (to appear).

[5]. B. Z. Shapiro and M. Z. Shapiro, The M-property of flag manifolds, Madison centre ¢
Mathematics publ. (to appear).

[6]. B. Z. Shapiro and A. D. Vainshtein, Euler characteristics for links of Schubert cells &
the space of complete flags, in “The theory of singularities and its applications (serie
Advances in Soviet Mathematics),” AMS publications, Providence RI, 1990.

A major portion of the study of the qualitative nature of solutions of differential equation
may be traced to the famous 1836 paper of Sturm ([S]) dealing with oscillation, separatios
and comparison theorems for linear ordinary homogeneous second order differential equa
tions, The associated work of Liouville introduced a type of boundary problem known as :
”Sturm-Liouville” problem involving an introduction to the study of asymptotic behavio
of solutions of the linear second order differential equations by the use of integral equations

In the subsequent years the significance of the calculus of variations for such boundar
problems was emphasized by Bliss and Morse. In particular, Morse ([M]) showed tha
variational principles provided an appropriate environment for the extension of the self
adjoint differential systems of the classical Sturmian theory.
~ The study of the action of the following group of transformations (in the modern terms
the loop group of the trivial bundle R! x S!):

{ z = 2(z)
y(2) = m(z)y(z)

on the space of differential third order equations was started by Kummer in 1834 ([K]).
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Further progress in this area (in the 19-th century) is connected with the expansion of
Kummer’s arguments to the case of linear ordinary differential equations of high order.
Kummer’s followers (in particular Laguerre, Brioschi, Halphen, Forsyth; Lie and Appell)
studied high order equations in connection with the so called equivalence problem. Lie and
Wilezynski proved that the above transformation is the most general change of variables
preserving linearity and order of equations.

In the case of the second order equations the study of their normal forms under the
action of the above group which for Hill equations coincides with the nontrivial extension
of the group of diffeomorphisms of the circle (sometimes called the Virasoro group) was
undertaken in different contexts (as orbits of the coadjoint representation of the Virasoro
groups or projective structures on S!, etc.) by Kuiper, Lazutkin and Pankratova, Kirillov,
Segal ([Ku,L-P,Ki,Se]).

For linear equations of high orders local normal forms were considered by Neuman ([Ne]).
Supersymmetric generalizations of these problems (first investigated by Kirillov) were con-
sidered in [Le].

Qualitative theory of high order equations is hard apparently because there is no natural
group giving satisfactory global classification of such equations. Still, the space of all linear
ordinary differential equations of the given order has the structure of a Poisson manifold and
- one can calculate invariants of its symplectic leaves. A step in this direction is performed
in this thesis. But this approach practically completely ignores global qualitative behavior
of equations. )

Recall that the linear ordinary n-th order differential equation (l.o.d.e.) given on the
time interval I is called disconjugate if its arbitrary solution has on I at most n —'1
zeros counted with multiplicities and conjugate otherwise. This property was studied
by Vallee-Poussin, Markov, Polia, Hartman, Levin, Coppel, Reid, Sherman and others
([P, H,L,C,R,Sh]). Disconjugate equations form an important qualitative class. One can
show that their behavior is similar in the following sense.

To an arbitrary solution ¢ of lL.o.d.e. given on I = [0,1] assign the set of multiplicities
Ky = (k1,...,ki,) of its sequential zeros. For two disconjugate equations u and w there
exists a homogeneous diffeomorphism D of the spaces of their solutions preserving sets of
multiplicities, i.e. K4 = Kpg. The study of this equivalence on the space of l.o.d.e. is a
very promising problem.

Several positive results of the qualitative nature for the third and fourth order equations
were obtained by Azbelev, Kondratiev, Levin ([Az,Ko,L]) and some others and there were
constructed a lot of counterexamples. The simpliest of them (and at the time rather surpris-
ing) is Sansone’ result of 1948 ([Sa]) on the third order l.o.d.e. all whose solutions are both
sides oscillatory. It uses representation of a third order l.o.d.e. as a curve in R® (whose
coordinates are fundamental solutions of l.o.d.e.). On Fig.1 a ’prolonged cycloid’ v goes
infinitely many times around the equator of the unit sphere S? if time goes from —oo to
+oo. This curve may serve as a fundamental solution of l.o.d.e. and each linear hyperplane
intersects v infinitely many times, )

More successful was the development of the qualitative theory in the context of Hamil-
tonian systems. Morse obtained the formula for the index of the extremal solution in
positive definite variational problem with given boundary conditions in terms of the num-
ber of conjugate points and some residual term called 'the order of concavity’. Generalized
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Fig.1.

Sturmian theory for linear Hamiltonian systems was developed by Lidskii, Bott, Edwards
Duistermaat, Klingenberg and Arnold ([Li,B,E,D,A]). The main notion of this theory is th
(induced by the system) flow on the space of Lagrangian Grassmann manifold (the spac:
of all Lagrangian planes in R?") and intersection of the orbits of this flow with Lagrangia:
trains (hypersurfaces of all Lagrangian planes nontransversal to the given one).

Methods of Hamiltonian Sturmian theory prompt the idea to consider instead of differen
individual solutions of a given l.o.d.e. its different fundamental solutions and this leads
some interesting qualitative results listed below.

While studying properties of l.o.d.e. we use Schubert stratification of the space of com
plete flags. Properties of these stratifications are of the independent interest and have man;
applications.

Now, we pass to detailed description of the results.

Paper 1.

Consider a linear ordinary n-th order differential equation (l.o.d.e.) given on the interva
I=[0,1]:

(1) Lafz) = 2™ + a;()z™ D + .. + an(t)z = 0

where'a;(t) € C*[I].

DEFINITION. Let Fy, be the variety of all complete flags in the linear space V of solution:
of Lo.d.e. (1). A flag curve fc of Lo.d.e. (1) is a map fc : I —» F,, sending each momen
t € I onto a complete flag in V whose i-dimensional subspace consists of all solutions whicl
have zero of multiplicity > n — ¢ at the moment ¢.
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Recall that with each complete flag f there is related its Schubert cell decomposition Sche
of the space F,, whose cells consists of all flags having with the subspaces of the given flag
f given set of dimensions of intersections.

DEFINITION. A set of complete flags in V is called generic if any subset of Schubert cells
belonging to different flags intersect transversally. Two complete flags are called transver-
sal if they form a generic set (i.e. their subspaces are transversal) and nontransversal
otherwise. The set Tng of all complete flags nontransversal to the given flag f is called the
train of f.

Note that Tn¢ consists of all positive-codimensional cells of Sche. Tng is reducible and
consists of n—1 (where n is dimension of the space) irreducible components Tn; consisting of
all flags whose (n — ¢)-dimensional subspace is nontransversal to the i-dimensional subspace

of f, L

THEOREM A. The following three conditions are equivalent:
(1) equation (1) is conjugate on I = [0,1];
(2) there exists a moment t € (0,1] such that a flag fc; from the flag curve fc of equation
(1) is nontransversal to fcg;
(8) the flag curve of equation (1) intersects the train of arbitrary flag.

THEOREM B. The sum of local multiplicities of intersection of the flag curve fc with Tn;
of arbitrary flag g (equal to the sum of dimensions of intersections of the i-dimensional sub-
space of the flag curve with the (n—t)-dimensional subspace of the flag g) for a disconjugate
equation (1) does not exceed i(n — i),

COROLLARY C (GENERALIZED STURM SEPARATION THEOREM).,
If the sum of local multiplicities of the flag curve fc of some equation (1) with Tng of

some flag g exceeds i(n—1) on some interval I then on this interval the equation is conjugate
and thus intersects the train of arbitrary flag at least once.

CoROLLARY D. If §; and f, are positive sum of multiplicities of intersection of the flag
curve of equation (1) with trains of two arbitrary flags g; and g; then

6 1 n*-n+6
n3-n+6<ﬁz< 6

Paper 2.

The space of operators {adz + A(z), 4 € C=(S?, g,)}, where qfis a reductive Lie é&%& A

is naturally identified with the dual space G* to the Kac-Moody algebra § (which is the
nontrivial 1-dimensional central extension of the loop algebra § = C®(S!,€]), see R-
ST]). Under this identification the coadjoint action of P € é in G (for a # 0) coincides
with the gauge action on differential operators. Thus gauge classification of differential
operators is equivalent to classification of the orbits of the coadjoint action in Kac-Moody
algebras which are maximal nondegenerate submanifolds of the linear Poisson structure (i.e,
symplectic leaves of Poisson-Lie bracket sometimes called Berezin-Kirillov bracket). At the

e time the description of the classes of the first order matrix linear differential equations ‘

sa
{ddz +A(:I:»I’ =0, AeC=(s, ?} of the above type with respect to gauge equivalence:
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¥ — PV (or A+ P~1P?+ P71 AP), where P € G=C>(5',G)is a well known problem of
analysis. Denote by éc = C°(S*, G) the connected component of G containing the trivial
map onto the unit matrix (the components of ( are enumerated by the elements of 71(G)).

FLOQUETS’ THEOREM, SEE ([H]). The only invariant of the matrix equation on the circle
w.r.t. the action of gauge group Gis the _conjugacy class of its monodromy operator in G;
w.r.t. the gauge transformations from G, the only invariant is the conjugacy class of its
monodromy operator in the universal ug;%ﬂmg G, of the group G.

THEOREM 2. The conjugacy class of ;y elt:r‘;zent M € GL}(R) with the Jordan normal
form (J.n.f.) different from the following one: :

A0 O
0 v O
0 0 u

where \,v < 0 (A = v is admissible) has two inverse images in the universal covering GL;
under the natural projection GL3 — GL]; conjugacy class of the operator with the above
Jordan normal form has a connected inverse image in GL3 .

THEOREM 2'. The symplectic leaves of the linear Poisson structure on the Kac-Moody
algebras related to GL] and SL; are enumerated by the real parameter a # 0, Jnf of
operators and Z/2Z-invariant for any J.n.f. except one from Theorem 2.

THEOREM 3. The conjugacy class of any operator M € SO, has connected inverse image
in Spin,, if and only if its spectrum contains both 1 and -1. Otherwise the inverse image
consists of 2 components.

Paper 3.

THEOREM A. The number of connected components in the space RS%(f1, f;) of right-
oriented curves on S? with given initial and final flags (f1, f2) equals 3 if there exists a
(nonstrictly) disconjugate curve € RS?*(f1, f2) and 2 otherwise.

An oriented flag on S? consists of a point p and an oriented circle C. One of the two open
halfcircles into which C is divided by the points p, 5, where  is the point antipodal to p is
called positive (negative) if a small positive (negative) push of the point p belongs to it and
is denoted by C} (C; ). Given orientations of S? and of the "big circle * C' we can define

_ upper- and lower hemisplieres H, & and HZ of §?\ C (the end of the right-oriented vector

complementing the right-oriented pair of vectors in the plane containing S? must intersect
the upper hemisphere).

THEOREM B. Flags fi = (p1,C1) f2 = (p2,C2) can be connected by a right-oriented
disconjugate curve if they form one of the following configurations:
(1) p; belongs to the upper hemisphere H a and CF », intersects with CT ;
(2) p2 belongs to the upper hemisphere H a and C;: p, Passes through p1;
(3) p2 belongs to Cy,, and py belongs to HE, ;
(4) p1 coincides with p, and tangent vectors to Cf,, and ct », defines the orientation
of S? opposite to the given one;



6 B. Z. Shapiro
(5) Ci coincides with C; and p; belongs to C pud
(6) the flags f1 and fa coincide.

Denote the space of all right-oriented conjugate curves given on I = [0,1] with the fixed
initial flag f by CN(f) and the map sending each curve to its final flag by = : CN(f) —
FO;.

THEOREM C. The map 7 : CN(f) — FOj satisfies the covering homotopy property.
COROLLARY. The space of the third order l.o.d.e. with all 1-periodic solutions consists of

two disconnected parts one of which is contractible and the other is homotopically equivalent
to the space of all closed paths on FO3; & SOj;.

