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RETURN OF THE PLANE EVOLUTE

by Ragni PIENE, Cordian RIENER & Boris SHAPIRO

“If I have seen further it is by standing on the shoulders of Giants.”
Isaac Newton, from a letter to Robert Hooke

Abstract. — We consider the evolutes of plane real-algebraic curves and dis-
cuss some of their complex and real-algebraic properties. In particular, for a given
degree d ⩾ 2, we provide lower bounds for the following four numerical invariants:

(1) the maximal number of times a real line can intersect the evolute of a real-
algebraic curve of degree d;

(2) the maximal number of real cusps which can occur on the evolute of a real-
algebraic curve of degree d;

(3) the maximal number of crunodes which can occur on the dual curve to the
evolute of a real-algebraic curve of degree d;

(4) the maximal number of crunodes which can occur on the evolute of a real-
algebraic curve of degree d.

Résumé. — Nous considérons les développées des courbes algébriques réelles
planes et discutons certaines de leurs propriétés dans le cas complexe et réel. En
particulier, pour un degré donné d ⩾ 2, nous fournissons des bornes inférieures
pour les quatre invariants numériques suivants :

En particulier, pour un degré donné d ⩾ 2, nous fournissons des bornes infé-
rieures pour les quatre invariants numériques suivants :

(1) le nombre maximal de fois qu’une droite réelle peut intersecter la développée
d’une courbe algébrique réelle de degré d ;

(2) le nombre maximal de points de rebroussement réels pouvant survenir sur la
développée d’une courbe algébrique réelle de degré d ;

(3) le nombre maximal de points double ordinaires pouvant survenir sur la courbe
duale à la développée d’une courbe algébrique réelle de degré d ;

(4) le nombre maximal de points double ordinaires pouvant survenir sur la déve-
loppée d’une courbe algébrique réelle de degré d.

1. Short historical account

As we usually tell our students in calculus classes, the evolute of a curve
in the Euclidean plane is the locus of its centers of curvature. The follow-
ing intriguing information about evolutes can be found on Wikipedia [36]:

Keywords: evolute, plane real algebraic curve.
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“Apollonius (c. 200 BC) discussed evolutes in Book V of his treatise Con-
ics. However, Huygens is sometimes credited with being the first to study
them, see [18]. Huygens formulated his theory of evolutes sometime around
1659 to help to solve the problem of finding the tautochrone curve, which
in turn helped him construct an isochronous pendulum. This was because
the tautochrone curve is a cycloid, and cycloids have the unique property
that their evolute is a cycloid of the same type. The theory of evolutes, in
fact, allowed Huygens to achieve many results that would later be found
using calculus, see [1, 38].”

Notice that [17], originally published in 1673 and freely available on the
internet, contains a large number of beautiful illustrations including those
of evolutes. Further exciting pictures of evolutes can be found in the small
book [37] written about hundred years ago for high-school teachers.

Among several dozens of books on (plane) algebraic curves available
now, only very few [7, 16, 30, 37] mention evolutes at all, the best of
them being [30], first published more than one and half century ago. Some
properties of evolutes have been studied in connection with the so-called
4-vertex theorem of Mukhopadhyaya–Kneser as well as its generalizations,
see e.g. [11, 32]. Their definition has been generalized from the case of
plane curves to that of plane fronts and also from the case of Euclidean
plane to that of the Poincaré disk, see e.g. [12]. Singularities of evolutes
and involutes have been discussed in details by V. Arnold and his school,
see e.g. [1, 2] and more recently in [29, 9].

In recent years the notion of Euclidean distance degree of an algebraic
variety studied in e.g. [10] and earlier in [6, 20] has attracted substantial
attention of the algebraic geometry community. In the case when the variety
under consideration is a plane curve, the ED-discriminant in this theory is
exactly the standard evolute. In our opinion, this connection calls for more
studies of the classical evolute since in spite of more than three hundred
years passed since its mathematical debut, the evolute of a plane algebraic
curve is still far from being well-understood. Below we attempt to develop
some real algebraic geometry around the evolutes of real-algebraic curves
and their duals hoping to attract the attention of the fellow mathematicians
to this beautiful and classical topic.

