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Abstract. About two decades ago three types of zonotopal algebras (exter-
nal, central, and internal) have been introduced for an arbitrary undirected

graph G. They contain an abundance of information about G encoded in its

Tutte polynomial. Below we introduce their bizonotopal analogs in which we
double each edge of G. The new algebras are monomial and have intricate

combinatorial properties. In particular, in the external and central cases, the
Hilbert series of these algebras satisfy a new version of deletion-contraction

property in which the contracted edge becomes a loop while in the internal

case, the HiIbert series satisfy a more complicated 4-term relation.

1. Introduction

In what follows, we introduce three new algebras associated to an undirected
graph G with possible loops and multiple edges which we denote by BZeG,BZcG, and

BZiG and call external, central, and internal bizonotopal algebras of G respectively.
They generalize the previously known external, central, and internal zonotopal
algebras of G introduced in [ArPo, HoRo]. Furthermore, for a given graph G, we
define a sequence of r-bizonotopal algebras where r is any integer such that −r
is smaller or equal the minimum degree of the vertices of G. In addition to the
above 3 algebras, r-bizonotopal algebras split into a sequence of superexternal and
a finite number of subinternal algebras. The basic idea behind the bizonotopal
algebras is similar to that of the zonotopal algebras, but each undirected edge of G
is substituted by a pair of directed edges with opposite orientations.

The resulting algebras are monomial and have intriguing combinatorial proper-
ties. They as well as their Hilbert series contain a lot of information about the un-
derlying graph G. Quite unexpectedly, in the external and central case their Hilbert
series satisfy a natural “deletion-contraction” property very similar to the classical
one satisfied by the famous Tutte polynomials. In the interior case, the Hilbert
series satisfy an intriguing 4-term relation involving 4 different graphs. Moreover,
one can introduce a new multivariate polynomial associated to G which generalizes
the multivariate Tutte polynomial of G and satisfies the new “deletion-contraction”
property, see [KNSV].

The structure of the paper is as follows. In § 2, we introduce and describe the
major properties of the external algebras. In § 3.1 we show that Hilbert series of
external, central, and superexternal algebras satisfy one and the same “deletion-
contraction” property, but with different initial conditions. In § 3.2 we describe a
4-term relation satisfied by the Hilbert series of (sub)internal algebras. In § 4 we
prove a number of additional results valid in the central and in the interior cases.
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Finally, in § 5 we provide examples of the Hilbert series of the latter algebras for
complete graphs.
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2. External bizonotopal algebra

The following definition was suggested by the first author about a decade ago,
see p. 136 of [Ki].

Let G = (V,E) be an undirected graph with the vertex set V and the edge set
E. Label the vertices in V as {v1, . . . , vn} where n = |V |. Now consider the double

edge set DE = E ∪ Ẽ where for each edge e ∈ E, we introduce another edge ẽ ∈ Ẽ
connecting the same pair of vertices. Choosing some field K consider the external
double edge algebra

DEeG =
K[DE]

< x2
e, x

2
ẽ, xexẽ >

which is the quotient of the polynomial algebra generated by the variables xe and
xẽ corresponding to all edges in DE by the ideal generated by the squares of all
edges in DE together with the relations xexẽ = 0 for all edges in E.

To each vertex v` ∈ V, ` = 1, . . . , n, we associate the linear form

y` =
∑

i<`,e=(i,`)∈E

xe +
∑

j>`,ẽ=(j,`)∈Ẽ

xẽ =
∑
k 6=`

x(k,`) (2.1)

in DEeG.

Finally, for the graph G = (V,E) with labelled vertices (v1, . . . , vn), define its
external bizonotopal algebra as the subalgebra BZeG ⊂ DE

e
G generated by the linear

forms y1, . . . , yn. Obviously, BZeG is a graded algebra which a priori depends on
the choice of vertex labelling.

Remark 2.1. The last formula in (2.1) implies that BZeG is independent of a vertex
labelling.

Remark 2.2. The main motivation for the consideration of bizonotopal algebras
was an attempt to extend several known results valid for simple graphs (i.e. having
no loops or multiple edges) by Orlik-Solomon and Postnikov-Shapiro-Shapiro.

The next result describes BZeG in terms of generators and relations.

Definition 2.3. A sequence of non-negative integers (a1, a2, . . . , an) is called a
partial score vector of G if there is a subset E′ ⊂ E of edges and their orientations
such that outgoing degrees of vertices {v1, . . . , vn} are given by (a1, a2, . . . , an)
respectively. We define the G-parking function polytope (denoted by PG) as the
convex hull of all partial score vectors of G.

Remark 2.4. Observe that the classical parking function polytope (corresponding
to a complex graph) and several its generalizations different from the above one
have been studied in a number of recent papers, see e.g. [HLVM, AmWa] and
references therein.

Lemma 2.5. For any undirected graph G = (V,E) on n vertices, one has that
(i) the algebra BZeG is monomial;
(ii) ya11 ya22 . . . yann 6= 0 in BZeG if and only if (a1, a2, . . . , an) is a partial score vector.
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Proof. We start with the following crucial observation. Given an edge e = (i, j)
with i < j, the variable xe occurs only in the linear form yj while the variable xẽ
occurs only in the linear form yi.

Therefore any monomial m in the variables xe, xẽ appears only in the expansion
of the unique monomial in the variables y1, . . . , yn. Therefore BZeG is a monomial
algebra. Furthermore, ya11 ya22 · · · yann 6= 0 if and only if there exists a subset of
edges E′ ⊂ E and its orientation such that the outgoing degrees of the vertices
{v1, . . . , vn} are given by (a1, a2, . . . , an) respectively. �

Lemma 2.5 shows that BZeG is the monomial algebra. Our next goal is to find
its set of relations.

Notation 2.6. For any undirected graph G = (V,E) and any subset VI = (vi1 , vi2 ,
. . . , vi`) of its vertices, denote by κI the total number of edges of G either one or
both vertices of which belong to VI . Further, associate to VI the set of monomials
Me
I in the variables vi1 , vi2 , . . . , vi` of the form

vk1i1 v
k2
i2
. . . vk`i` with k1 + k2 + · · ·+ k` = κI + 1.

Theorem 2.7. For any undirected graph G = (V,E) with V = {v1, . . . , vn}, one
has

BZeG '
K[v1, . . . , vn]

< ∪I⊆{v1,...,vn}Me
I >

.