The second part of the paper is devoted to the calculation of discrete invariant of sym-
plectic leaves of Zamolodchikov algebra. Notice that the operators belonging to GL3 have
one of the following 10 real Jordan normal forms (J.n.f.):

a2 0 0 -a> 0 0 Acosa Asina 0
a)yl 0 ¥ 0 b){ 0 - 0 c)| —=Asina Acosa 0
0 0 ¢ 0 0 ¢ 0 0 c
a2 1 0 -a2 1 0 a? 1 0
d)| 0 a* 0 e)l 0 -a® 0 f){ 0 o 1
0 0 ¢ 0 0 ¢ 0 0 a2
a2 0 0 -a2 0 0 a2 1 0
gl 0 a 0 h){ 0 —=a? 0 ){ 0 a® 0
0 0 ¢ 0 0 & 0 0 a?

a2 0 0
DI o a* o
0 0 a?

THEOREM D. The symplectic leaves of Zamolodchikov algebra are enumerated by the J.n.f,
of monodromy operator and the invariant from Z/2Z for the types'b), g), h), i) and the
invariant from Z/3Z in the rest of the cases.

Paper 4, We formulate here some new conjectures connected with the main result of
paper 4,
CoNJECTURE 1. The space of the n-th order lo.d.e. given on I = [0,1] with the given
monodromy matrix ( Wronsky matrix W(1) for the fundamental solution @y, ..., ¢n—1 sat-
isfying the relation ¢](0) = 6! 4,j =0,n — 1) consists of 3 connected components if there
exists a disconjugate l.o.d.e. with given monodromy matrix and 2 otherwise.
CONJECTURE 2. The map ¢ : CD, — GL} from the space of L.o.d.e. given on I = [0,1]
sending each equation onto its monodromy matrix has the covering homotopy property.
COROLLARY OF CONJECTURE 2. The space PD,, of all l.o.d.e, whose solutions are periodic:

(1) is homotopically equivalent to the space of all closed curves on SO,, passing through
a given point for even n;
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(2) consists of two parts one of which is contractible and consists of (nonstrictly) dis-
conjugate equations and the other one is homotopically equivalent to the space of all
closed curves on SO, passing through the given point for odd n.

The result of the paper is the following estimation.
THEOREM A. Card mo(PD,) > 3 for odd n.

Paper 5.

A real algebraic variety X® (the set of real points of X©) is called an M-manifold if
2 bi(XR) = 30 bi(XC). We shall also say in this case that X® has the M-property.
DEFINITION: Two (incomplete in the general case) flags in P™ are called transversal if
the intersection of any pair of their subspaces is of the minimal possible dimension.

Let PT*P™ denote the manifold of all flags in P" consisting of a hyperplane and a
distinguished point in it. (Notice that two flags belonging to PT*P™ are transversal if it
holds for both that the distinguished point of one does not belong to the hyperplane of the
another),

Hereinafter the term ’the set of flags in general position’ means that it belongs to
some open dense domain in the space of all sets.

THEOREM A. The locus of all flags from PT*P™ which are transversal to each flag from a
given set ’in general position’ has the M-property. :

THEOREM B. There exists an open set of 4-tuples of real lines in P® (flags in F* ) such
that the corresponding locus of all lines (flags) transversal to all lines (flags) from the given
set does not possess the M-property.

THEOREM 5.1. For a set of flags f= {f1,..., 1} on RP? ’in general position’ the variety
M? of all flags transversal to all flags belonging to f is homeomorphic to the disjoint union
of k% — k + k three-dimensional cells.

THEOREM 5.2. For a'set of flags f = {fy, ... ,fi} on CP? ’in general position’ the variety
M? of all flags transversal to all flags belonging to f has no torsion in the homology with

coefficients in Z and its Betti numbers are as follows by = 1, by = 2(k — 1), by = 2(k - 1)2,
by =(k=1)3,05,=0 for i>4,

Paper 6.

Let ¢, be a cell from the decomposition Sch 1 of the space of real or complex complete flags
Fa (k denotes the ground field) corresponding to the permutation ¢ and B a sufficiently
small n(n — 1)/2-dimensional (over the ground field k) ball with the origin at some point
of ¢,. . -

DEFINITION, The manifold 4, = B \ Tnj will be called the link of the cell ¢, . By xo
we denote the Euler characteristics of A, :

Xo = Y _(~1)¥ dim H*(4,).
k
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In the complex case let us introduce also the numbers

X5 =Y (~1)* dim Gr} Gr}l, H*(4,)
P

where Gr" and Grr are the associated graded objects of the weight and the Hodge filtra-
tions, respectively.

The n-dimensional k-torus T, = (k \ 0)® acts on the manifold A, . In the coordinate
representation given in §2 this action can be described as expansions and contractions of
basis vectors. The orbits of this action have the following convenient description.

Consider the mapping sending each flag from 4, to its line. This line determines an
n-dimensional vector of 0’s and 1’s whose i-th coordinate equals 0 if the line lies in the
subspace spanned by eq(1), - . -, €a(i=1), Ea(i+1)) - - - » €,(n) and 1 otherwise. The transversality
of all flags from A, to the given pair of flags (see Lemma 2.3) implies that two coordinates
(coinciding if the hyperplanes of these two flags coincide) of this vector must equal 1. Finally
clear that two flags determine the same 0-1-vector if and only if they both belong to the
same orbit. Therefore the orbits are enumerated by 0-1-vectors having 1’s at two prescribe
places (possibly coinciding): '

(1) Aa = U Owa
weEW,
where
Wy = {w = (wl,...,w,.) € {0,1}" W = We-i(n) = 1},

and Oy, is the orbit in A, corresponding to the vector w. The orbit O, is diffecomorphic to
the product of several copies of k* by the manifold A, for a certain permutation 7 € S,_;.

Let 0 € S;, w € W,. To each pair (o,w) assign a permutation 7(o,w) € S,_; in the
following way.

‘Given an arbitrary sequence I = {iy,...,ix} denote by R(I) the sequence obtained by
the following process: put

T =1, r=max{r-1,4}, 1<I<KE,

and delete all elements except the first one from each group of consecutive equal elements of
the sequence {ry,...,r}. Now let I(w) be the ordered sequence of the numbers i such that
w; = 1. Put Jo(w) = 7' R(0I(w)); then a relation 1 = j; < j; < +++ < j, = 07 1(n) is
obviously valid, m being the number of elements in J,(w). Define 7(o,w) by the formulas
m(o,w)@)=0o(i+1) fi#j—-1, 2<I<m,

@ (o, w)(jt — 1) = (1), 2<i<m

3.2, LEMMA. The manifold Oy, is diffeomorphic to the direct product of An(o,w) by the
variety (k*)™(*)=1, where n(w) is the number of nonzero entries in w.

5.1. THEOREM. In the real case

Xo = E (_l)n~n(w)2n(w)—lX"(a’w)’
weW,

INTRODUCTION ¢

where n(w), as before, is the number of unitary entries in w.

Suppose X is an arbitrary complex manifold; denote by

Px(t) =D _x*(X)t,
RY(X) = dim Gr'}wGerHk(X)-

5.3. THEOREM. Put P,(t) = P4, (t), then

(8) Po(t)y= Y "1 —p)r@)=1p, . (2),
weW,

(9) XJ =0 for i#j,
where n(w) is the same that in Theorem 5.1.

5.4, COROLLARY. In the complex case o = 0.

5.6. THEOREM. For any o € W,

(12) deg P, = d,, xede = (1),
(13) Xy = (=1)doxdomide=i 0 <i<d,.
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Linear differential equations 1.

Linear differential equations and flag varieties

B. Z. Shapiro

§I. INTRODUCTION

Consider a linear ordinary n-th order differential equation (Lo.d.e.) given on the interva
I=1[0,1]: :

(1) Lalz]) = 2™ 4 ay(8)z™ D 4. 4 an(t)z =0

where a;(t) € C[I].

MAIN DEFINITION. Equation (1) is called disconjugate on I if its arbitrary nontrivial
solution has on I less than n zeros counted with multiplicities and conjugate otherwise.

DEFINITION Let F,, be the manifold of all complete flags in the linear space V of solutions
of Lo.d.e. (1). The flag curve fc of L.o.d.e. (1) is the map fc: I — F,, sending each moment
t € I onto a complete flag in V whose i-dimensional subspace consists of all solutions which
have a zero of multiplicity > n — ¢ at the moment t.

Recall that with each complete flag f there is related its Schubert cell decomposition
Sche of the space F, whose cells consists of all flags having given set of dimensions of
intersections with the subspaces of the given flag f ,

DEFINITION. The set of complete flags in V is called generic if any subset of Schu-
bert cells belonging to different flags intersect transversally. Two complete flags are called
transversal if they form a generic set (i.e. their subspaces are transversal) and non-
transversal otherwise. The set Tn¢ of all complete flags nontransversal to the given flag
f is called the train of f. ’

Notice that Tn¢ consists of all positive-codimensional cells of Schs. The train Tn¢ is
reducible and consists of n — 1 (where n is dimension of the space) irreducible components
Tng consisting of all flags whose (n — ?)-dimensional subspace is nontransversal to the
i-dimensional subspace of f.

The results of the paper are:
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THEOREM A. The following three conditions are equivalent:
(1) equation (1) is conjugate on I = [0,1]; '
(2) there exists a moment t € (0,1] such that flag fc, from the flag curve fc of equation
(1) is nontransversal to fco;
(3) the flag curve of equation (1) intersects the train of arbitrary flag.

THEOREM B. The sum of local multiplicities of intersection of the flag curve fc with Tnj of
arbitrary flag g (equal to the sum of dimensions of intersections of i-dimensional subspace
of the flag curve with (n — i)- dimensional subspace of flag g) for a disconjugate equation
(1) does not exceed i(n — i). -

COROLLARY C (GENERALIZED STURM SEPARATION THEOREM). .

If the sum of local multiplicities of the flag curve fc of some equation (1) with Tny of
some flag g exceeds i(n—1) on some interval I then on this interval the equation is conjugate
and thus intersects the train of arbitrary flag at least once.

COROLLARY D. If§; and §, are positive sums of multiplicities of intersection of the flag
curve of equation (1) with trains of two arbitrary flags g, and gz then

6 <ﬁ1<n3—n+6
nd—n+6 i, 6

Notice that by results of Kondratiev (see [K]) no separation theorem can be obtained in
the terms of zeros of individual solutions of the high order l.o.d.e.

§2. CURVES AND TRAINS OF L.0.D.E.

DEFINITION. Let P(V*) be the projectivization (projective space associated with) of
the space V of all solutions of equation (1), Projective curve of equation (1) is the map
p: I — P(V*) sending each moment ¢ € I onto the hyperplane of solutions having a zero
at the moment t.

Another definition of the curve p.

- DEFINITION. The affine curve a: I — V* of l.o.d.e. (1) is defined by the relation

< a(t)y ¢ >= ¢(t),

where ¢ is an arbitrary solution of (1).

For any t vector a annihilates the hyperplane of solutions of l.o.d.e. (1) vanishing at the
moment ¢. Therefore the projectivization of the curve a coincides with the curve p.

For arbitrary fundamental solutions ¢,..., ¢, of equation (1) components of the affine
curve a(t) in the basis dual to the chosen fundamental solution coincide with ¢1(t),. .., ¢n(t).

DEFINITION. A point of the curve v in the projective space P™ is called nondegenerate
if in some affine chart containing this point we can choose affine coordinates such that
coordinates of the germ of the curve itself will have the following expansion

(S LS A T )

Projective curve it called nondegenerate if all its points are nondegenerate.

Linear differential equations 1:

REMARK 1. Since Wronskian of arbitrary fundamental system of solutions of L.o.d.e. (1
does not vanish, its projective curve is nondegenerate.