ANNALES DE L’INSTITUT FOURIER
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2. Initial facts about evolutes and problems under
consideration

From the computational point of view the most useful presentation of
the evolute of a plane curve is as follows. Using a local parametrization of
a curve Γ in R2, one can parameterize its evolute EΓ as

(2.1) EΓ(t) = Γ(t) + ρ(t)n̄(t),

where ρ(t) is its curvature radius at the point Γ(t) (assumed non-vanishing)
and n̄(t) is the unit normal at Γ(t) pointing towards the curvature center.
In Euclidean coordinates, for

Γ(t) = (x(t), y(t)) and EΓ(t) = (X(t), Y (t)),

one gets the following explicit expression

(2.2)

X(t) = x(t) − y′(t)(x′(t)2+y′(t)2)
x′(t)y′′(t)−x′′(t)y′(t) ,

Y (t) = y(t) + x′(t)(x′(t)2+y′(t)2)
x′(t)y′′(t)−x′′(t)y′(t) .

If a curve Γ is given by an equation f(x, y) = 0, then (as noticed in e.g.,
[16, Ch. 11, §2]) the equation of its evolute can be obtained as follows.
Consider the system

(2.3)


0 = f(x, y)

X = x+
f ′

x

(
(f ′

x)2+(f ′
y)2)

2f ′
xf

′
yf

′′
xy−(f ′

y)2
f ′′

xx−(f ′
x)2f ′′

yy

Y = y +
f ′

y

(
(f ′

x)2+(f ′
y)2)

2f ′
xf

′
yf

′′
xy−(f ′

y)2
f ′′

xx−(f ′
x)2f ′′

yy

defining the original curve and the family of centers of its curvature cir-
cles. Then eliminating the variables (x, y) from (2.3) one obtains a single
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equation defining the evolute in variables (X,Y ). For concrete bivariate
polynomials f(x, y) of lower degrees, such an elimination procedure can be
carried out in, for example, Macaulay2 [13].

Example 2.1. — Two basic examples of evolutes are as follows.
(1) For the parabola Γ = (t, t2), its evolute is given by

EΓ(t) =
(
−4t3, 1

2 + 3t2
)

which is a semicubic parabola satisfying the equation

27X2 = 16
(
Y − 1

2

)3
, see Figure 2.1a.

(2) For the ellipse Γ = (a cos t, b sin t), the evolute is given by

EΓ(t) =
(
a2−b2

a cos3 t, b
2−a2

b sin3 t
)
,

which is an astroid satisfying the equation

(aX)2/3 + (bY )2/3 =
(
a2 − b2)2/3

, see Figure 2.1b.
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(a) Evolute of a parabola.
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(b) Evolute of an ellipse.
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(c) Behavior of the evo-
lute near a simple inflec-
tion point.

Figure 2.1. First examples of evolutes.

If Γ has an inflection point, then the curvature radius becomes infinite,
which means that the evolute EΓ goes to infinity with its asymptote being
the straight line passing through the inflection point and orthogonal to Γ
(i.e., the normal to Γ at the inflection point), see Figure 2.1c. In case the
point is a higher order inflection point, this point at infinity will be a critical
point of the curvature and give a cusp on the evolute (see Example IX in
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Subsection 8.3). Observe that if Γ is a rational algebraic curve, then the
above recipe provides the global parametrization of EΓ.

Given a plane curve Γ, the alternative definition of its evolute EΓ which
will be particularly useful for us is that EΓ is the envelope of the family of
normals to Γ, where a normal is an affine line perpendicular to (the tangent
line to) Γ at some point of Γ. In other words, each normal to Γ is a tangent
line to EΓ and each tangent to EΓ is a normal to (the analytic continuation
of) Γ.