Here the denominator is the monomial ideal generated by the union of all monomials
appearing in Me

I where I runs over all non-empty subsets of V .

Proof. We first show that for any subset VI = (vi1 , vi2 , . . . , vi`) of vertices of G and
any multiindex (k1, k2, . . . , k`) satisfying the equality k1 + k2 + · · · + k` = κI + 1,
one has

yk1i1 y
k2
i2
. . . yk`i` = 0. (2.2)

Here y1, y2, . . . , yn are given by (2.1). Indeed, if we expand yk1i1 y
k2
i2
. . . yk`i` in the

edge variables xe and xẽ only edges at least one end of which belongs to VI will
be involved. Since in each monomial of the expansion the total number of such
edges is κI , then for some e ∈ E, either x2

e, x
2
ẽ or xexẽ will appear in every such

monomial. Thus (2.2) follows.
In order to prove the converse, we use Lemma 2.5. It remains to show that if

va11 va22 · · · vann 6= 0, then there is a subset E′ ⊆ E and its orientation such that
the outgoing degrees of (v1, v2, . . . , vn) are a1, a2, . . . , an respectively. Consider the
bipartite graph B with two sets of vertices B1 = {p1,1, . . . , p1,a1 , p2,1, . . . , p2,a2 ,
p3,1, . . . , pn,an} and B2 = E. Its set of edges is given by the pairs (pi,k, e) for all
vi ∈ e. Note that the condition ya11 ya22 · · · yann 6= 0 is equivalent to the assumptions
of Hall’s marriage theorem. Therefore there exists a perfect matching M in B.

Let us now construct a subset of edges E′ and its orientation. If (pi,k, e) ∈ M ,
then we orient e away from the vertex i. It is easy to check that the corresponding
score vector is (a1, a2, . . . , an). �

Theorem 2.8. The Hilbert series

heG(t) :=
∑
k≥0

dim(BZeG)(k) · tk

has the following properties:

(1) it is a polynomial of degree |E| where |E| is the total number of edges in G;

(2) dim(BZeG)(|E|) equals the number of spanning forests of G;

(3) dim(BZeG)(`), ` = 1, 2, . . . , |E| equals the number of partial score vectors of G
with the sum of coordinates equal to `;
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(4) the total dimension dim(BZeG) equals the number of integer points in the G-
parking function polytope.

Proof of (1)-(3) Theorem 2.8. Items (1) and (3) immediately follow from Lemma 2.5.
Since the number of score vectors for any graph is equal to the number of spanning
forests (see [KlWi]), then item (2) holds. �

Proposition 2.9. For a graph G and (a1, a2, . . . , an) ∈ Zn≥0, we have that (a1, a2,

. . . , an) ∈ PG if and only if (a1, a2, . . . , an) is a partial score vector.

Proof of Proposition 2.9 and item (4) of Theorem 2.8. By Theorem 2.7 we know
that (a1, a2, . . . , an) is a partial score vector if and only if

xa11 xa22 . . . xann /∈ 〈∪I⊆{v1,...,vn}MI〉.

Hence, (a1, a2, . . . , an) is a partial score vectors if and only if
∑
i∈I ai ≤ κI for all

I ⊂ V . Therefore, the set of partial score vectors is exactly the set of integer points
in the polytope described by the latter inequalities. �

Let us also describe all the vertices of the polytope PG.

Theorem 2.10. The integer vector (a1, a2, . . . , an) is a vertex of PG if and only
there is a pair π ∈ Sn, k ≤ n such that

aπi
=

{
the number of edges between vπiand {vπ1 , . . . , vπi−1}, if i > k.

0, otherwise.

Lemma 2.11. For an arbitrary undirected graph G, the set function κX is sub-
modular.

Proof. We need to show that κI + κJ ≥ κI∩J + κI∪J . Remember that κX counts
edges incident to X. Let us count the appearances of the edge (a, b) in the left-hand
and in the right-hand sides of this inequality.

If a or b belongs to I ∩ J , then we count this edge twice in the left-hand and
twice in the right-hand sides. If a, b /∈ I ∩J and (a, b) is incident to at least one set,
then we count it at least once in the left-hand and exactly once in the right-hand
sides.

Since the appearance of each edge is a submodular function which implies that
κ is also submodular. �

Proof of Theorem 2.10. We use induction on the number of vertices of G. For
the empty graph everything is clear. To carry out the step of induction, let ā =
(a1, a2, . . . , an) be a vertex of PG. We have two possible cases presented below.

(i) For every ∅ 6= I ⊂ V , we have
∑
i∈I ai < κI . Note that if ak1 , ak2 > 0, then

ā + ek1 − ek2 , ā − ek1 + ek2 ∈ PG. Since ā is a vertex, then there is k such that
ai = 0 for i 6= k. Hence ā is a linear combination of 0 and deg(vk)ek. Hence ā = 0,
because ā is a vertex with the condition ak < deg(vk).

(ii) There exists ∅ 6= I ⊂ V such that
∑
i∈I ai = κI . Let I be a minimal (by

inclusion) such set. If I = {vk}, then we consider πn = k and G′ = G − vk. Note
that (a1, a2, . . . ak−1, ak+1, . . . an) is a vertex PG′ . Therefore by induction, we can
construct a permutation π1, π2, . . . πk−1, πk+1, . . . πn of {1, 2, . . . , k−1, k+ 1, . . . n}.

It remains to consider the case |I| > 1. Take k1, k2 ∈ I. Since I is a minimal
by inclusion set, ak1 > 0 and ak2 > 0. Since κ is a submodular function on subsets
of vertices, there is no J ⊂ V such that

∑
j∈J aj = κJ and exactly one vertex of

k1, k2 belongs to J (otherwise we can consider I ⊂ J , which is smaller than I).
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Hence both ā + ek1 − ek2 and ā − ek1 + ek2 belong to PG. Let us check the claim
for ā′ = ā+ ek1 − ek2 . Indeed, for any J ⊂ V , we have∑

j∈J
a′j =

∑
j∈J

aj + 1k1∈J − 1k2∈J .

If {k1, k2} ∩ J = {k1, k2} or {∅}, then∑
j∈J

aj + 1k1∈J − 1k2∈J =
∑
j∈J

aj ≤ κJ .