REMARK 2. In each nondegenerate point the complete osculating flag is properly defined.
It consists of osculating subspaces of all dimensions in the considered point.

REMARK 3. The above defined flag curve of l.o.d.e. consists of osculating flags to all
points of the projective curve of l.o.d.e.

Let f = (f;,...,f,—1) be a complete flag on R™ and F,, be the manifold of all complete
flags in R". In F,, define the set of n — 1 circles {l1,..+,1s-1} passing through f and given
by the relation

i={f,....incCcLicfipCc--Cfoy} i=T,n=1

where L; runs over the set of all i-dimensional subspaces satisfying the above inclusions,
Tangent lines to /y,...,l,—; at the point f are linearly independ_ent. Span with them the
(n—1)-dimensional tangent subspace Cr € TF,, and delete from Cy all (n —2)-dimensional

subspaces C,j, j =1,n— 1, where Cp, j is spanned by all the tangent lines except the j-th
one.

DEFINITION. The distribution

Ce = Ce \UJZ) Cr
is called the Cartan distribution on the space F,.

The immersed curve £ : I — F,, is the flag curve of some equation (1) if and only if at
any moment t € I it is tangent to Cs.

PROOF: The flag curve of l.o.d.e.(1) is tangent to C¢ since infinitesimal motion of the
i-dimensional subspace in the osculating flag to any projective curve belongs to its (¢ + 1)-
dimensional subspace. Since the curve is nondegenerate, the velocity vector of the motion
of the i-dimensional subspace L; does not belong to L.

Recall that the train Tny of a complete flag f is the stratified (with the Schubert cells)
hypersurface; it consists of (n — 1) irreducible components Tnj. There is the following
bijection between the cells of Schubert decomposition in F, and the elements of the permu-
tation group S, where S, acts on the linear space R™ by the permutation of coordinates
and each cell of the decomposition contains a unique element from the orbit of the given
flag f. Dimension of the cell corresponding to the given permutation (iy,...,i,) equals the
number of ’disorders’ in the permutation (i.e. the number of the pairs (%1,7x) where i; > 7x.

LEMMA. The multiplicity of intersection of the germ fc : [—¢,€] = F, of the flag curve of
some l.o.d.e. (1) with the train Tng depends only on the cell of the Schubert decomposition
Schy to which the intersection point fc(0) belongs and can be calculated as follows. Relate
to the given flag f Schubert decompositions of all Grassmann varieties Gipny, k=1I,n-1.
Then the multiplicity § of intersection of fc with Tné equals the codimension of the cell of
the decomposition to which the k-dimensional subspace at the moment of nontransversality
belongs. For the permutation (i1,...,i,) the multiplicity i is equal to

i = ma‘z(ov Z,r-‘n=n--rlc:~4}-1) = (i~ (n—m-— 1))
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PROOF: Let a be the germ of an affine curve of l.o.d.e. (1) (see definition above) such that
its flag curve is nontransversal at ¢ = o to the complete flag f = (fi,...,f.—~1). The basis
e1,...,en is called adjusted to f if for all i the space f; is spanned by ey,...,e;. For any
germ a of the affine curve of l.o.d.e. (1) there exists a unique adjusted to f basis such that
coordinates of a have the following extension

t; ti,
a(t) = -z,%,...,an(t) = ?:,T

where (4;,...,%,) is the permutation corresponding to the cell of Schubert decomposition
Sche to which fc(0) belongs. Consider the Wronsky matrix W (¢) for the fundamental solu-
tion a;(t),... a(t). The multiplicity of intersection of fc with Tng equals the multiplicity
of intersection of W(t) with v~!(Tng), where v is the projection of the bundle GL,, — F,
mapping each nondegenerate matrix onto the complete flag whose ¢- dimensional subspace
is spanned by the first 7 rows of the matrix. Expanding the elements of tho j-th row in the
powers of ¢t we get

ad . 14..,04...,0+...}
(2) Wj(i):{z;!-+...,a;-:—l—)!+...,..., ey ey ety

The equation of the k-th component of v~!(Tng) in the considered basis is
Ar=0

where Ay is the minor formed by the last k rows and the first k columns of W(t). We can
define the necessary multiplicity restricting Az to W(t). Thus we must calculate the first
nontrivial term in the expansion of the correspondent minor in the powers of t. The explicit
expression (2) implies that for arbitrary k the multiplicity of the zero of A depends only
on the permutation (4y,...,i,) and can be calculated as follows, We must compare the
transposed permutation (iy,,...,7;) with the identity permutation (1,...,n) and calculate
the sum of differences between the first k terms of (in,...,41) and (1,...,n). It equals
I =n—k+1(im — (n—m+ 1)), This value coincides with the square of corresponding Young
diagram which equals the codimension of the considered Schubert cell in Gy ,.

§3. (DIS)CONJUGACY CRITERION AND GENERALIZED
SEPARATION THEOREM FOR LINEAR ORDINARY DIFFERENTIAL
EQUATIONS OF ARBITRARY ORDER

LEMMA. Equation (1) is disconjugate on the interval I if and only if arbitrary subspaces of
arbitrary set of pairwise different flags from the flag curve of considered equation intersect
transversally.

PROOF: The following result is one of the classical disconjugacy criteria (see [L]). Equation
(1) is disconjugate if and only if there exists a unique solution of arbitrary multipoint
boundary value problem;

Cal(t) = ey, ti€lj =om, Z (mi+1)=n
=1,k
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This criterion is exactly equivalent to the statement of the lemma.

Theorem A will be proved by the following sequence of implications (2) = (1) = (3) =
2).

The first step (2) = (1). Let fc be the flag curve of equation (1) given on I = [0,1].
Suppose that some k-dimensional subspace of the flag fc(0) is nontransversal to the (n—k)-
dimensional subspace of fc(r), T € (0,1]. If fc(0) and fe(r) are nontransversal then we
can always choose such a pair. The sum of these subspaces belongs to some hyperplane
in V*, where V is the linear space of solutions. This hyperplane defines some nontrivial
solution of considered equation which has at the moment ¢ = 0 zero of multiplicity > n —k
and at the moment 7 zero of multiplicity > k. Thus, the considered equation is conjugate
by the definition. '

The second step (1) = (3) will be proved by induction.

Case n = 2. The flag space F; coincides with S! and the train of any flag coincides with
the flag itself. The flag curve of any equation moves along F; with nonvanishing velocity.
The existence of a solution with at least 2 zeros means that the flag curve passes through
some point on F; at least twice and thus covers the whole F; intersecting trains of all flags.

Induction. Let p : [0,1,] = P"~! be the projective curve of the conjugate equation (see
Introduction) and L the hyperplane with which p intersects at least n times counted with
multiplicities and f = (fo, f1,...,f,_;) an arbitrary complete flag in P*~1. The multiplicity
of intersection is continuous from below. So it suffices to consider the case when f is
transversal to L. If p intersects f,,_, then this intersection point is the necessary moment
of nontransversality. If p does not intersect f,_; we can consider on the hyperplane f,_; =
P~ the flag F obtained by intersection of the flag f with the hyperplane L. Moreover,
we can project the curve p on f,_; along the tangent lines, i.e. to map each point of p
onto intersection of the tangent line to the curve p in the considered point with f,_,. If p
is nondegenerate in P*~! and p does not intersect fn.—2 then ps is a nondegenerate curve
on f,.; = P"2,

Now let us prove that pg intersects the plane Lg = LN f,_; at least n — 1 times counted
with multiplicities. Let us begin with nonsimple zeros. If P intersects ! at the moment
t with some nontrivial multiplicity (which by definition equals the maximal dimension of
the osculating subspace belonging to the hyperplane L) then py intersects L ¢ with the
multiplicity reduced by 1 because of the projection along the line. Now on p we choose two
neighboring geometrically different zeros P(t:) and p(tiy1) and prove that on the interval
(ti,ti+1) we can find the moment 7; for which the tangent line to the point p(7;) intersects
the plane L¢ (the corresponding point is the intersection moment for the curve ps (see Fig.1).
Indeed, hyperplanes L and f,_, separate the considered space P*~! into two semispaces.
The part of the curve p on the interval (tiytiy1) lies in one of them. We can choose the
projective chart in which the hyperplane L is horizontal. In this chart the point of p whose
tangent line intersects f,_; is the point in which the tangent line is horizontal. On the
interval (%;,2;41), consider the distance-from the curve p to the plane L, This function
necessarily has a maximum in the internal point since it grows on the both ends of the
interval. At this point the tangent line is horizontal. ]

The third step (3) = (2) . Condition (3) is equivalent to the fact that the union of the
trains of all points of the flag curve fc coincides with F,.. Suppose that there is no moment
t such that fc(0) € Tngy. We shall show that there exists a flag f € F,, which does
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4= 4e.8)

{\ —

Fig.1

not belong to the union of trains taken over all points of fc. In our assumptions for each
7 € (0,1] there exists €, such that the union of the trains of fc on the interval [r, 1] does not
intersect with the e,-neighborhood of the flag fc(0). On the other hand, if we extend the
germ of the flag curve of l.o.d.e. to a small negative time interval (—o, o) then it remains
disconjugate. So for sufficiently small negative moment —& the flag fc(—&) which belongs
to (e — 7) -neighborhood of fc(0) is transversal to all flags fc(t)t € [0,1]. I

In order to prove theorem B we need the following proposition.

Linear differential equations 17

LEMMA (cF. [E-H]). Suppose that {fc(t1),...,fc(tm)} is the set of flags from the flag
curve of disconjugate equation and {Schs,,...,Sche, } is the set of correspondent Schubert
decompositions. Then {fc(t1),...,fc(tm)} has the dimensional transversality property, i.e.
the codimension of the intersection of an arbitrary set of cells C,...,Cm, where C; belongs
to Sch;, equals the maximum of dim F,, and the sum of the codimensions.

Now we pass to theorem B.

PROOF: Let t1,...,tm be different moments of nontransversality of the points of the flag
curve fc of some disconjugate equation with some given flag f and {; ; the multiplicity of
the intersection of fc with the k-th component Tnf of the train Tng¢. Now let us show that
2_ibik < k(n — k). By the above lemma the set of flags {fc(t1),...,fc(tm)} is dimensional
transversal, i.e, codimension of Schubert cells from their decompositions is equal to the
sum of codimensions. Consider m Schubert decompositions of the Grassmann varieties
Gy, constructed for the flags fe(ty),...,fc(t,). By the above lemma, the k-dimensional
plane of the flag f belongs to the union of the cells of codimension Br—,i of the i-th cell
decomposition of Gg,5. By the dimensional transversality the sum of the codimensions of
the cells to whose intersection the k- dimensional plane of the flag f belongs can not exceed
dim Gy, = k * (n — k). Consequently, 3t x < k *(n — k). In particular, we obtain once
again that the number of the zeros of any solution does not exceed n — 1.

Now let us prove corollary C.

PROOF: Indeed, if the sum of multiplicities of intersections of the flag curve of equation (1)
with the k-th component of the train Tng on some certain time interval exceeds k(n — k)
then equation is conjugate on this interval. So by theorem A on this interval there exists a
moment of nontransversality to any flag. Il
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Classification of symplectic leaves in Kac-Moody

algebras C’;ffa and SIO\,.

B. Z. Shapiro

§1. INTRODUCTION

Recall (see [R-ST]) that the space of operators {az%: + A(z), A € C>(S*, @)}, where @r

is a reductive Lie ‘s naturally identified with dual space G* to the Kac-Moody algebra
¢ (which is the 1-dimensional extension of the loop algebra § = C>=(S*,@)). Under this
identification the coadjoint action P € Gyin G* coincides (for a # 0) with the gauge action
on differential operators. Thus gauge classification of differential operators is equivalent
to the classification of the orbits of coadjoint action in Kac-Moody algebras which are
maximal nondegenerate submanifolds of the linear Poisson structure (i.e. the symplectic
leaves of the Poisson-lie bracket, also known as Beresin-Kirillov bracket). At the same time
the problem of description of the classes of the first order matrix linear differential equations
{adz+A(z)T =0, A€ C”(Sl,g)'} of the above type with respect to gauge equivalence:
¥ — PV (or A P71P? 4 P~1AP), where P € §= C*(5!,G) is a well known problem
of analysis. Denote by §, = C3°(S5?, G) the connected component of (4 containing the trivial
map onto the identity matrix (components of é}are enumerated by the elements of 7;(G)).