From this definition it follows that the evolute EΓ ⊂ R2 is a caustic,
i.e., the critical locus of the Lagrangian projection of the cotangent bundle
T ∗Γ ⊂ T ∗R2 of the initial curve Γ to the (phase) plane R2. This cir-
cumstance explains, in particular, why typical singularities of the evolutes
behave differently from those of (generic) plane algebraic curves and why
generic evolutes have no inflection points.

For an affine or projective real curve Γ, we denote by ΓC its complexifica-
tion. For an affine real curve Γ ⊂ R2, we let Γ̃ ⊂ RP 2 denote its projective
closure and Γ̃C ⊂ CP 2 the complexification of Γ̃ (equal to the projective
closure of ΓC ⊂ C2).

Definition 2.2. — For a plane algebraic curve Γ ⊂ R2 ⊂ RP 2, define
its curve of normals ÑΓ ⊂ (RP 2)∨ as the curve in the dual projective plane
whose points are the normals of Γ. (We start with the quasiprojective curve
NΓ of all normals to the affine Γ and take its projective closure in (RP 2)∨.)

Similarly to the above, for a (locally) parameterized curve

Γ(t) = (x(t), y(t)) and NΓ(t) = (u(t), v(t)),

one gets

(2.4)
{
u(t) = x′(t)

y′(t) , v(t) = −x(t)x′(t) + y(t)y′(t)
y′(t)

}
.

Note that here we assume that the equation of the normal line to Γ at the
point (x(t), y(t)) is taken in the standard form y + u(t)x+ v(t) = 0.

If a curve Γ is given by an equation f(x, y) = 0, then the equation of its
curve of normals can be obtained as follows. Consider the system

(2.5)


0 = f(x, y)

u = − f ′
y

f ′
x

v = xf ′
y−yf ′

x

f ′
x
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defining the original curve and the coefficients of the family of normals.
Eliminating the variables (x, y) from (2.5) one obtains a single algebraic
equation defining the curve of normals in the variables (u, v).

By the above alternative definition, for a plane algebraic curve Γ, we get
that (ÑΓ)∨ = ẼΓ where ∨ stands for the usual projective duality of the
plane projective curves.

Two types of real singularities of the evolute/curve of normals have natu-
ral classical interpretations in terms of the original curve Γ. Recall that real
nodes of real-algebraic curves are subdivided into crunodes and acnodes,
the former being transversal intersections of two real branches and the
latter being transversal intersections of two complex conjugate branches.

Now observe that a crunode of NΓ (i.e., the real node with two real
branches) corresponds to a diameter of Γ which is a straight segment con-
necting pairs of points on Γ and which is perdendicular to the tangent lines
to Γ at both endpoints. On the other hand, a real cusp of EΓ (resp. an
inflection point on NΓ) corresponds to a vertex of Γ which is, by definition,
a critical point of Γ’s curvature.

As we mentioned above, vertices of plane curves appear, for example, in
the classical 4-vertex theorem and its numerous generalizations. Beautiful
lower bounds on the number of diameters of plane curves, plane wavefronts
as well as their higher dimensional generalizations have been obtained in
symplectic geometry, see e.g. [26, 27].

To formulate the problems we consider below, let us recall the following
notion of R-degree introduced by Thom [33, Def. 1] which deserves to be
better known (see also [22, Def. 1]).

Definition 2.3. — Given a real algebraic hypersurface H ⊂ Rn, we
define its R-degree as the supremum of the cardinality of H ∩L taken over
all lines L ⊂ Rn such that L intersects H transversally.

In what follows, we denote the R-degree of H by R deg(H). Obviously,
R deg(H) ⩽ deg(H), where deg(H) is the usual degree of H.

In what follows, we discuss four real-algebraic questions related to the
evolutes and curves of normals of plane real-algebraic curves.

Problem 2.4. — For a given positive integer d, what are the maximal
possible R-degrees of the evolute EΓ and of the curve of normals NΓ where
Γ runs over the set of all real-algebraic curves of degree d?