If {k1, k2} ∩ J = {k1} or {k2}, then∑
j∈J

aj + 1k1∈J − 1k2∈J < κJ + 1k1∈J − 1k2∈J ≤ κJ + 1.

Hence, ā + ek1 − ek2 ∈ P(G) and similarly, ā − ek1 + ek2 ∈ P(G). Therefore ā is
not a vertex, contradiction. �

Note that for the majority of graphs G, it seems difficult to do the exact count
of the number of vertices of the G-parking function polytope PG. However we have
the following natural upper bound.

Proposition 2.12. Given a graph G with n vertices, the number of vertices of PG
is at most [(e− 1)n!] with equality only for the complete graph Kn.

Proof. Fixing k ≤ n, it is easy to see that the vector from Theorem 2.10 depends
only on πk+1, . . . , πn. Moreover if there is an edge between πj and πj+1, then we can

interchange them. Hence, the number of vertices for k is at most (n−k)!
(
n

n−k
)

= n!
k!

with equality only for the complete graph.

Then the total number of vertices of PG is at most
n∑
k=1

n!

k!
= n!

n∑
k=1

1

k!
= n!(e− 1)− n!

∞∑
i=n+1

1

i!
= [(e− 1)n!]

with equality only for the complete graph. �

Theorem 2.13. For any two graphs G1 and G2 without isolated vertices, their
algebras BZeG1

and BZeG2
are isomorphic if and only if G1 and G2 are isomorphic.

Proof. Obviously for two isomorphic graphs, their algebras are also isomorphic. Let
us prove the converse.

Given two graphs G1 and G2 such that BZeG1
' BZeG2

and u ∈ BZeG1
, define

deg(u) as the smallest k such that uk+1 = 0. Note that, for non-zero u ∈ (BZeG1
)(1),

deg(u) is exactly the number of edges appearing in u. We know that dim(BZeG1
)

is equal to the number of vertices.
Consider a basis u1, u2, . . . , un of (BZeG1

)(1) such that deg(u1) + deg(u2) + . . .+
deg(un) is the smallest possible. We have

deg(u1) + deg(u2) + . . .+ deg(un) = 2 ∗ |E(G1)| −#{e : e is a loop},
since each non-loop edge appears at least in two different ui and uj and we have
equality for the basis corresponding to the vertices.

Let y1, . . . , yn ∈ BZeG1
correspond to the vertices of G1. Since y1, . . . , yn and

u1, . . . , un are two bases of BZeG1
, there is a permutation π ∈ Sn such that ui =

ci,1y1+. . .+ci,nyn has a non-zero coefficient ci,πi . Clearly deg(ui) ≥ deg(yπi), hence
deg(ui) = deg(yπi

). Therefore the support of ui has only edges corresponding to
the edges incident to vπi

. Hence, the number of edges between vπi
and vπj

is equal
to deg(ui) + deg(uj)− deg(ui + λuj), where λ ∈ K is generic. Since we know how
many edges are incident to πi and how many edges exist between πi and πj for each
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j, we can find the number of loops for the vertex πi. In this way we can reconstruct
G1 from BZeG1

(Note that ui is not necessary ci,πi
vπi

). Similarly we can reconstruct
G2 from BZeG2

. Since BZeG2
and BZeG2

are isomorphic the underlying graphs G1

and G2 are isomorphic as well. �

3. r-bizonotopal algebras and their properties

Notation 3.1. Consider any undirected graph G = (V ;E). Choose an integer r
such that −r is smaller or equal than the minimal degree of vertices in G. (Obvi-
ously, if r ≥ 0 the latter condition is automatically satisfied).

As above, for any subset VI = (vi1 , vi2 , . . . , vi`) of its vertices, denote by κI the
total number of edges of G at least one of vertices of which belong to VI . Associate
to VI the set of monomials Mr

I in the variables vi1 , vi2 , . . . , vi` of the form

vk1i1 v
k2
i2
. . . vk`i` with k1 + k2 + · · ·+ k` = κI + r.

In the above notation, define the r-bizonotopal algebra as

BZrG :=
K[v1, . . . , vn]

< ∪I⊆{v1,...,vn}Mr
I >

.

Denote by hrG(t) the Hilbert series of BZrG.

Case r = 1 corresponds to the above external bizonotopal algebra. Algebras
corresponding to r > 1 are called superexternal . In analogy with the zonotopal
algebras, we call the case r = 0 central and discuss it in more details in § 4.1. Case
r = −1 called internal makes sense if the underlying graph has no isolated vertices
and will be discussed in § 4.2. If the minimal degree of vertices in G equals θ ≥ 2,
we can define BZrG for −θ ≤ r < −1. Such algebras are called subinternal .

The next result extends Theorem 2.13 and is analogous to the main result
of [NeSh].

Theorem 3.2. Given two graphs G1, G2 and r > 1, the algebras BZrG1
and BZrG2

are isomorphic if and only if the graphs G1 and G2 are isomorphic.

Proof. Almost identical with that of Theorem 2.13. �

Remark 3.3. An analog of Theorem 2.13 for the central case is discussed in sec-
tion § 4.1.

3.1. “Deletion-contraction” property.

Definition 3.4. For a given undirected multigraph G and its edge e (different from
a loop), define
(i) the deletion G− e as the graph G with the edge e deleted;
(ii) the contraction G/e as the graph G in which the end vertices of e are glued
together and the edge e is transformed into a loop at this common vertex.

Notice that our definition of contraction differs from the standard one used for
Tutte polynomials! The above operations are essential for the Hilbert series of
external, central, and superexternal algebras.

Theorem 3.5. For any undirected multigraph G = (V,E), any non-negative integer
r, and an edge e of G different from a loop, one has the “deletion-contraction”
property:

hrG(t) = hrG/e(t) + t · hrG−e(t).
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Proof. Assume that an edge e connects the vertices vp and vq. We want to describe
all non-vanishing monomials in the monomial algebras BZrG, BZrG−e, and BZrG/e.

Let us fix the degrees di of all vi ∈ V \{vp, vq}. We are interested only in monomials

m =
∏
vi∈V \{vp,vq} v

di
i which do not vanish in BZrG, because if such a monomial

vanishes in BZrG then it also vanishes in both BZrG−e and BZrG/e.