FLOQUET’s THEOREM, ([H]). The only invariant of the matrix equation on the circle under
the action of gauge group G is the conjugacy class of its monodromy operator in G; for
gauge transformations from éo the only invariant is the conjugacy class of its monodromy
operator in the universal umfolding G, of the group G.

PROOF: Indeed the mu]titﬁfi\gt\i\gé of the fundamental solution ¥ : R — G by a periodic
function changes the monodromy operator M of the considered equation only inside its
conjugacy class. When P € §, then we preserve also the homotopy type of the path on G
given by the map ¥ on the period.

Classes of g-equivalence as well as the group q itself can, generally, contain several
connected components as long as for Go-equivalence these classes are by the definition
connected. Therefore, in classification problems the last equivalence is often more preferable.
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In this paper we describe conjugacy. classes in universal coverings GLS, SLY and Spin,,
of GL3,SL3 and SO, respectively and formulate the hypothesis about GL,. Thus we
obtain classification of symplectic leaves in' the third order Kac-Moody algebras related to
GL3,SL3 and arbitrary order algebras related to SO,,. )

THEOREM 2. The conjugacy class of any element M € GL7 (R) with the Jordan normal
form (J.n.f.) different from the following one:

A0 O
0 » 0
0 0 u

where A\,v < 0 (A = v is admissible) has two inverse images in the universal covering GL3
under the natural projection GL3 — GL;";‘ the conjugacy class of the operator with the
above Jordan normal form has a connected inverse image in GL .

REMARK 1. Analogous theorem is valid for SL3(R).

THEOREM 2'. Symplectic leaves of the linear Poisson structure on the Kac-Moody algebras
related to GL and SL; are enumerated by the real parameter a # 0, J.n.f. of operators
and an invariant from Z/2Z for any J.n.f. except the above one.

THEOREM 3. The conjugacy class of any operator M € SO,, has connected inverse image
in Spin,, if and only if its spectrum contains both 1 and -1. In the opposite case the inverse
image consists of 2 components,

PROOF OF THEOREM 2: It suffices to prove our statement in the GL] -case since GLf =
SL3® {scalar matrices}, where the second summand is the center of the group.

At first we show that theorem 2 is equivalent to the following statement.

Let Cp € GLF(R) denote the conjugacy class of the operator M.

PROPOSITION. For operator M with J.n.f.:

A 0O
0 pu 0],
0 0 v

where A\,v < 0, the embedding Cyy — GL] induces epimorphism ¢ : w (Cp) —
7 (GLY) = Z/2Z. For other operators the induced homomorphism ¢ : m(Cyr) — 0 €
m1(GLY) is trivial,

Equivalence of this proposition to Theorem 2 is obvious since Cpy — GL{ has connected

inverse image in GLg only in the case when there exists a closed path v € Cy representing
the generator of m,(GLY).
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Our proof is based on the explicit consideration of all 10 real J.n. forms in GL.

a 0 0 -a® 0 0 Acosa Asina 0
ayl 0 8 0 byl 0 =¥ 0 c)| —Asina Acosa 0
0 0 ¢ 0 0 ¢ 0 0 c
a2 1 0 -a® 1 0 a2 1 0
dH| 0 a® 0 eyl 0 —-a® 0 )| 0 o 1
00 ) \o o & 0 0 a
a2 0 0 -a2 0 0 a2 1 0
gl 0 a> 0 h| 0 -e® 0 Yl 0o a® 0
0 0 ¢ 0 0 0 0 a?

a2 0 0
Lo & o
0 0 o

LEMMA 1. Suppose.that operators My and M, can be connected by a continuous path

I;t € [0,1); where M, for t € (0,1] has the same J.n. type as M; (i.e. belongs to the same
class given above with probably another a,b,¢c, A, a etc.). This means that M is adjoint to
M. Suppose also that ¢(m1(Cwm,)) = 0. Then ¢(m1(Cur,)) = 0.

PROOF: Let v = {6(7),7 € [0,27]} € Cp, be an arbitrary closed path in the conjugacy
class of M;. We will prove that it is contractible. By the definition of Cp, for any path
6(1) € Cu, there exists a path g(r) € GL],g(0) = e such that 6egn) = g~ () Myg().
The fact that the path 8(27) = 6(0) is closed means that g(27) belongs to the stabilizor
St(My) of the matrix M;. The assumption that M, for any ¢ # 0 has the same type as M,
means that their stabilizors coincide and one can choose a continuous path g.(27) such that
g4(27) € Stpy, for any t # 0. Then gy, (7) for any ¢, defines the closed path

6, = g:2} (7)Mo g1,

in the orbit Cpy, (the path is closed since g4(7) € Sta, ). Therefore 1-parameter family of
closed paths 6,(7) defines the homotopy of the path v to some closed path v’ in Cpy,. The
condition ¢(m1(C,)) = 0 means that 7' is contractible on the group GLF. Thus 7 is also
contractible. §i

COROLLARY: For operators M of the types c), ), i), j) and d), a), g) with positive eigen-
values arbitrary closed paths in Cjs are contractible on GLY, i.e. ¢(1(Car)) = 0.

PROOF: The scalar matrix AE belongs to the center and its orbit consists of one point so
obviously ¢(m1(Cag)) = 0. The other mentioned matrices can be connected with a scalar
matrix by the rather obvious paths within their types.

LEMMA2, Among the remaining types:

A0 O A0 O A1 0
0 v 0}, 0 X 0], 0 X0
0 0 p 0 0 p 0 0 p
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with negative \, v the orbits of the first two types represent, in fact, nontrivial element ot
71(GLY), ie. ¢(m1(Cmr)) # 0.

PROOF: Indeed, the stabilizor of these types contains the following element:

Therefore the curve g(7) such that g(0) = e, g(27) = o,

1 0 0
g(r)={[0 cost sinT |,
0 —sinT cost
defines closed paths (r) = ¢g~!(r)Mg(r) in the corresponding orbits. These paths are
noncontractible since they invert directions of the expanding eigenvector and preserve the
invariant 2-dimensional contracting subspace. Remark that corresponding orbits are nonori-
ented. Now the necessary statement follows from the next proposition.

LEMMA 3. For
A1 0
M=|0 )\ 0
0 0 X

é(m1(Cum)) = 0.
PROOF: We have the stabilizor of M consists of the matrices of the form

a b 0
0 a O
0 0 ¢

where ¢ > 0. Let g(z) be the curve with ¢(0) = e, g(27) € St defining the closed path 6

in Cps. The family
At 0
My={|0 X 0 , tE [O, 1]

0 0 pu
defines the 2-chain 6,(7) = g~ (7)M,g(7) since g(2r) € Star, = Sty, for 7 # 0. However,

the matrix
A0 O
Meo=[0 X 0
0 0 p

under the action of the path g(r) with g(27) € St M, spans a contractible path. Indeed, the
upper (2 X 2)-block of the stabilizor acts trivially on the scalar (2 x 2)— block of matrix
Mo. We has just mentioned that the path generated by Mp is noncontractible for the paths
(1) where g(2r) has a negative element ¢ only,
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This finishes the proof of Lemma 3 and Theorems 2 and 2'.
Now pass to the proof of Theorem 3.

PROOF: Recall ([M]) that the spectrum of any orthogonal operator M lies on the unit
circle and it has the following real J.n.f.

~E; 0 0 0 . 0 0
0 E 0 0 0 0
0 0 cos¢; sing 0 0
0 0 ~sing; cos¢; 0 0 ,
0 0 0 0 cosd, sing,
0 0 0 0 ... =—sing, cosd,

i.e. there are two (perhaps empty) invariant subspaces E; and —Ej on which M acts as
the unit or minus unit matrix and the set of 2-planes on which M acts by rotations by the
angle different from 0 and . Let [ and k denote the dimensions of E; and —E; respectively.
If k (or 1) vanishes then we connect M with the minus unit and unit matrix, respectively.
For example for | = 0 we use the following procedure: in each 2-plane with the rotation
angle > 7 we decrease it to 0 and in 2-planes with rotation angle in the interval (m, 2] we
increase it to 2. Thus, as earlier we have constructed a path in the class of matrices of the
same type (and stabilizor) contracting an arbitrary path on Cp to the scalar matrix. If k
and ! are positive then as at the previous step we can define a path g(), where g(0) = e
and g(2r) is the unit matrix except the block (';l _01) in the 2-subspace spanned by any
vector from E; and any vector from —E} changing orientation of the eigenvector and thus
realizing the nontrivial 7;-element.

In the conclusion I would like to formulate the following hypothesis.

HYPOTHESIS. The conjugacy class of a operator M € GL} realizes its nontrivial r, -element
if and only if the spectrum of M contains two real eigenvalues of different signs with 1-
dimensional Jordan blocks.
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Discrete invariants of symplectic leaves
of Zamolodchikov algebra and nondegenerate

curves on S2

B. Z. Shapiro

Abstract. Zamolodchikov algebra (called also Gelfand -Dikij algebra or KdV- structure)
is the algebra of coefficients of the third order linear ordinary differential equations with
the Poisson bracket. In [K-O] one can find the classification of symplectic leaves of this
bracket in the case ‘of arbitrary order linear ordinary differential equations’ with periodic
coefficients. The complete set of invariants of leaves consists of the pair {the conjugate class
of monodromy operators and group of the space of differential equations with the given
monodromy operator}. The space of the n-th order linear ordinary differential equations
with given monodromy A retracts to the space of the so called nondegenerate curves on
S$*~1 with the boundary conditions determined by A. In this paper we completely calculate
o of the space of 3-rd order differential equations with given monodromy and obtain detailed

information about the topology of the space of equations with unit monodromy (i.e. closed
curves).

§I. INTRODUCTION

THE MAIN DEFINITION. A curve v : [0,1] » RP™ (or S") is called nondegenerate if
for any moment ¢ € [0,1] at the point ¥(t) the complete osculating flag is properly defined.
(Its i-dimensional subspace is spanned by v'(t),..., () which are properly determined
in any affine chart containing the point v(t)).

Instead of RP™ or S one can consider arbitrary n-dimensional manifold with the flat
projective structure. Analogous notion in the Riemannian case was considered in [G].

With the given the n-th order linear ordinary differential equation (lo.d.e.) P$ =0 one
can associate with it the class T, of GL,- equivalent curves in R™ such that coordinates
7%, ;¢( &1 ,0 +++3®n), of any v, € T, (in arbitrary basis) are an arbitrary fundamental solution
o =0. ’

The crucial property of Yp is that V2 v,(2),...,4(*~1(2) are linearly independent. There-
fore the radial projection of 7p on the standard embedded unit sphere is a nondegenerate
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curve on S"®~!, Thus I', retracts to the class of GL,-equivalent nondegenerate curves on
n—1

> DEFINITION. The initial (final) flag of a nondegenerate curve 4 : {0,1] = S*~! is a

complete flag in T (g)S™~! (T+(0)S™ ') spanned by v'(0),..., 'y(""‘)(OX'y’(l), ey 1(1) )

respectively. )

Fixing some basis e;1,...,e, in R™ we can choose for any equation P¢ = 0 the um'que
curve §, from I’ such that 4,(0), %,(0),... ,‘/,(,""1)(0) is the unit matrix and thus associate
with P¢ = 0 its monodromy matrix 4, = ((1),7'(1), ...,7"~1(1)).

The space D,(\A) of all n-th order l.o.d.e. with given monodromy matrix retracts to the
space all oriented nondegenerate curves on S™~! with given initial and final flags (f1, f2)
satisfying the relation f, = A(f;).