ANNALES DE L’INSTITUT FOURIER



RETURN OF THE PLANE EVOLUTE 7

Problem 2.5. — For a given positive integer d, what is the maximal
possible number of real cusps on EΓ where Γ runs over the set of all real-
algebraic curves of degree d? In other words, what is the maximal possible
number of vertices a real-algebraic curve Γ of degree d might have?

To make Problem 2.5 well-defined we have to assume that Γ does not have
a circle as its irreducible component since in the latter case the answer is
infinite. Note that since by vertices of Γ we understand the critical points of
the curvature, it is possible that a vertex can be a real cusp of the projective
closure of EΓ. This happens, in particular, when the curvature vanishes at
a critical point (see Example IX in Subsection 8.3).

Problem 2.6. — For a given positive integer d, what its the maximal
possible number of crunodes on NΓ where Γ runs over the set of all real-
algebraic curves of degree d? In other words, what is the maximal possible
number of diameters Γ might have?

Here again we have to assume that Γ does not have a circle as its irre-
ducible component since in this case the answer is infinite.

Problem 2.7. — For a given positive integer d, what is the maximal
possible number of crunodes on EΓ where Γ runs over the set of all real-
algebraic curves of degree d? In other words, what is the maximal possible
number of points in R2 which are the centers for at least two distinct (real)
curvature circles of Γ?

Remark 2.8. — As we mentioned above, questions similar to Problems
2.5 and 2.6 have been studied in classical differential geometry and symplec-
tic geometry/topology. They can also be connected to the study of plane
curves of constant breadth which has been carried out by such celebrities
as L. Euler, A. Hurwitz, H. Minkowski, and W. Blaschke, see e.g. [3] and
references therein. To the best of our knowledge, Problem 2.7 has not been
previously discussed in the literature, however, since evolutes of general
real curves have both cusps and nodes, this question seems natural to us.

Our results related to Problems 2.4–2.7 can be found in Sections 4–7
below. They are mostly obtained by using small deformations of line ar-
rangements in the plane. In all cases the lower bounds for the above quan-
tities which we obtain are polynomials of the same degree as their complex
counterparts. However, in all cases but one their leading coefficients are
smaller than those of the complex answers. At the moment we do not know
whether our estimates are sharp even on the level of the leading coefficients.

TOME 0 (0), FASCICULE 0
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3. Various preliminaries

3.1. Basic complex algebraic facts

We first summarize some information about the evolute and the curve of
normals mainly borrowed from the classical treatise [30].

Proposition 3.1 (see [30, Art. 111, 112, p. 94–96]). — For an affine
real-algebraic curve Γ ⊂ R2 of degree d, which is in general position with
respect to the line at infinity and has only δ nodes and κ ordinary cusps
as singularities, the curves Γ̃C, ẼC

Γ and ÑC
Γ are birationally equivalent. The

degree of ẼΓ equals 3d(d − 1) − 6δ − 8κ, and the degree of ÑΓ equals
d2 − 2δ − 3κ.

The genericity assumption for the birationality can be substantially weak-
ened (but not completely removed).

Lemma 3.2 (see [30, Art. 113, p. 96]). — For a generic affine real-
algebraic curve Γ ⊂ R2 of degree d, ẼC

Γ has no inflection points.

Proposition 3.3 (see [30, Art. 113, p. 97]). — For an affine real-alge-
braic curve Γ ⊂ R2 as in Proposition 3.1, the only singularities of ẼC

Γ
and ÑC

Γ are nodes and cusps, except that ÑC
Γ has an ordinary d-uple point

(corresponding to the line at infinity). The number κE of cusps of ẼC
Γ equals

3(d(2d− 3) − 4δ − 5κ).
If Γ is nonsingular, the number δE of nodes of ẼC

Γ equals

d

2(3d− 5)
(
3d2 − d− 6

)
,

and the number δN of nodes of ÑC
Γ equals(

d2 − 1
2

)(
d− 1

2

)
−
(
d

2

)
=
(
d2 + d− 4

)(d
2

)
.