Define the three numbers:

• a := minI⊂[n]\{p,q}κI∪{p} + r − 1−
∑
i∈I di;

• b := minI⊂[n]\{p,q}κI∪{q} + r − 1−
∑
i∈I di;

• c := minI⊂[n]\{p,q}κI∪{p+q} + r − 1−
∑
i∈I di.

Recall that n = |V |.
From the definition of r-bizonotopal algebras we immediately get that the mono-

mial
m̃ = mvdpp v

dq
q

does not vanish in BZrG if and only if dp ≤ a, dq ≤ b, and dp +dq ≤ c. Similarly m̃
does not vanish in BZrG\e if and only if dp ≤ a− 1, dq ≤ b− 1, and dp + dq ≤ c− 1,
because all the corresponding κ’s are by 1 smaller than the original ones. For the
third algebra BZrG/e, m̃ does not vanish if and only if dpq ≤ c, where vpq corresponds
to the new vertex obtain by glueing vp and vq.

It remains to show that for any 0 ≤ c′ ≤ c, the number of integer solutions of
the system 0 ≤ dp ≤ a, 0 ≤ dq ≤ b, and dp+dq = c′ is equal the number of solution
of the system 0 ≤ dp ≤ a− 1, 0 ≤ dq ≤ b− 1, and dp + dq = c′ − 1 increased by 1.

Consider J1, J2 ⊂ [n] \ {p, q} such that a = κJ1∪{p} + r − 1 −
∑
i∈J1 di and

b = κJ2∪{q} + r − 1−
∑
i∈J2 di. We have

c′ ≤ c ≤ κJ1∪J2∪{p,q}+r−1−
∑

i∈J1∪J2

di = κJ1∪J2∪{p,q}+r−1−
∑
i∈J1

di−
∑
i∈J2

di+
∑

i∈J1∩J2

di =

= κJ1∪J2∪{p,q} + r− 1− (κJ1∪{p} + r− 1− a)− (κJ2∪{q} + r− 1− b) +
∑

i∈J1∩J2

di =

= a+ b+ κJ1∪J2∪{p,q} − κJ1∪{p} − κJ2∪{q} +
∑

i∈J1∩J2

di − (r − 1).

Note that if J1 ∩ J2 6= ∅, then
∑
i∈J1∩J2 di − (r − 1) ≤ κJ1∩J2 . If J1 ∩ J2 = ∅,

then
∑
i∈J1∩J2 di − (r − 1) = −(r − 1) = κ∅ − (r − 1) ≤ κ∅ + 1. Hence,

c′ ≤ c ≤ a+ b+ κJ1∪J2∪{p,q} − κJ1∪{p} − κJ2∪{q} + κJ1∩J2 + 1 =

= a+ b+ κ′J1∪J2∪{p,q} − κ
′
J1∪{p} − κ

′
J2∪{q} + κ′J1∩J2 ≤ a+ b,

where κ′ is the corresponding function forG\e, which is submodular by Lemma 2.11.

We are ready to count the number of solutions of the system 0 ≤ dp ≤ a,
0 ≤ dq ≤ b, and dp + dq = c′. This number equals to the number of solutions of
0 ≤ x ≤ a, 0 ≤ c′−x ≤ b, hence max(0, c′−b) ≤ x ≤ min(a, c′). The latter number
is min(a, c′) −max(0, c′ − b) + 1 (there is always a solution because c′ ≤ a + b).
Similarly, the number of solutions of the system 0 ≤ dp ≤ a − 1, 0 ≤ dq ≤ b − 1,
and dp + dq = c′ − 1 is equal to

min(a− 1, c′ − 1)−max(0, (c′ − 1)− (b− 1)) + 1 = min(a, c′)−max(0, c′ − b)
which is one less. This observation concludes our proof. �

Theorem 3.5 has the following consequence for the external and the central cases
(r = 1 and r = 0 resp.)
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Theorem 3.6. For any undirected multigraph G and r = 0 or r = 1, one has:
(a) the “deletion-contraction” property:

hrG(t) = hrG/e(t) + t · hrG−e(t),
where the edge e of G is not a loop;

(b) the multiplicativity property:

hrG1tG2
(t) = hrG1

(t) · hrG2
(t)

with the initial conditions:

hrBn
(t) = 1 + t+ · · ·+ tn+r−1 =

1− tn+r

1− t
, n ≥ 0,

where Bn is the wedge of n loops.

Proof. The first part we already proved for all r ≥ 0. It is easy to see that the
central and the external algebras enjoy the multiplicative property as well. �

3.2. 4-term relation. In the internal and the subinternal cases, the Hilbert series
do not satisfy the above “deletion-contraction” property. However, they do satisfy
the following intriguing 4-term relation which we use later to inductively calculate
them.

Theorem 3.7. Given a graph G, take r ≤ 0 such that minv∈V deg(v) + r ≥ 0. Let
vp, vq, vs ∈ V (G) be fixed distinct vertices such that deg(vs) ≥ −r − 1. Then

hrG1
(t)− hrG2

(t) = t(hrG3
(t)− hrG4

(t)),

where G1 = G+ (vp, vs) + (vp, vq), G2 = G+ (vq, vs) + (vp, vq), G3 = G+ (vp, vs),
and G4 = G+ (vq, vs).

Proof. The degrees of all vertices in Gi are at least −r implying that all 4 ideals
are well-defined and therefore the algebras are well-defined as well.

Let us fix the degrees di of all vi ∈ V \ {vp, vq}. We are interested only in

the monomials m =
∏
vi∈V \{vp,vq} v

di
i which do not vanish in BZrGi

, for some

i = {1, 2, 3, 4}. It is easy to see that if m does not vanish in Gi, then it does not
vanish in all 4 graphs. For the rest of the proof let us assume that m does not
vanish in all 4 algebras.

Since the 4 graphs are very similar there are integers a, b, c such that

• mvdpp vdqq does not vanish in G1 if and only if

dp + dq ≤ c+ 1, dp ≤ a+ 2 and dq ≤ b+ 1;

• mvdpp vdqq does not vanish in G2 if and only if

dp + dq ≤ c+ 1, dp ≤ a+ 1 and dq ≤ b+ 2;

• mvdpp vdqq does not vanish in G1 if and only if

dp + dq ≤ c, dp ≤ a+ 1 and dq ≤ b;

• mvdpp vdqq does not vanish in G2 if and only if

dp + dq ≤ c, dp ≤ a and dq ≤ b+ 1.