DEFINITION. Fixing orientation on S? we call a nondegenerate curve: v : [0,1] — §?
right-oriented if 7'(t)," (t) defines the given orientation and left-oriented otherwise.

First results about the topology of the space of nondegenerate closed curves on S? and
R3 (i.e. of curves with coinciding initial and final flags) were obtained by J. Little [L1,L2].

PROPOSITION 1 [L1]. The space RS? of all right-oriented curves on S? consists of three
connected components (see fig.1).

Fig.1

PROPOSITION 2 [L2]. The space RR? of all right-oriented curves in R?® consists of 2 con-
nected components.

Earlier Whitney has shown that RR? consists of the countable number of connected
components,

In the first part of the paper we generalize proposition 1 to the case of nondegenerate
curves on S? with arbitrary initial and final flags.

DEFINITION. A nondegenerate curve « : [0,1] — S? is called strictly disconjugate if
the sum of local multiplicities (without signs) of its intersection with each 'big circle’ on S2
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does not exceed 3 and conjugate if it has with some ’big circle’ at least three transversal
intersections in the inner points.

Both properties are open and curves belonging to their boundary are called nonstrictly
disconjugate.

The main result of the first part is:

THEOREM A. The number of connected components in the space RS%(f1, f2) of right-
oriented curves on S? with given initial and. final flags (f1, f2) equals 3 if there is a (non-
strictly) disconjugate curve € RS?(fy, f;) and 2 otherwise.

An oriented flag on S? consists of a point p and oriented circle C. The open segment on
which C'is divided by the pair (p, ) (where 7 is the point antipodal to p) is called positive
(negative) if it contains the small push in the positive (negative) direction of the point p
and is denoted by Cf (C;). Fixing orientations of S? and of the ’big circle ’ C we can
define upper and lower hemispheres H, 3 and HG of S?\C (so that the vector complementing
the right-oriented pair of vectors in the plane containing C to the right-oriented 3-tuple in
R® must intersect the upper hemisphere).

THEOREM B. Flags fi = (p1,C;) fo = (p2,C2) can be connected by a right-oriented
disconjugate curve if they form one of the following arrangements:

(1) p2 belongs to the upper hemisphere H, a and C;': p, intersects with CT ;

(2) p2 belongs to the upper hemisphere H a and C.Z p, Passes through py;

(3) p2 belongs to Cyp, and p; belongs to Ha;

(4) p1 coincides with p,; tangent vectors to ¢y o0 CT »,) defines the orientation of S?
opposite to the given one;

(5) Ci coincides with C; and p2 belongs to Lo

(6) flags f1 and f; coincide.

Denote the space of all right-oriented conjugate curves given on I = [0,1] with the fixed
initial flag f by CN(f) and the map taking each curve to its final flag by 7 : CN(f) — FO;.

THEOREM C. The map 7 : CN (f) — FOg satisfies the covering homotopy property.

COROLLARY. The space of the third order l.o.d.e. with all periodic solutions consists of two
disconnected parts one of which is contractible and the other is homotopically equivalent
to the space of all closed paths on FO5 & SO; passing through the given point.

The second part of the paper is devoted to the calculation of the discrete invariant for
symplectic leaves of Zamolodchikov algebra. Recall that operators belonging to GL} have
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DEFINITION. We say that the basis €;,...,e,41 in R™! is adjusted to the oriented flag
fiseovs Fag1 i €150, enfq span f; with proper orientation.

REMARK. Reparameterization multiplies the matrix of monodromy operator by an upper
triangular matrix with positive elements on the main diagonal in any basis adjusted to the
initial osculating flag.

REMARK, Fixing any Euclidean structure in R™*! we assign to each oriented (naturally
parameterized) nondegenerate curve on S™ the unique orthogonal transformation mapping
orthogonal (n+1)-tuple of vectors associated with its initial flag onto the orthogonal (n+1)-
tuple of vectors associated with its final flag. In other words if we identify the initial flag
with the unit matrix then the final flag will be identified with the unique orthogonal matrix
determining the above transformation.

DEFINITION. Two complete oriented flags f1, f; in R™"t! are called nontransversal if the
intersection of at least one pair of their subspaces has the unproper dimension.

§2. DISCONJUGACY CRITERION AND TYPES
OF NONSTRICTLY DISCONJUGATE CURVES

LEMMA. If a nondegenerate curve v : [0,1] — S? is conjugate (i.e. there exists a ’big circle’
intersecting it transversally in at least 3 inner points) then at least for one moment t € (0,1)
the osculating flag f(t) is nontransversal to f(0).

PRroOF: Taking a conjugate curve 7 : [0, 1] — S? let us consider it as a family of curves
Y- given on the increasing time interval [0,7] 7 < 1. Obviously for sufficiently small 7 the
curve 7, is disconjugate. Then for some 7, the curve ¥r, becomes nonstrictly disconjugate
and for 7o < 7 < 1 the curve v, is conjugate. We'll prove that initial and final flags of v,,
(ie. fo and fr, ) are nontransversal. Indeed the nonstrictly disconjugate curve v has a big
circle intersecting it with the sum of local multiplicities > 3 and any of such circles doesn’t
intersect v > 3 times transversally since in this case any small perturbation of the initial
curve is also conjugate contradicting to nonstrict disconjugacy.

Hence we immediately obtain that the ’ big circle’ C conjugate to nonstrictly disconjugate
7 can not intersect it in the inner point because its small push will intersect v three times
transversally. So in the considered case conjugate C' must exist and pass only through the
initial and final points of 7. Notice that by results of Arnold ([A]) the final point 7,,
of (nonstrictly) disconjugate curve 7, can’t be antipodal to 7(0). So we can work with
planar curves. Below we show all the possible arrangements for initial and final flags. Other
possibilities are easily rejected because one can find the small push of C with > 3 transversal
inner intersections.

So there are 5 different types of nonstrictly disconjugate curves on S2 (it will be proved
in the next section).
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Fig.2

§3. CELLULAR DECOMPOSITION OF FOj;, TOPOLOGY
AND GEOMETRY OF TRAIN AND DISCONJUGACY DOMAIN

DEFINITION. The set Tny of all flags from FO,, nontransversal to the flag f is called the
train of the flag f.

Consider SL,-action on the space FO,,. If we fix arbitrary flag f and consider its stabilizor
subgroup Sty C SLy, then it identifies with the subgroup T of upper triangular (in any
basis adjusted to f) matrices with positive elements on the main diagonal. One can easily
see that the orbits of Sts-action on FO, are cells (see [F]). If we fix an arbitrary basis
€1,...,€n in R™ then each cell contains the unique coordinate flagy.e. flag whose subspaces
coincide with oriented coordinate subspaces (we assume that orientation of the whole R™
is fixed).

These cells are enumerated by the elements of the group Z/2Z x -+ - x Z/2Z x S, and
their total number equals 2"~ x n!.

Below we show the diagram of cellular decomposition for SO;, their adjointments and
corresponding coordinate flags (drawn as flags in TS?). Adjointments of FO,,-cells can be
easily obtained from the classical Bruhat ordering (see [S]).

REMARK. By the definition Tny coincides with the union of all positive codimensional
cells of the Schubert decomposition of FO, associated with f (all cells except 2(n — 1)
full-dimensional ones).

Now we obtain the equation for Tny. If we identify FO, with SO, then for any flag f
represented by an orthogonal matrix (a;;) then its train Tn 1 is given by the equation

A=A1(X)...An_1(X) =0
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Fig.3, 24 cells in FO;

lg €1-32) \
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Fig.4. The adjointment of cells in FO,

where X denotes variable matrix € SO,, and

ai, ay2, Q1n
Ai(z) ail, a;2, Qin =0
: N ozA4, =13, ... Tin ’
Tn-i,ls Tn—i,2y -++ Tp—in

IMPORTANT EXAMPLE. If f € FOj is represented by the unit matrix then its train

the equation A;A; = 0, where A; is the right main (7 x i)-minor of the orthogonal ma:
X .
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243

Fig.5. The closure of the open 3-dimensional
cell (reachable strata are placed in boxes)

REMARK. For FO, its 2(n — 1) high-dimensional cells are given by inequalities

+4A; >0,
:EAZ >0,

+An,—; >0.

Now we describe in details topology of FO3 and Tny.

The space FO3; = SOj is diffeomorphic to RP3; each of A; and A, is diffeomorphic to
2-torus which is separated by four circles consisting of eight 1-cells (1-skeleton of Tny) into
four 2-dimensional cells.
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Fig.6
In the homogeneous coordinates (u,v) we have
Ay ifuf® = of?
Dgilu—vf =u+of

Each of four 3-dimensional cells is bounded by four 2-dimensional cells which are divided
into two pairs. Each pair belongs to its torus and 2-cells from each pair intersects with the
other only by 4 vertices and thus form "the pillow”. These pillows are glued to each other
the way it’s shown below

Fig.7

Good local illustration for Tny in the neighborhood of f € FOj is obtained as follows. The
standard affine chart in SOj is identified with the space of upper triangular matrices with
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the units on the main diagonal. Equation of the train of unitary matrix is z(z — zy) = 0,
where z y =z are the following matrix entries

1 =z
1

- N

On the next figure one sees four 1-dimensional, eight 2-dimensional and four 3-dimensional
cells (pairs of components connected by arrows glue through infinity).

Fig.8

§4. DISCONJUGATE DOMAIN OF THE FLAG

In section 1 we've mentioned that flag curve of nondegenerate curves are tangent to
(RT)™™" of SO, -invariant Cartan distribution CFO,. Properties of trains are closely con-
nected with the crucial properties of CFO,,. For example if we consider the space of all
germs of flag curves for l.o.d.e. starting at f then they fill the germ of domain called the
local reachable domain. It coincides with one of the local components of FO,, \ Tn f. On
figure 8 the reachable domain for the flag 0 coincides with the component A and is given
by the system of inequalities:

z>0,

z>uzy,
z >0,
y>0

By the lemma of section 2 we know that nondegenerate curve 7 : [0,1] — S? is disconju-
gate until the moment 7o € (0,1] when f,, € Tny,.
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So all nondegenerate curves starting at f go into one connected component of FO, \ Tn;
and remains disconjugate until they reach its boundary. This component will be called the
disconjugate domain of the flag f and denoted by D ¢. Below we’ll describe in details its
boundary for the case of FOj3.

If we as with the unit matrix then one can easily see that Dy is given by
inequalities A; > 0 i = I n (see section 3). Now we consider the following question.
What strata of Ds-boundary are reachable, i.e. their points are the final flags of nonstrictly
disconjugate curves.

LEMMA. The generic point p of D¢-boundary is reachable if some (and therefore any) vector
v € CFOy|, goes outside the domain Dy and nonreachible otherwise. Stratum S C Dy ot
positive codimension is reachable by nonstrictly disconjugate curves if S can be represented
as the intersection of the closures of reachable strata only.

In the case of FO; reachable strata are placed in boxes on fig.8. They are denoted by small
letters and correspond to the signed permutations (3 —2 —1),(-2-31),(312),(-21 -
3),(1-3-2),(123).

§5. ON THE my OF RS?*(fi, f2)
Proof of theorem A (see introduction) is divided into the following two statements.

LEMMA. If f1 and f, can be connected by a right oriented (nonstrictly) disconjugate curve
then the subset DS(f1, f2) of all disconjugate curves in RS?(fi, f2) forms one connected
component,

PROOF: We consider simultaneously all the five cases shown on fig.2. Initial and final flags
(f1, f2) define three (probably coinciding) 'big circles’, i.e. C1,C; and p1;p7 (Which connects
points p; and p;). Curves from DS(fi, f2) can’t intersect Cy, C; and 57777 in points different
from p; and p,.

So we have shown that curves from DS(fi, f;) are simple convex arcs connecting p; and
P2 (see fig.9) and they obviously fill one connected component of RS?(fy, f2).