The curve ÑC
Γ has no cusps (since ẼC

Γ has no inflection points).

For the sake of completeness and for the convenience of our readers, we
included in Appendix A below (some) modern proofs of the above claims,
further results, and discussions related to the enumerative geometry of
envelopes and evolutes over the field of complex numbers.

ANNALES DE L’INSTITUT FOURIER



RETURN OF THE PLANE EVOLUTE 9

3.2. Klein’s formula

For further use, let us recall a classical real-algebraic result of F. Klein,
see [21, 7].

Theorem 3.4. — If a real-algebraic curve Γ has no singularities except
nodes, cusps, bitangents and inflection points, then

d+ 2τ ′ + i′ = d∨ + 2δ′ + κ′,

where d is the degree, τ ′ the number of conjugate tangents, i′ the number
of real inflections, d∨ is the class, i.e., the degree of the dual curve, δ′ the
number of real conjugate points, and κ′ the number of real cusps of Γ.

Klein’s theorem was generalized by Schuh [31], see [34, 35]. In particular,
the beautiful paper [35] contains the following result (usually referred to
as Klein–Schuh’s theorem) together with its detailed proofs and references
to the earlier literature.

Theorem 3.5. — For any real-algebraic plane curve Γ,

d− d∨ =
∑
p

(
mp(Γ) − rp(Γ)

)
−
∑
q

(
mq(Γ∨) − rq(Γ∨)

)
,

where Γ∨ is the dual curve, d is the degree and d∨ is the class of Γ, mp(Γ)
(resp. mq(Γ∨)) is the multiplicity of a real singular point p ∈ Γ (resp.
q ∈ Γ∨), and rp(Γ) (resp. rq(Γ∨)) is the number of local real branches of Γ
at p (resp. of Γ∨ at q).

Example 3.6. — Let Γ be the curve of normals of an ellipse. Then Γ∨ is
the evolute of the ellipse. We have d = 4 and d∨ = 6. The singularities of
Γ are two crunodes, corresponding to the two diameters of the ellipse, and
an acnode, corresponding to the line at infinity. The evolute Γ∨ has four
real cusps and no other real singular points. This gives 4−6 = 2−4, which
checks with the formula, see Figure 2.1b.

3.3. Brusotti’s theorem and small deformations of real line
arrangements

Let Γ ⊂ C2 be any (possibly reducible) plane real-algebraic curve with
only real and complex nodes as singularities. Denote by ΓR ⊂ R2 the real
part of Γ. If Γ has singularities one can apply a smoothening by which we
mean a smooth real deformation, resulting from a small real perturbation
of the equation which preserves its degree. Observe that in such situation

TOME 0 (0), FASCICULE 0
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there are two topological types of smoothenings of a crunode that can
arise. Namely, being a transversal intersection of two smooth real branches
a crunode has locally four connected components of its complement. Under
a small real deformation of a crunode either one or the other pair of opposite
connected components will merge forming a single component. Similarly,
there exist two topological types of smoothenings of an acnode. Either it
disappears in the complex domain or a small real oval will be created near
the acnode. The following useful result was proved by Brusotti in [5].

Theorem 3.7. — Any real-algebraic curve Γ ⊂ C2 with only nodes
as singularities admits a small real deformation of the same degree which
realizes any collection of independently prescribed smoothening types of its
real nodes.

Thus there are 2m topological types of such small deformations where
m is the number of real nodes of the real curve under consideration. The
easiest way to think about different types of small deformations is to fix a
real bivariate polynomial G(x, y) of minimal degree defining Γ as its zero
locus and to assign a ±-sign to each real node. Then the sign pattern
uniquely determines the way to smoothen each crunode and acnode as
follows. If v is a crunode of Γ, then G(x, y) has alternating signs in four
local components of the complement to Γ near v. If we assign the sign +
to the node v, then under this smoothening two opposite local components
in which G(x, y) is positive should glue together, and if we assign the sign
− then the other two opposite components (in which G(x, y) is negative)
should glue together. Analogously, if G(x, y) has a local maximum at the
acnode and we assign +, then we create a small oval. Otherwise the acnode
disappears. For a local minimum, the signs exchange their roles. The next
statement follows from [5] and can be also found in [15, p. 13] and [14].