We want to compare the differences hrG1
(t)−hrG2

(t) and t(hrG3
(t)−hrG4

(t)) both
of which which count some monomials. We can fix degrees of monomials and then
it remains to prove that

#(3.1)−#(3.2) = #(3.3)−#(3.4),

where # is the number of non-negative integer solutions of the respective inequality

dp + dq = c′ + 1, dp ≤ a+ 2 and dq ≤ b+ 1; (3.1)
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dp + dq = c′ + 1, dp ≤ a+ 1 and dq ≤ b+ 2; (3.2)

dp + dq = c′, dp ≤ a+ 1 and dq ≤ b; (3.3)

dp + dq = c′, dp ≤ a and dq ≤ b+ 1. (3.4)

Note that inequalities (3.1) and (3.2) have many common solutions. Similarly,
(3.3) and (3.4) also have many common solutions. Hence, it is enough to show that

#(3.6)−#(3.7) = #(3.8)−#(3.9) (3.5)

for the inequalities

dp + dq = c′ + 1, dp = a+ 2 and dq ≤ b+ 1; (3.6)

dp + dq = c′ + 1, dp ≤ a+ 1 and dq = b+ 2; (3.7)

dp + dq = c′, dp = a+ 1 and dq ≤ b; (3.8)

dp + dq = c′, dp ≤ a and dq = b+ 1. (3.9)

The difference #(3.6)−#(3.8) counts the number of solutions of

dp + dq = c′ + 1, dp = a+ 2 and dq = b+ 1,

which is either one or zero. Similarly, the difference #(3.7) − #(3.9) counts the
number of solutions of

dp + dq = c′ + 1, dp = a+ 1 and dq = b+ 2,

which is either one or zero as well. Furthermore, these two differences are either
both one or zero. Therefore, (3.5) holds which finishes the proof. �

Using the 4-term relation, one can inductively calculate the Hilbert series of
(sub)internal algebras for all graphs, but to do this we need to study the boundary
cases in which the 4-term relation does not apply. They are given by the following
simple lemmas and a proposition whose proofs we leave to a reader.

Lemma 3.8. Given a graph G and r ≤ 0 such that −r equals the minimal degree
of G, one has hrG(t) ≡ 0.

Lemma 3.9. Given a graph G, a negative integer r, and a vertex vu such that
deg(vu) = −r+1, one has hrG(t) = hrG′(t), where G′ is obtained from G by removing
the vertex vu and making all edges connecting V (G) \ vu and vu into loops in G′.

Lemma 3.10. Given a graph G with a vertex v which has exactly one non-loop
edge, one has

hrG = (1 + t+ t2 + . . .+ tdeg(v)−r−1)hrG′ ,

where G′ is obtained from G by removing the vertex v and adding an extra loop at
the vertex connected to v by the latter edge.

Finally, we need to compute the Hilbert series of the (sub)interior algebras for
the graphs with one and two vertices.

Proposition 3.11. Given r ≤ 0 and the graph G having a single vertex and a > −r
loops, one has that hrG(t) = 1 + t+ t2 + . . .+ ta+r−1.

Given r ≤ 0 and the graph G with two vertices u, v having a loops at u, b loops
at v, and c edges connecting u and v with a+ c, b+ c > −r, one has

hrG(t) = (1 + t+ t2 + . . .+ ta+c+r−1)(1 + t+ t2 + . . .+ tb+c+r−1)

truncated at the degree ta+b+c−r.
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Now we are ready to present a procedure calculating the Hilbert series of (sub)internal
algebras of graphs using the above 4-term relation. Let us consider the lexicographic
partial order of all graphs according to the triple (|V |, |E|,minv∈V deg(v)). We want
to calculate the Hilbert series of a given graph G under the assumption that we
already know them for all graphs which are smaller than G in the latter partial
order.

Algorithm calculating the Hilbert series of (sub)internal algebras

• If minv∈V deg(v) = −r or −r + 1, see Lemma 3.8 and Lemma 3.9;
• If G is disconnected, then its Hilbert series is the product of Hilbert series

of algebras corresponding to each connected component;
• If G is connected, minv∈V deg(v) ≥ −r + 2 and V (G) ≤ 2, see Proposi-

tion 3.11;
• If G is connected, minv∈V deg(v) ≥ −r + 2 and V (G) ≥ 3, then choose its

vertex vp of the smallest degree. We have two cases:
Case 1◦: vp has (at least) two distinct neighbors vq, vs. Set G′ = G −
(vp, vs)− (vp, vq) , G1 = G, G2 = G′+(vq, vs)+(vp, vq), G3 = G′+(vp, vs),
and G4 = G′ + (vq, vs). By Theorem 3.7

hrG(t) = hrG2
(t) + t(hrG3

(t)− hrG4
(t)).

Additionally, the smallest degree in G2 is smaller than in G and G3, G4

have less edges; their minimal degrees are also smaller than in G.
Case 2◦: vp has only one neighbor vq. If there is exactly one edge between
vp and vq we can use Lemma 3.10 .

Assume that there are at least two edges (vp, vq). Since V (G) ≥ 3 and
G is connected, there is vertex vp′ 6= vp, vq, which is neighbor of vq. Set
G′ = G − (vp, vq) − (vp′ , vq), G1 = G′ + (vp′ , vq) + (vp′ , vp), G2 = G,
G3 = G′ + (vp′ , vp), and G4 = G′ + (vq, vp). By Theorem 3.7,

hrG(t) = hrG1
(t) + t(hrG3

(t)− hrG4
(t)).

The graphs G3, G4 have less edges and G1 has the same number of edges
while the degree of vertex vp remains the same. Then either the minimal
degree in G1 is smaller than that in G or we can calculate hrG1

(t) using Case
2◦. Therefore we can compute hrG1

(t) + t(hrG3
(t)− hrG4

(t)) in all situations
and therefore obtain hrG(t).

4. Additional results for central and internal bizonotopal algebras

4.1. Central case. We present more information about the central bizonotopal
algebra BZcG := BZ0

G. We start with the definition of BZcG as a subalgebra similar
to that of BZeG. Let us define the central double edge algebra DEcG as

DEcG =
K[DE]

< x2
e, x

2
ẽ,∪I⊂{V (G)}XI >

.