LEMMA, For any pair (f1, f2) conjugate right oriented curves fill 2 connected components
in RS%(f1, fa).

PROOF: Slight modification of J.Little’s arguments shows that arbitrary nondegenerate
curve on S? can be nondegenerately deformed with its ends fixed to some curve lying in
some (probably closed) hemisphere. The situation on the hemisphere coincides with that on
R?. According to Whitney the only invariant of connected components for nondegenerate
curves on R? with fixed initial and final flags (f1, f;) is the full rotation angle of its velocity.
So if we prove that two arbitrary nondegenerate plane conjugate curves € RS%(f1, f2)
whose difference of rotation angle is divisible by 47 are S?-nondegenerately homotopic the
statement will be settled..

The following set of pictures shows how to increase the rotation angle by 4. It resembles
pulling of the spring.

So any planar "”-fragment can be nondegenerately deformed into "w”- fragment. This
procedure increases rotation angle by 4. The proof completes by the remark that any conju-
gate curve can be deformed (with initial and final flags fixed) into a curve with ”y”-fragment.
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Fig.9

Fig.10

Indeed if £ is the *big circle’ intersecting the conjugate curve v = 3 times transversally then

» necessanly ineludes one of the following ? fragments:
The first one is ”4” itself while the second is easily deformed into the first one.

§6. COVERING HOMOTOPY FOR NONDEGENERATE CONJUGATE

ot
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CURVES ON S?

Above we’ve shown that flag curves of nondegenerate curves on S™ are tangent to Cartan
distribution CFO, which is the left invariant distribution of (R‘*’)"_1 on FO, = SO,,.
We can consider the following general question. Having some nonholonomic distribution
F of cones, i.e. distribution of cones which associated distribution of linear subspaces is
nonholonomic, see [V-G]) on some manifold one can consider the space REG of all regular
curves starting at some fixed tangent element and ending elsewhere and study the prop-
erties of the obvious map 7 : REG — Tang sending regular curves onto the final tangent
elements and find whether it satisfies the covering homotopy property. Recall that for linear
nonholonomic distributions this is always valid by the results of S. Smale (see [S]).”At the
same time for the distribution of cones whose germs of reachable domains are different from
the complete neighborhood of the initial points the situation at least locally is different, i.e.
short curves can’t satisfy the covering homotopy property (even for 1-parameter families)
since we can choose deformations of the final tangent element pulling its attachment point
outside the reachable domain and it can’t be covered by the deformation of the curve. If this
local situation is preserved globally (for example as for the distribution of parallel cones in
R" or negatively curved spaces) then nothing of the covering homotopy is left. Still in the
case when the global reachable domain of any point coincides with the whole manifold and
there exist closed contractible curves tangent to the distribution and passing through each
tangent element (for 'positively curved’ manifolds) then one can hope that for sufficiently
large ’conjugate’ curves the covering homotopy is valid. It will be very useful to turn these
naive considerations into strict proofs for left-invariant distributions on the compact Lie
groups and homogeneous spaces. Here we illustrate them on the example of the space of all
conjugate curves on S2,

Proof of the covering homotopy property for the map 7 : CNy — FOj which takes any
curve (from the space CN; of all conjugate curves starting at the fixed initial flag f) to its
final flag derives from the following three lemmas.

LEMMA 1, SEE [Sr]. Let w : I™ — CNy. be an arbitrary continuous family of conjugate
curves. Then there exists the continuous family ¢ : I — (S?)* of their conjugate ’big
circles’. ’

DEFINITION. We call a conjugate curve on S? the conjugate curve of the simplest type if
its maximal sum of local multiplicities of intersections with any ’big circle’ equals 3.

PROOF: Since the first conjugate point on the conjugate curve depends continuously on
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parameters then one consider only conjugate curves close to the 5 types shown on Fig. 2.

“for which one can easily construct necessary families.

TEMMA 2. Any continuous family of conjugate curves w : I — CNy can b‘f nondegener-
ately deformed (preserving their initial and final flags) to the following family wy ] I —
CNy. Each curve from wy coincides with the corresponding curve of w but starts with the
k times passed little circle on S?.

PROOF: According to Lemma 1 we can take simplest parts of all conjugate curves from w

\ then deform each of them as it is shown on Fig. 10 and to obtain the necessary fragment
“at the beginning. ’

LEMMA 3. For sufficiently big k the family wi covers any deformation of the final flags on
FO;.

PROOF: Introduce on FO; = SO; the Killing’ metrics. We will cover any 1-parameter
deformation of final flags in wy (for sufficiently big k) Obviously the following procedure
depends continuously on any compact space of parameters. Covering will be done as the
iteration of two standard sequential steps. Firstly we choose some finite o such that we
can cover the o-neighborhood of the final flag changing the last half of the circle by the
appropriate halfs of the circle on the sphere which pass through f and the perturbed final
flag f (see Fig.11). Then we fulfil some standard smoothing procedure making the whole
curve smooth. In order to cover the next o-perturbation of f we move as one fragment part
of the curve starting with the flag g. Since SO; acts on FOj3 by isometries we have that the
final flag moves on the distance not exceeding o from its initial position and we can repeat
the previous step.

Fig.11

PART II. NONDEGENERATE CURVES ON S? WITH
GIVEN MONODROMY

This part is devoted to the calculation of my of the space D3(A) of all third order linear

ordinary differential equations with monodromy operator A which is the only discrete in-
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variant of Gelfand-Dikii bracket. In the paper [SHmve give the complete classificatio
3 x 3-matrix systems. This information will be useful for classification of ordinary equat
For the space D(A) we'll use interpretation quite different from those used in the first
for equations with given monodromy matrix.

We fix some monodromy matrix A corresponding to the operator A consider its ac
on FO3 and look at all right-oriented curves satisfying the relation f; = Af;, whe:
and f; are as usual the initial and final flags of the curve. Among these curves those w
correspond to the same differential equation are SLz-equivalent. So they are necess
St 4-equivalent, where St4 denotes the stabilizor subgroup of matrix A.

Considering FO3 as the bundle over S? with the fibre S (the set of all oriented
on S? passing through the given point) we have for each initial flag the problem alr
considered in the first part and must observe how the situation changes when we ch:
the point of the base. For generic operators a fibre over the typical point is separated
two parts (+arc and -arc) depending on whether the image Af of the given flag f bel
to Dy or not. One of our aims is to describe connected components of +arcs and -ar«
the whole FO3. The main argument is the description of arc bifurcations when the
point passes through invariant subspace of A.

§1. CALCULATION OF mo(D(A))

LEMMA 1. D(A) is homotopically equivalent to the factor of the space of all right-orie;

nondegenerate curves belonging to Usero, RS%(f, Af) by St(A), where A is some 1
matrix representing operator A.

PROOF: Indeed, since all curves corresponding to the same equation are SLj-equive
then (because we’ve fixed A) they can differ only by St(\A)-action. For arbitrary curve
set of all its reparameterizations preserving initial and final flags is contractible. Tt
fore taking into account that the same radial projection on the unit sphere S? have
the curves differing by multiplication on arbitrary positive function we have the neces
proposition,

DEFINITION. The set of all z € R® for which z, Az, ..., A" 1z are linear depende:
called the degeneration set DgA of operator A.

REMARK, The set DgA is the union of all invariant subspaces of positive codimen
and it is preserved by StA. In the complex case dim DgA equals the sum of sizes of
biggest Jordan blocks with different eigenvalues.

LEMMA. Intersection of DgA with S? consists of

(1) of three ’big circles’ in the case of J.n.forms a) and b);

(2) of one ’big circle’ and a pair of antipodal points for J.n.f. c);
(3) of two circles (one of which is double for J.n.f. d) and e);
(4) of one circle for the J.n.f. f);

(5) and coincides with'S? otherwise.

DEFINITION, A vector z ¢ DgA is called positive if the 3-tuple z, Az, A%z defines
fixed orientation of R® (which induce given orientation of S?) and negative otherwise.

DEFINITION. A flag f € FO; is called A-disconjugate if Af € Df, i.e. there exisl
disconjugate curve in RS%(f, Af).
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Any point which does not belong to DgA defines on the fiber C, = 7~z four flags

fa whose ’big circle’ passes through p and Ap and the segment (p, Ap) is positively
oriented;

fs coinciding with f, but with the opposite orientation of the ’big circle’;

f2? coinciding with A71(f,);

f5! coinciding with A~1(f5).

All of them are different. Notice that if orientation of S? is fixed then the fibre C, has
the induced orientation.

LEMMA. Ifz ¢ DgA is a positive point then the +arc on C; coincides with (fa-1, fo) and
the -arc with [fo, fo-1]; . '

Ifz ¢ DgA is negative then the +arc on C, coincides with [f, f3-1] and the -arc with
(fﬁ"‘ffﬁ)'

b

. ‘A‘lt

$e %

<

Fig 12, Arcs for positive and negative z

PROOF: According to results of §.4 the flag f, belongs to Dy, if its point p; belongs to
the upper hemisphere of the ’big circle’ C; and the negative segment of f; intersects with
the positive segment of fi. In all our cases this condition can be easily verified. Moreover
for positive z right-oriented curves vanish at the ends of the +arc since the final flag f,
moves to the nonreachible strata of the of Dy while when z is negative then
disconjugate curves become nonstrictly disconjugate at the ends of the -+sarc. (f2 moves to
strata D and E),

Completion of the proof of Theorem D. Results of §2.1. and the covering homotopy
property imply that the question about the number of connected components in the set of
conjugate curves realizing the given monodromy operator reduces to the question whether
the conjugacy class of operator A realize the nontrivial element of m(GL]). So it remains
tosstudy what happens with disconjugate curves when we change the initial flag.

Discrete invariants of symplectic leaves

For generic operators , i.e. those whose DgA differs from the whole S? the quest
settled by the following proposition.

LEMMA.

If for t € [0,1) =(t) is the curve of positive points on S? such that z(1) € Dg4
the +arc vanishes, i.e. disconjugate curves on the positive components of S* \ DgA {
separate connected component;

If for t € [0,1) z(t) is negative and z(1) € DgA then the disconjugate curves dege:
to nonstrictly disconjugate and they are connected with the conjugate ones.

PROOF: We have to consider the following three cases
a) z(1) is the generic point of the circle from DgA;
b) (1) is the eigenvector (i.e. the isolated point of DgA;
c) z(1) is the generic point of the double circle.
In each of this cases the proposition is quite obvious.

COROLLARY. The number of connected components filled by disconjugate curves ¢
the number of positive components in S? \ DgA up to the action of the stabilizor,
equals 1 for J.n. forms a) - f). :

Cases g) - j) will be considered separately.

In the simplest case j) we work with closed nondegenerate curves and (by resu
J.Little, see Introduction) there exists a separate disconjugate connected compone
with nonstrictly disconjugate curves. .

In the cases g) and i) for the point z lying outside the circle of eigenvectors (nonsti
disconjugate curves exist only for the unique direction of the tangent element and
transform to the conjugate ones under the arbitrary small perturbation. To. check ;
can use convenient affine chart £,% in which our linear transformations are of the

2 2 B
(i: ;),(~? _(_;;_) and (; ::T ) So no new components appear.

In the remaining case h) disconjugate curves exist only if the angle between the r:
vector and the oriented flag line belongs to the interval [0, 7] in the above affine cha
they fill two connected components in the upper and lower hemispheres which are ider
by the action of stabilizor.
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On the number of connected components

On the number of connected components in the

space of closed nondegenerate curves on S*

B. Z. Shapiro

THE MAIN DEFINITION. A parameterized curve 7 : I — R" is called nondegeners
for any t € I vectors 7'(t),...,7(™(t) are linearly independent. Analogously + : I —
called nondegenerate if for any t € I the covariant derivatives /(t),. .. , 7™ (%) spe
tangent hyperplane to S™ at the point 4(t) ( compare with the notion of n-freedom in

Fixing an orientation in R™ or S™ we call a nondegenerate curve v right-oriented
orientations of 9/, ...,v(" coincide with the given one and left-oriented otherwise,

Nondegenerate curves on S™ are closely related with linear ordinary differential equ:
of (n + 1)-th order, Such an equation defines two nondegenerate right-oriented curv
S™ C V(*+1)* where V(r+1* is the (n+1)-dimensional vector space dual to the space
solutions as follows. For each moment ¢ € I we choose the linear hyperplane in V™+1
solutions vanishing at ¢ i.e. obtain a unique curve in the projective space P". Raising it
we obtain a pair of curves; both of them are right-oriented for an odd n and have opy
orientations for an even n (nondegeneracy follows from nonvanishing of Wronskian).