Proposition 3.8. — For each plane real-algebraic curve Γ of a given
degree d with only nodes as singularities and a given sign pattern at its
crunodes and acnodes, there exists a real bivariate polynomial of degree at
most d having the chosen sign at each crunode/acnode.

Corollary 3.9. — In the above notation, if Γ is the zero locus of a
real polynomial G(x, y) and H(x, y) is a polynomial realizing a chosen
sign pattern for the crunodes/acnodes of Γ and such that Γ and the curve
H(x, y) = 0 have no common singularities (including the line at infinity),
then there exists ϵG,H > 0 such that for any 0 < ϵ ⩽ ϵ(G,H), the curve
given by G(x, y) + ϵH(x, y) = 0 is non-singular and realizes the prescribed
smoothening type of all crunodes/acnodes of Γ.

ANNALES DE L’INSTITUT FOURIER



RETURN OF THE PLANE EVOLUTE 11

We will mainly be applying Brusotti’s theorem to generic real line ar-
rangements in R2, where “generic” means that no two lines are parallell
and no three lines intersect at one point. In this case, the corresponding
curve has only crunodes among the real nodes. The following claim will be
useful in our considerations.

Proposition 3.10. — Given a line arrangement A ⊂ R2 of degree d, a
vertex (crunode) v and a real polynomial H(x, y) of degree at most d which
does not vanish at v, consider a sufficiently small disk D ⊂ R2 centered at
v which neither intersects the real zero locus of H(x, y) nor any of the lines
of A except for those two whose intersection point is v. Fix additionally
a product G(x, y) of linear forms whose zero locus is A. Then there exists
β(G,H, v) > 0 such that for any 0 < ϵ2 ⩽ β(G,H, v), the curve given by
G(x, y) + ϵ2H(x, y) = 0 restricted to D has the following properties:

(i) it consists of two smooth real branches without inflection points;
(ii) each branch contains a unique vertex, i.e., a critical point of the

curvature. At this point the curvature attains its maximum.

-1.0 -0.5 0.5 1.0
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3

4

-1.0 -0.5 0.5 1.0

1

2

3

4

-1.0 -0.5 0.5 1.0

-6

-4

-2

Figure 3.1. The leftmost plot shows the curvature of
yϵ =

√
x2 + ϵ2(1 + x4 − x6) for ϵ = 1/4, the central plot shows the

standard curvature for the same ϵ and the rightmost plot shows their
quotient together with the theoretical asymptotic quotient Ψ(x), see
Lemma 3.11.

The proof of Proposition 3.10 is based on the next analytic lemma. Con-
sider a family of functions yϵ(x) =

√
x2 + ϵ2(1 +O(x, ϵ)), where O(x, ϵ) is

a function vanishing at the origin and real-analytic in the variables (x, ϵ)
in some open neighborhood of it. Therefore 1 +O(x, ϵ) is positive in some
sufficiently small fixed rectangle x ∈ [−A,A], ϵ ∈ [−e, e]. Here ϵ is a small
real parameter and for each fixed ϵ, we think of yϵ(x) as a function of
x ∈ [−A,A]. Let

Kϵ(x) = y′′

(1 + (y′
ϵ(x))2)3/2

TOME 0 (0), FASCICULE 0



12 R. Piene, C. Riener & B. Shapiro

be the signed curvature of the function yϵ(x) and let

kϵ(x) = ϵ2

(ϵ2 + 2x2)3/2

be the signed curvature of the (upper branch of) hyperbola y =
√
x2 + ϵ2,

x ∈ R. (Notice that kϵ(x) > 0 for all x ∈ R and that
∫∞

−∞ kϵ(x)dx =
√

2
for all ϵ ∈ R with ϵ ̸= 0.)