Here XI is the set of monomials m =
∏
xe such that if edge e has both ends in I,

then either xe or xē belongs to m and if it has exactly one end in I, then we choose
an ingoing edge to I. Note that degrees of all monomials in XI equal to κI and
the total number of such monomials is 2µ where µ is the number of edges between
vertices in I.

Theorem 4.1. For any undirected graph G = (V,E) with V = {v1, . . . , vn}, BZcG
is isomorphic to the subalgebra of DEcG generated by the linear forms

y` =
∑

i<`,e=(i,`)∈E

xe +
∑

j>`,ẽ=(j,`)∈Ẽ

xẽ.
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Proof. Arguing as in Part (i) of Lemma 2.5, we get that the subalgebra of DEcG
generated by y1, . . . , yn is monomial. We need to check that ya11 · · · yann = 0 in DEcG
if and only if va11 · · · vann = 0 in BZcG.

Clearly for any I = {i1, . . . , i`}, we have that for all k1 + k2 + · · ·+ k` = κI ,

yk1i1 y
k2
i2
. . . yk`i` = 0 in DEcG

which are exactly the set of all relations in the algebra BZcG.

It remains to prove the converse. If ya11 · · · yann = 0 in DEeG, then by Theorem 2.7,
we know that the similar holds for v1, . . . , vn. Further, assume that ya11 · · · yann = 0
in DEcG, but not in DEeG. Hence, there is a monomial m in ya11 · · · yann in expression
through xe, xē, e ∈ E that vanishes in DEcG, but not in DEeG. Therefore it is
divisible by some m′ ∈ XI for some I. We immediately get

∑
i∈I ai ≥ κI and,

hence, va11 · · · vann = 0 in BZcG. �

Theorem 4.2. For a connected graph G, the Hilbert series

hcG(t) :=
∑
k≥0

dim(BZcG)(k) · tk

has the following properties:

(1) it is a polynomial of degree |E| − 1 where |E| is the total number of edges in G;

(2) dim(BZeG)(|E|−1) equals the number of spanning trees of G.

Proof. The first part is trivial. The second part follows from Theorem 3.6, be-
cause the number of trees satisfies both deletion-contraction and the multiplicative
properties. �

4.2. Internal case. By definition, internal bizonotopal algebra BZiG equals BZrG
for r = −1 with the additional restriction that G has no isolated vertices. We define
DE iG in a similar way to DEcG, namely

DE iG =
K[DE]

< x2
e, x

2
ẽ,∪I⊂{V (G)}X−I >

.

Here X−I is the set of monomials m such that there is xe such that xem ∈ XI .
Clearly the degrees of all monomials in X−I are equal to κI − 1.

Theorem 4.3. For any undirected graph G = (V,E) with V = {v1, . . . , vn} having

no isolated vertices, BZiG is isomorphic to the subalgebra of DE iG generated by the
linear forms

y` =
∑

i<`,e=(i,`)∈E

xe +
∑

j>`,ẽ=(j,`)∈Ẽ

xẽ.

The proof copies that of Theorem 4.1.

Theorem 4.4. For the complete graph Kn on n ≥ 4 vertices,

degBZiKn
=

(
n

2

)
− 2, max dimBZiKn

=

(
n− 2

2

)
nn−4,

where max dim stands for the dimension of the algebra in its top degree.

Proof. Since we have
(
n
2

)
edges, any monomial va11 va22 . . . vann of degree

(
n
2

)
− 1

vanishes in BZiKn
. Hence, it is enough to show that the dimension of (

(
n
2

)
− 2)-nd

graded component is
(
n−2

2

)
nn−4. This calculation will be done after introducing

several combinatorial notions and Lemma 4.5. �
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Let us introduce two sets X and Y of vectors with integer coordinates. The
element (b1, b2, . . . , bn) ∈ Zn belongs to X if and only if the following conditions
hold:

•
∑
i∈[n] bi =

(
n
2

)
− 2;

•
∑
i∈I bi ≤ κI − 2 =

(|I|
2

)
+ |I|(n− |I|)− 2, for all I.

The element (b′1, b
′
2, . . . , b

′
n) ∈ Zn belongs to Y if and only if the following conditions

hold:

•
∑
i∈[n] b

′
i =

(
n
2

)
− 1;

•
∑
i∈I b

′
i ≤ κI − 1 =

(|I|
2

)
+ |I|(n− |I|)− 1, for all I.

By the definition of the internal bizonotopal algebra the dimension of (
(
n
2

)
− 2)-

nd graded component of this algebra is equal to |X| which we count below. We also
know that |Y | is equal to the number of trees in G, see e.g. Theorem 4.2. Hence,
|Y | = nn−2. Since if (b1, . . . , bn−1, bn) ∈ X, then (b1, . . . , bn−1, bn+1) ∈ Y , we have

|X| = |Y | −#{(b′1, b′2, . . . , b′n) ∈ Y : b′n = 0}−

−#{(b′1, b′2, . . . , b′n) ∈ Y : b′n > 0 and
∑
j∈J

b′j = κJ − 1 for some J ⊂ [n− 1]}

= |Y | −#{(b′1, b′2, . . . , b′n) ∈ Y :
∑
j∈J

b′j = κJ − 1 for some J ⊂ [n− 1]}.

Denote by Z the set appearing in the latter part of the previous formula, i.e.
define

Z := #{(b′1, b′2, . . . , b′n) ∈ Y : and
∑
j∈J

b′j = κJ − 1 for some J ⊂ [n− 1]}.

Note that for any element (b′1, b
′
2, . . . , b

′
n) ∈ Z, there is unique maximal J ⊂ [n− 1]

such that
∑
j∈J b

′
j = κJ − 1. Indeed assume by contradiction, that there exist two

sets J1, J2 ⊂ [n−1] such that
∑
j∈J1 b

′
j = κJ1 −1 and

∑
j∈J2 b

′
j = κJ2 −1. We have∑

j∈J1∪J2

b′j =
∑
j∈J1

b′j+
∑
j∈J2

b′j−
∑

j∈J1∩J2

b′j ≥ κJ1−1+κJ2−1−(κJ1∩J2−1) ≥ κJ1∪J2−1.

If the intersection J1 ∩ J2 is empty then∑
j∈J1∪J2

b′j =
∑
j∈J1

b′j +
∑
j∈J2

b′j = κJ1 − 1 + κJ2 − 1 ≥ κJ1∪J2 − 1.