Nondegenerate curve v : [0,1] — S™ defines its monodromy operator M € GL];
maps 7(0),4'(0),...,v(™(0) to ¥(1),4'(1),...,7™(1). On the other hand in the pape
O] there is given a complete set of invariants for symplectic leaves of the second Gel
Dikii bracket, namely its leaves are enumerated by pairs: a monodromy operator :
connected component of the space of right-oriented curves in the sphere with the
monodromy operator.

In this paper we study the number of connected components for closed nondegen
right-oriented curves (corresponding to the identity monodromy operator), The differ«
relation of nondegeneracy. is also interesting in connection with the general theory
principle (see [G]).

Let NR, (NS,) be the space of all nondegenerate closed right-oriented curv
R™(S™ respectively).

The question we consider is how to calculate To(NS,) and m,(NR,,). For the first
a similar question was studied in [F]. Notice that NR, is homeomorphic to the in:
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number of infinite-dimensional cells (this is probably due to Whitney). Later J.Little [L1,12]
studied NS, and NR; and proved the following W.Pohl’ conjecture: card(m,(NS3)) = 3
and card(m,(NRg)) = 2. (The invariant which distinguishes closed nondegenerate curves is
an element of 7 of the image of the natural map v : NR, — SO,,, where v(7(%)) equals the
matrix obtained by orthogonalization of v'(t),... ,7(™(t); and sv : NS, — SOpy41, where
sv(7(1)) equals the matrix obtained by orthogonalization of +'(2), ... ,7\™(t) considered as
vectors in R™+! due to the standard embedding S™ C R™!.

U.Hamenstadt [ H ] continued the study of this question and formulated the following
result (mentioned in [ G ]). -

PROPOSITION.  To(NRy) = mo(NS;) and consists of 2 elements for any k> 2 .

There are several gaps in her proof and the proposition itself is wrong. Probably the true
version is as follows:

CONJECTURE.

(1) 7o(NR&) = mo(NSi) and consists of 2 elements for any odd k > 2, i.e. in this case
the only invariant equals m1 of the above mentioned map.
(2) m,(NRy) = mo(NSy) and consists of 3 elements for any even k > 3.

The only fact I am able to prove (and which contradicts Hamenstadts proposition) is:
THEOREM 1. card(mo(NSzi)) =3

To prove this theorem we need several definitions.

DEFINITION 1. By a linear subspace of S™ we will understand any 'big circle’ obtained
as the intersection of S™ with any linear subspace in R™*' 3 0 where S™ is standard
embedded. Any k-tuple (v1,...,vx) of vectors tangent to S™ at some point p defines a
linear subspace in S™ as its intersection with the subspace in R™*? spanned by p,v1,..., k.

DEFINITION 2. Consider a closed nondegenerate curve y on S™. The curve v will be called
disconjugate if the sum of local multiplicities of its intersection over all intersection
points of the curve with any linear hyperplane (see above) is at most n and conjugate
otherwise. (Local multiplicity is the degree of the restriction of the divisor on the curve, in
the considered case it equals the maximal dimension of the osculating subspace to the curve
contained in the hyperplane.)

'REMARK 2. One can easily see that the local multiplicity of such intersection for a
nondegenerate curve is at most n. It equals the maximal dimension of subspace osculating
rto:the curve at this point and lying in the hyperplane.

{DEFINITION 3. Denote by S™ the sphere dual to the considered S™, i.e. the set of all
coriented hyperplanes on S™. If 7 is a nondegenerate curve on S™ then we can define the
curve v* € S™* dual to v as the set of all oriented osculating hyperplanes tangent to 7.

‘REMARK 3. Now we will also give the dual formulation of disconjugacy. For the curve
4*.dual to the disconjugate curve v and an arbitrary point z € (S™) the sum of tangency
orders over all hyperplanes passing through z and tangent to y is at most n. .

‘Notation. NDgg (NCgy) will denote the space of all closed disconjugate (resp. conju-
gate) curves on S%¥,
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One can see that NDgy is nonempty. For example, it contains the curve whose coordinates
(it lies on standard S?* ).

Since NC,;i consist of at least 2 components differing by the element of m of GLok+41
(for example, iterating the above curve two or three times one obtains conjugate curves
realizing different elements of m of GL',',’), Theorem 1 follows from the next result.

are /ghy(1,sint, cost,sin2t,cos2t, .., sin kt, cos kt)

LEMMA 1. NDy; is disconnected with NCag.

The proof is divided into 2 parts:

(1) NDg; is open;

(2) NCgy is open.

Instead of (1) we will prove the following more general fact. For any m > n the set NS of
all nondegenerate closed curves whose sum of intersection multiplicities with any hyperplane
does not exceed m is open. Let t1,...,t, be pairwise different moments of intersection of
~ with an arbitrary hyperplane L and 1 £ ky,...,kp < n be the set of corresponding local
multiplicities (3" k; < m). Since 7 is nondegenerate, then by the definition of multiplicity
for each t; there exist ; and &; such that if |y — F|lo» < & and the sum { of intersection
multiplicities of 7 with L if 7 belongs to the §;-neighborhood of ¥(t;) is at most k; (the lower
index C™ means that the distance is taken with respect to the metrics with n derivatives).
Let U; denote the &;-neighborhoods of the points ¥(t;). Denote € = min{¢y,...,&p} and let
p be the distance between v\ {U1,... ,Up} and L in the ordinary metrics of R™ . Finally,
take ¢ = min{£, p/2}; we see that if |y —F|c~ < ¢/2 then for any hyperplane L §(LN¥) < m.

The idea of the proof of (2) is as follows. A hyperplane L is called conjugate relative
to a conjugate curve v C S™ if the sum of local intersection multiplicities of L with v
exceeds n. If a curve is conjugate, i.e. there exists a conjugate hyperplane then (by the

_ result of Sherman ([S ]) there exists a hyperplane with > 2k transversal intersections.

Consequently, for arbitrary sufficiently small deformation ¥ of 4 the same hyperplane also
intersects transversally v at least 2k times. Thus 7 is also conjugate and NCg; is open.

I will give a selfcontained geometrical proof of Sherman’s result whose main idea is due
to V.I.Arnold.

DEFINITION 4. A point z € S™ belonging to the small neighborhood of the germ of
the nondegenerate curve v : [—€,€] — S™ is called hyperbolic if there exists n different
hyperplanes passing through z and tangent to v. The germ of the whole set of hyperbolic
points is called the germ of the hyperbolic domain H.

‘REMARK 4. One can easily show that H, is diffeomorphic to the product of the interva
by the germ of the swallow’s tail’s pyramid (this pyramid is the subset of all n-tuple:
(a1,.-.,an) for which the polynomial z" 4 ayz" 1 4 -« + @,-17 + an has n simple rea

zeros (see [AVG]).

LEMMA 2. An arbitrary hyperplane L C S™ intersecting the germ of a nondegenerate curv:
5 : [~€,€] = S™ (with any possible multiplicity §) intersects the germ of its hyperboli
domain H,.

PROOF; The first case. If | is odd then ends of v belong to the different 'semispaces’ (loca
connected components in S™ € L). Hence there exists a C'-close to v germ which entirel;
belongs to H., and also intersects L.
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The second case. If § is even then v lies in one of the ’semispaces’ and we need additional
arguments.

DEFINITION 3. The collar T' of the germ v of a nondegenerate curve v : [—¢,¢] —
S™ is the germ of 2-dimensional surface formed by the positive semitangents to . (The
semitangent is called positive if it contains the tangent vector). The collar §-boundary
is the curve 5 of the ends of the tangent vectors whose lengths equal to 6.

LEMMA 3. If §(y N L) is even then half of the collar §-boundary corresponding to the
negative time interval [—¢,0) and v itself lie in the different ’semispaces’.

PROOF: We can always choose on S™ the appropriate affine coordinates z;, ... , Tp with
respect to which v is parameterized as follows

=ttty =122 vk =2k e =t 0+
Let the tangent subspace be spanned by the first (2k — 1) coordinates (since § is even),

belong to L and the coordinate vector eyx be transversal to L. Then locally v7x(t) is positive.
The collar §-boundary is given by the equation

Vs =7+6

Hence 2k-th coordinate of 5 is equal to
Yok = 6271 [(2k — 1) + 2% /2k! + ..

and for negative small #7521 is negative. §

This lemma along with the observation that the collar belongs to the closure of H,
‘implies that there also exists a germ of a curve lying entirely in H, whose ends belong to
fhe different 'semispaces’. Lemma 2 is completely proved. U

Now we can give a geometrical proof of Sherman’s result reducing it to Lemma 2. The
essence of Arnold’s lemma is as follows. If we have an (n — 1)-dimensional linear system
«of hyperplanes on S™ containing a hyperplane which has the maximal possible order of
itangency with a germ of nondegenerate curve then we can choose a hyperplane belonging
‘toithis system which has with the considered germ n transversal intersections. (The lemma
iitself has a dual formulation).

Now consider a closed conjugate curve v C S™ and a conjugate hyperplane L (i.e. such that
#(y N L) > n). Let (yNL) = (y(¢5),-..,7(tp)) and ko, ..., k, be the corresponding p-tuple
«of multiplicities ( Y 7_; ki > n). We additionally assume that k, is the maximal possible
‘intersection multiplicity at the point ¥(%,) on the set of all conjugate hyperplanes.(In the
-dual space this means that we have a nondegenerate curve and a point for which there are
;p hyperplanes tangent to the curve with multiplicities k4,...,k,). In (8™), consider the
linear subspace L of the hyperplanes in S™, satisfying the following conditions:

L = {L C S™ |hyperplane L such that
HL Nl = Foe B AN, =kpy D ki =1 — ko +1},
i
“where all the conditions are linearly independent. One can easily prove that such conditions

«can be chosen.

Then dim(L) = k, — 1.

On the number of connected components

LEMMA 4. If M, is a linear subspace C S™* (dim M = n — k,) passing through v*(i
spanned by (v*)'(%),. .., (v*)("=*)(¢) then dim(L N M,) = 0.

PROOF: Assume that dim(L N M,) > 0. Then there exists a conjugate hyperplane |
for which §(y N L)|;, > k. Contradiction. §

Now we finish the proof of Sherman’s result. Projecting a point of the germ v(t) alo:
on the subspace spanned by 4(*~%+1)(¢) and L we get the situation of Arnold’s lemn:
are able to find a conjugate hyperplane with k transversal intersections in the neighbo
of v(t,) and after this a hyperplane with > n transversal intersections. |
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The M-property of flag varieties

B. Z, Shapiro, M. Z. Shapiro

§1. INTRODUCTION

The well known Smith inequality implies that for an arbitrary real algebraic variety
XRyehave 3 b:;(X®) < 3 b;(X©), where b; denotes the i-th Betti number with coefficients
in.Z/2Z and X denotes the complexification of X®  (see for example [ CF)).

In the particular case of a planar real algebraic curve this inequality is called Harnack’s
inequality and the planar curves for which Harnack’s inequality is in fact the equality are
called M-curves. M-curves were studied by several authors, see [Ro,Ra,Hk,P].

§1.1. THE MAIN DEFINITION

A real algebraic variety X® (the set of real points of X©) is called an M-manifold if
Y b;(XR®) = Y b;(X©). (We shall also say that in this case X® has the M-property.)