We get that the union J1 ∪ J2 also satisfies our property, i.e., neither J1 nor J2 are
maximal by inclusion contradicting our assumption.

Therefore Z = tI⊂[n−1]ZI , where

ZI := {(b′1, b′2, . . . , b′n) ∈ Z :
∑
j∈I

b′I = κI−1 and
∑
j∈J

b′J < κJ−1 ∀J ⊂ [n−1] s.t. I ( J}.

The above leads to the following count

|X| = nn−2 −
∑

∅6=I⊂[n−1]

|ZI |.

Lemma 4.5. For any J ⊂ [n− 1], we have

|ZJ | = |J ||J|−2(n− |J |)(n−|J|)−2.

Observe that the right-hand side equals the product of the number of spanning trees
in K|J| and the number of spanning trees in K[n]\|J|.
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Proof. Set J = {j1 < j2 < . . . < j`} and [n] \ J = {i1 < i2 < . . . < in−`}.

Consider the maps φ1 : Zn → Z` and φ2 : Zn → Zn−` defined by

φ1(b) := (bj1 − n+ `, bj2 − n+ `, . . . , , bj` − n+ `),

and

φ2(b) := (bi1 , bi2 , . . . , bin−`−1
, bin−`

− 1).

We want to show that b ∈ Zn,J if and only if φ1(b) ∈ Y` and φ2(b) ∈ Yn−`.
Assume b ∈ Zn,J , then for any I ⊂ [`], we have∑
t∈I

φ1(b)t =
∑
t∈I

bjt − n+ ` =
∑
t∈I

(bjt − n+ `) =
∑

t ∈ Ibjt + |I|(−n+ `) ≤

κI−1+ |I|(−n+`) =

(
|I|
2

)
+ |I|(n−|I|)+ |I|(−n+`)−1 =

(
|I|
2

)
+ |I|(`−|I|)−1.

Hence φ1(b) ∈ Y`.
For any subset I ⊂ [n− `− 1], we have∑

t∈I
φ2(b)t =

∑
j∈{it:t∈I}

bj =
∑

j∈{it,t∈I}tJ

bj −
∑
j∈J

bj =

=
∑

j∈{it,t∈I}tJ

bj − (κJ − 1) < (κ{it,t∈I}tJ − 1)− (κJ − 1) =

(
|I|
2

)
+ |I|(n− `− |I|)

and for all I ⊂ [n− `] s.t. (n− `) ∈ I, we have∑
t∈I

φ2(b)t =
∑

j∈{it:t∈I}

bj − 1 =
∑

j∈{it,t∈I}tJ

bj −
∑
j∈J

bj − 1 =

=
∑

j∈{it,t∈I}tJ

bj − κJ ≤ κ{it,t∈I}tJ − κJ − 1 =

(
|I|
2

)
+ |I|(n− `− |I|)− 1.

Hence, φ2(b) ∈ Yn−`.
Let us prove the converse. Assume that φ1(b) ∈ Y` and φ2(b) ∈ Yn−`. We need

to show that for any I ⊂ [n], one has
∑
i∈I bi ≤

(|I|
2

)
+ |I|(n−|I|)−1. We will split

the situation into several subcases.

Case 1: I ∩ J = ∅. Since φ2(b) ∈ Yn−`, we have∑
i∈I

bi ≤
(
|I|
2

)
+|I|(n−`−|I|)−1+1 =

(
|I|
2

)
+|I|(n−|I|)−n` ≤

(
|I|
2

)
+|I|(n−|I|)−1.

Case 2: I ∩ ([n] \ J) = ∅. Since φ1(b) ∈ Y`, we have∑
i∈I

bi =
∑
i∈I

(bi−n+`)+|I|(n−`) ≤
(
|I|
2

)
+|I|(`−|I|)−1+|I|(n−`) =

(
|I|
2

)
+|I|(n−|I|)−1.

Case 3: I ∩ J 6= ∅, I ∩ ([n] \ J) 6= ∅. We have∑
i∈I

bi =
∑
i∈I∩J

bi +
∑

i∈I∩([n]\J)

bi ≤
(
|I ∩ J |

2

)
+ |I ∩ J |(n− |I ∩ J |)− 1+

+

(
|I ∩ ([n] \ J)|

2

)
+ |I ∩ ([n] \ J)|(n− `− |I ∩ ([n] \ J)|)− 1 + 1 =

=

(
|I|
2

)
+ |I|(n− |I|)− 1.

We also need to check that for I = J , we have the non-strict inequality, i.e.,∑
i∈J bi ≤

(|J|
2

)
+ |J |(n− |J |)− 1. It follows from the second case.
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It remains to check that for all I s.t. J ( I ⊂ [n − 1], we have the strict
inequality. Indeed this happens in the third case and we do not use bn, so we have
same inequality, but without “+1”.

We get that b ∈ ZJ if and only if φ1(b) ∈ Y` and φ1(b) ∈ Yn−`. Since φ1 ⊗ φ2 :
Zn → Zn is a bijection, the number of elements of Y` is the number of trees in K`

and the number of elements of Yn−` is the number of trees in Kn−`. Therefore |ZJ |
is equal to |J ||J|−2(n− |J |)(n−|J|)−2. �

Proving the second part of Theorem 4.4. Since ZJ is equal to the number of trees
in KJ times the number of trees in K[n]\J , we have

∑
∅6=I⊂[n−1] |ZI | is equal to

the number of forests in Kn with exactly n− 2 edges (two connected components).

This number is equal to nn−4 (n−1)(n+6)
2 , see OEIS A083483. We get

|X| = nn−2 − nn−4 (n− 1)(n+ 6)

2
= nn−4 (n− 2)(n− 3)

2
.

�

Theorem 4.6. The Hilbert series of the internal bizonotopal algebra of any 3-
regular graph on n ≥ 4 vertices equals (1 + t)n.

The Hilbert series of the internal bizonotopal algebra of any 4-regular 4-edge-
connected graph on n ≥ 4 vertices equals (1 + t+ t2)n − nt2n−1 − t2n.