There are several articles by authors from the Leningrad and Gorky schools about M-
surfaces (see [H,V]).

In the beginning of 70’s it was found that several configuration spaces have the M-
property. For example in the paper [0-S] by Orlik and Solomon it was proved that the
complement of an arbitrary arrangement of real hyperplanes has the M-property (see also
[0-8,V-G]).

In this paper we will consider other configuration spaces and establish the M-property
for ‘another series of manifolds. In this sense our work is the development of [O-S].

§1.2, THE MAIN RESULTS

DEFINITION: Two (incomplete, generally) flags in P" are called transversal if the inter-
section of any pair of their subspaces has the minimal possible dimension.

‘Let PT*P"™ denote the manifold of all flags in P" consisting of a hyperplane and a
distinguished point in it. (Notice that two flags belonging to PT*P™ are transversal if it
holds for both that a distinguished point of one does not belong to the hypersurface of the
another).

Hereinafter the term ’the set of flags in general position’ means that it belongs to
some open dense domain in the space of all sets.

The M-property of flag varieties

THEOREM A. The locus of all flags from PT*P™ which are transversal to each flag fi
given set in general position has the M-property (see §2).

THEOREM B. There exists an open set of 4-tuples of real lines in P (flags in F* )
that the corresponding locus of all lines (flags) transversal to all lines (flags) from the
set violates the M-property.

The authors are very thankful to V. I. Arnold and A. N. Varchenko for their inter
this work and useful discussions of the subject.

§2. THE M-PROPERTY OF PT*P"

This section contains the proof of theorem A.
2.1. DEFINITION 1. T?e train Tng of a flag f is the locus of all flags nontransversa
. If f is an arbitrary set f = {f},...,fi} of flags in P" then we denote

Tnt- = U Tnf‘-.
f.'ef'

DEFINITION 2. Let V1, V; be two n-dimensional vector spaces. The subspace L C V;
is called decomposable if L = L; @ L,, where L; C V;,L, C V,. We denote by
Vi@ Vo — Vi; by pe: Vi & V2 — V; projections onto the first and the second sumr
respectively. Let ¢ : V; x V3 — R(C) be a pairing (possibly degenerate). With the p:
® : Vi x V; — R(C) we shall associate a quadratic form ®(V @ V) — R(C) such
@(v) = ®(p1v, p2v).

2.2. LEMMA. Let V1,V; be n-dimensional linear spaces; @ : Vi x V; — R a pairin,
®(V1@V,) — R the associated quadratic form. If L is decomposable then the restrictio
has zero signature (the number of positive squares minus the number of negative squ

PROOF: For any pairing ® we can choose appropriate coordinates z; on V; and y; on
that for any

v=(zl,...,zn); w=(y1)'~':yn)

-
O(v,w) = Z z;y;,
=1
where r = rank® < n.
The signature of the quadratic form @ = z;y; + -+ + z,y» equals zero. For any d
posable vector space L the restriction ®|f is also a pairing and ®|r, = (®[L). §

2.3. DEFINITION. Let R*(C") denote the one-point compactification of R™ (C
an arbitrary real or complex-valued function on R*(C") and V the variety of skt
(@@)=0. .

The subvariety V = V U co in R*(C™) is the one-point compactification of V.

2.4, The aim of this section is to study relative mod oo homology of the variety
the nonhomogeneous quadratic form & a.ssoaa.ted with a pairing @ (see 2.1. and 2.2.)
following lemma is obvious.
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LEMMA. The nonhomogeneous quadric function associated with a pairing & : V; x V, —
R(C) can be transformed by the Af f(V;) x Aff(Va)-action to one of the following:

(*) A)(i) = I(Z‘.,y,') 1)5 = l(l‘.-,y:') + Z(mt N yi),m S n,
2
(**) B)é-":O 2)5=i($.’~ys)—1, m < n,
. 1
(**) C)=1 3)%=3 (;-y), ms<n,
1

where l(z;,y;) is a nonconstant linear function.
2.5, LEMMA. The Poincare polynomials for the homology of the pair v, modoo) are listed

below:
A B C 1 2 3
R t2n—-1 t2n 0 t2n—l $n—1 +t2n—m t2n—1 + 2t
C t4n—-2 t4n 0 t4n-2 t4n—2 +t4n-—2m-l t4n-2+t4n—2m +t

PROOF: We shall start with the R®". The cases A), B), C), 1) are obvious, e.g.

1) (V,modoo ) is homeomorphic to (S2"~1, mod point);

2) (V,modeo ) is homeomorphic to the Thom space of a (2n — m)- dimensional vector
bundle over S™~1,

3) The third case splits into two subcases:

3a) m = n;

3b)ym<n

Case 3a). Since V is homogeneous (V,modoo ) is homeomorphic to the suspension
‘mod(point) over its intersection with the unit sphere.

This intersection is given by the system:

n

er? =1/2

i=1

n
dovi=1/2
i=1

~-Hence the intersection is homeomorphic to $~! x §*~! and (V, modoo) is homeomorphic
to the suspension mod(point) over $*~1 x §n-1,

Case 3b). (V,modco ) is homeomorphic to the Thom space mod(point) of the 2(n-m)-
dimensional bundle over §™=1 x S™~! whose fiber over one point is glued by a cell.

Nowﬁlet us pass to the Cy,, .

1) (V,modoo ) is homeomorphic to the sphere S4m~2 (mod point).

The M-property of flag varieties

To study the other cases we must decompose the left sides of (**) and (***) into re
imaginary parts:

Y (Rezi) + (Imys)? = (Imzy) - (Rews)?)
2 Z((Rez,-)([ng) — (Rey;)(Imy;)

Substituting 7 instead of y we obtain:

> ((Rezi)? + (Imys)* = (Imz.)” - (Rews)")
2) ((Rezi)(Imz:) + (Rey;)(Imys))

Thus in case 2) we see that (V,modoo ) is homeomorphic to the Thom space (mod
of the (4n — 2m)-dimensional bundle over §2™~1,

Case 3 splits, as before, into two subcases.

3a). (V, modoo ) is homeomorphic to the suspension mod (point) over the spheric
STS*"~! associated with TS**~!,

3b). (V,modoo ) is homeomorphic to the Thom space mod (point) of the 4(n
dimensional bundle over suspension over STS*™~! one fiber of which is glued by a

The proof of the remaining statements of the lemma is the calculation of the susp
homology and the Thom space homology in terms of the homology of their base spe

2.6. Now we shall go ahead with the proof of Theorem A.

DEFINITION. A set of flags from PT*P" is called minimally degenerate if the
spanned by the points of these flags intersects nontrivially with the intersection
hyperplanes of the flags from the considered set.

DEFINITION. The set of flags from PT*P" is called degenerate if it contains a mir
degenerate subset, and nondegenerate otherwise.

Now let us give the precise formulation of Theorem A.

THEOREM A. The complement to the union of the trains for a nondegenerate set «
from PT*P™ possesses the M-property.

PROOF: Embed the space PT*P" into P™ x P™* as a quadric given by the eq
YoroZiyi =0, where g : 2y : - ; ZTp; Yo iy i Yn are homogeneous coore
in P® and P™* respectively, We call a variety L C P™ x P™ a 'projective subsy
L = L; x L, where L; C P" and L, C P™ are projective subspaces. If the codimen
L C P™ x P™ equals 1 then we call L a ’hyperplane’.

Having introduced these definitions we can notice that the train of any flag coincid.
the intersection of Q with the union of two ’hyperplanes’. The complement in P"
to the union of these *hyperplanes’ coincides with A™ x A™ and thus the complen
PT*P™ to the train of some flag can be realized as an affine quadric Q4 in A" x A"
by the equation 2o + yo + Y 1w, ziyi = 0.

The union (intersection) of the irreducible components of the trains for various :
the union (intersection) of Q with the corresponding ’hyperplanes’. Thus any intersec
the irreducible components is the intersection of Q with some ’projective subspaces’
pass from the projective spaces to the affine ones then the inverse image of the con:
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*projective subspace’ is identified with the linear decomposable subspace since the restriction
of the quadratic form ¥ z;y; onto this subspace has zero signature according to Lemma
9.4. Hence the equation of the irreducible components in any affine chart will be given by
one of the equations (*), (**) or (***), i.e. any intersection of irreducible components mod
oo is the M-manifold considered in Lemmas 2.4. - 2.5. i

To finish the proof we will show that in the term E of the relative Mayer-Vietoris
spectral sequence (see [B]) all differentials are 0 for the union of trains for a nondegenerate
set f={f,...,fn} of flags from PT*P" degenerates .

Consider the space

(UTn;, mod Tng,) =
( U N, mod(NjUND)=

j=1,2;i=0,m

( U N}, mod oo)

j=1,2;i=0,m

where Nil “®) is the first (second) irreducible component of the i-th flag train. (The flags
from the first component satisfy the condition that the hyperplane of the considered flag
contains the point of the i-th flag; conversely, the points of flags belonging to the second

component belong to on the hyperplane of the i-th flag.) Let N/ as before denote the one-
point compactification of N7 . Hereafter we shall work in the chart for which N} UN¢ belong
to the hyperplane at infinity. Under these assumptions *hyperplanes’ are hyperplanes and
’projective subspaces’ are affine.

Let W denote the intersection

ko
W= (¥} N (NEL, NE ) N (NG, N2,

=1
where I,,mp,n, are pairwise different.

Then;

(i) for ky £0or k#0 W is defined by the type (*)equation;

(ii) for ko > 2,k; = 0,k; =0 W is defined by the type (**)equation;

(iif) for ko = 1,k; = 0,k; =0 W is defined by the type (***)equation.

This follows from the fact that the intersection of the irreducible components of the
pairwise different flags is nonsingular. The structure of the term Ej in the considered relative
Mayer-Vietoris spectral sequence is shown on Fig.1, where asterisks mark the nontrivial
places and arrows indicate the possible nontrivial differentials.

The proof of the triviality of the considered differentials is similar to the analogous proof

for the complex case (see §4 ).
DEFINITION: Given quadric @ and the set £ = {L1,..., Ly} of the affine hyperplanes in R"
we will say that the set £ is h-singular if there exists a subset of indices iy,... ,ip such that
either the intersection L, N -++N L;, N Q is singular or the set of hyperplanes Ly, ..., Li,
is not in general position (i.e. there exists a nontransversal intersection); and h-nonsingular
otherwise.

The M-property. of flag varieties

* 13 dim
* 16
* s
* x 14
\g * {3
™ x_ % 1;
\\ 14
x do
Tre mumber - dnt l‘n It
o{.tn*m‘k'hzmlts

Fig.1. The structure of the term F;

Let o = {aj} = .{i{,...,ii} be the set of multiindices, where 1 < 7 < v and £,
Uj=1(Zf, n---n L})). Any continuous deformation {Li,...,L¢} in the locus of all
nonsingular sets can be extended to a continuous deformation of Lo N Q.

Hence, if we manage to prove that in the considered quadric we can nondegenera
deform an arbitrary nonsingular set of hyperplanes in a neighborhood of infinity then
triviality of all differentials d; for ¢ > 1. As shown on Fig.1. the ’suspicious’ different
exist for t < 3 and this will imply that they can ’strike’ only in the middle- dimensic
homology, i.e. the homology of the intersections defined by (**) and (***),

Let us start with (***). The hypersurface @ =0 is a cone. (For the nondegenerate
of flags this can happen only for the intersection with the train of no more than one {
Consider the intersection of @ with an affine subspace L which in its turn is the intersec
of several irreducible components of the other flag trains. In the case of the nondege
ate flag set, L can not contain the cone’s vertex (the origin). If we make a homoth
transformation we obtain the necessary nondegenerate deformation.

Now consider (**). The quadric Q is given by the equation Y., z;y; = 1 . Intersec
with the hyperplane

ag + Za.-z.- =0.
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