Proof. Take a 3-regular graph G on n ≥ 4 vertices. Since κ{i} = 3, we have v2
i = 0

in BZiG. It is also easy to see that v1v2 · · · vn does not vanish in BZiG, because for
any subset of vertices, κI−1 ≥ 3

2 |I|−1 ≥ |I|+1. Hence, we do not have square-free

relations. Therefore hiG(t) = (1 + t)n.
Now take a 4-regular connected graph G on n vertices. Since κ{i} = 4, we

have v3
i = 0 in BZiG. We also have v2

1v
2
2 · · · v2

i−1viv
2
i+1 · · · v2

n = 0 in BZiG, because

κ[n] = 2n. For any i, the product v2
1v

2
2 · · · v2

i−1v
2
i+1 · · · v2

n does not vanish in BZiG,

because for any proper subset of vertices κI − 1 ≥ 4
2 (|I| − 4) + 4 − 1 = 2|I| + 1.

Therefore hiG(t) = (1 + t+ t2)n − nt2n−1 − t2n. �

5. Appendix. Numerical results.

5.1. Examples of calculation of Hilbert series and dimensions for bizono-
topal algebras via recurrence relation.

= + t
( )

= 1 + t+ t(12) = 1 + 2t

= + t
( )

= 1 + t+ t2 + t((1 + t) · 1) = 1 + 2t+ 2t2

= + t
( )

= 1 + 3t+ 4t2

= + t
( )

= 1 + 3t+ 6t2 + 2t3
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= + t

( )
=

= + t
( )

+ t

(
+ t
( ))

=

= + 2t
( )

+ t2(1 · (1 + 3t+ 6t2 + 2t3)) =

. . . = 1 + 4t+ 10t2 + 14t3 + 15t4

5.2. Hilbert series and dimensions for bizonotopal algebras of complete
graphs obtained using computer algebra.

External algebras (K2–K9)

1, 2;

1, 3, 6, 7;

1, 4, 10, 20, 31, 40, 38;

1, 5, 15, 35, 70, 121, 185, 255, 310, 335, 291;

1, 6, 21, 56, 126, 252, 456, 756, 1161, 1666, 2232, 2796, 3281, 3546, 3516, 2932;

1, 7, 28, 84, 210, 462, 924, 1709, 2954, 4809, 7420, 10906, 15309, 20559, 26454, 32655, 38591, 43589, 46984,

47649, 45150, 36961;

1, 8, 36, 120, 330, 792, 1716, 3432, 6427, 11376, 19160, 30864, 47748, 71184, 102524, 142920, 193117, 253240,

322596, 399344, 480390, 561472, 637400, 701296, 746089, 765640, 748532, 691720, 561948;

1, 9, 45, 165, 495, 1287, 3003, 6435, 12870, 24301, 43677, 75177, 124485, 199035, 308187, 463287, 677520,

965493, 1342513, 1823553, 2421927, 3147723, 4005819, 4993839, 6100350, 7303545, 8570601, 9855829, 11101599,

12241305, 13203705, 13902291, 14254524, 14195199, 13575951, 12369033, 10026505.

Dimensions: 3, 17, 144, 1623, 22804, 383415, 7501422, 167341283 resp.

Central algebras (K2–K10)

1;

1, 3, 3;

1, 4, 10, 16, 19, 16;

1, 5, 15, 35, 65, 101, 135, 155, 155, 125;

1, 6, 21, 56, 126, 246, 426, 666, 951, 1246, 1506, 1686, 1731, 1626, 1296;

1, 7, 28, 84, 210, 462, 917, 1667, 2807, 4417, 6538, 9142, 12117, 15267, 18327, 20958, 22827, 23667, 23107, 21112,

16807;

1, 8, 36, 120, 330, 792, 1716, 3424, 6371, 11152, 18488, 29184, 44052, 63792, 88852, 119288, 154645, 193880,

235292, 276592, 315078, 347880, 371820, 384112, 382817, 364232, 328392, 262144;

1, 9, 45, 165, 495, 1287, 3003, 6435, 12861, 24229, 43353, 74097, 121515, 191907, 292743, 432399, 619677, 863109,

1170073, 1545777, 1992195, 2506983, 3082599, 3705795, 4357593, 5013801, 5645313, 6219649, 6703245, 7064073,

7267815, 7285959, 7100739, 6660495, 5966613, 4782969;

1, 10, 55, 220, 715, 2002, 5005, 11440, 24310, 48610, 92278, 167410, 291730, 490270, 797170, 1257454, 1928575,

2881450, 4200670, 5983570, 8337880, 11377750, 15218050, 19966990, 25717165, 32535466, 40452550, 49452730,

59465230, 70357750, 81931942, 93922750, 106002685, 117791350, 128869900, 138786766, 147077890, 153294730,

157034680, 157852210, 155381665, 149411470, 139011220, 124170310, 100000000.

Dimensions: 1, 7, 66, 792, 11590, 200469, 90759016, 2301604074 resp.
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Internal algebras (K2–K10):

0;

1;

1, 4, 6, 4, 1;

1, 5, 15, 30, 45, 51, 45, 30, 15;

1, 6, 21, 56, 120, 216, 336, 456, 546, 580, 546, 456, 336, 216;

1, 7, 28, 84, 210, 455, 875, 1520, 2415, 3535, 4795, 6055, 7140, 7875, 8135, 7875, 7140, 6055, 4795, 3430;

1, 8, 36, 120, 330, 792, 1708, 3368, 6147, 10480, 16808, 25488, 36688, 50288, 65808, 82384, 98813, 113688, 125588,

133288, 135954, 133288, 125588, 113688, 98533, 81488, 61440;

1, 9, 45, 165, 495, 1287, 3003, 6426, 12789, 23905, 42273, 71127, 114387, 176463, 261891, 374808, 518301, 693693,

899857, 1132677, 1384803, 1645791, 1902663, 2140866, 2345553, 2503053, 2602341, 2636263, 2602341, 2502423,

2342907, 2134062, 1881243, 1596861, 1240029;

1, 10, 55, 220, 715, 2002, 5005, 11440, 24300, 48520, 91828, 165760, 286780, 477400, 767140, 1193104, 1799920,

2638800, 3765520, 5237200, 7107880, 9423040, 12213400, 15488560, 19231180, 23392456, 27889620, 32606080,

37394620, 42083800, 46487332, 50415760, 53689450, 56151700, 57679450, 58192656, 57660550, 56103820, 53573530,

50159560, 45988330, 41027500, 35399710, 28000000.

Dimensions: 1, 16, 237, 3892, 72425, 1521810, 35794801, 933875704 resp.
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