Lemma 3.11. — In the above notation, when ϵ → 0, then on the interval
[−A,A] the quotient Kϵ(x)

kϵ(x) uniformly converges to the function

Ψ(x) = 1 +O(x, 0) − xO′(x, 0) + 1
2x

2O′′(x, 0).

The statement of Lemma 3.11 is illustrated in Figure 3.1.
Proof. — Set Φ(x) := x2 + ϵ2(1 +O(x, ϵ)). With this notation we get

y′
ϵ = Φ′

2Φ1/2 , y′′
ϵ = 2Φ′′Φ − (Φ′)2

4Φ3/2 ,

Kϵ = y′′

(1 + (y′
ϵ(x))2)3/2 = 2 2Φ′′Φ − (Φ′)2

(4Φ + (Φ′)2)3/2 .

(Recall that all derivatives are taken with respect to the variable x.) Sub-
stituting the expressions for Φ,Φ′ and Φ′′ in the third formula, we obtain

Kϵ(x) = 2ϵ2 4 + 4O + 2x2O′′ + 2ϵ2O′′ + 2ϵ2OO′′ − 4xO′ − ϵ2(O′)2

(4ϵ2 + 8x2 + 4ϵ2O + 4ϵ2xO′ + ϵ4(O′)2)3/2 .

Dividing by kϵ(x) we get Kϵ(x)
kϵ(x) = 2h1 · h2, where

h1 = 4 + 4O + 2x2O′′ + 2ϵ2O′′ + 2ϵ2OO′′ − 4xO′ − ϵ2 (O′)2)

and h2 =
(
ϵ2 + 2x2)3/2(

4ϵ2 + 8x2 + 4ϵ2O + 4ϵ2xO′ + ϵ4 (O′)2
)3/2 .

To prove the pointwise convergence, assume that x ̸= 0 and let ϵ → 0.
Then using real analyticity of O(x, ϵ) and Φ(x, ϵ), one gets

lim
ϵ→ 0

Kϵ(x)
kϵ(x) = 2

(
4 + 4O(x, 0) − 4xO′(x, 0) + 2x2O′′(x, 0)

) (
2x2)3/2

(8x2)3/2

= 1 +O(x, 0) − xO′(x, 0) + x2O′′(x, 0)
2 = Ψ(x).

For x = 0, the function Ψ(x) continues by analyticity implying that Ψ(0) =
1 since O(0, 0) = 0.

To prove the uniform convergence, consider again the factorization of the
quotient. We notice that the factor h1 is real analytic and non-vanishing at
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RETURN OF THE PLANE EVOLUTE 13

the origin. Thus if we can prove that the remaining factor h2 is real analytic
and non-vanishing at the origin, the uniform convergence will follow. Let us
consider the inverse h−1

2 = ( 4ϵ2+8x2+4ϵ2O+4ϵ2xO′+ϵ4(O′)2

ϵ2+2x2 )3/2 and it suffices
to show that

κ(x, ϵ) = 4ϵ2 + 8x2 + 4ϵ2O + 4ϵ2xO′ + ϵ4(O′)2

ϵ2 + 2x2

= 4ϵ
2 + 2x2 + ϵ2O + ϵ2xO′ + ϵ4(O′)2/4

ϵ2 + 2x2

has a non-vanishing limit at the origin. To prove this claim, consider

lim
(x,ϵ) → (0,0)

ϵ2 + 2x2 + ϵ2O + ϵ2xO′ + ϵ4(O′)2/4
ϵ2 + 2x2

= lim√
ϵ2+2x2 → 0

(
1 + ϵ2O

ϵ2 + 2x2 + ϵ2xO′

ϵ2 + 2x2 + ϵ4(O′)2/4
ϵ2 + 2x2

)
.

Since O(x, ϵ) and x vanish at the origin, the limits at the origin of the
second and third terms in the right-hand side of the latter expression are
0. The last term also has limit 0, since it contains ϵ4 in the numerator. Thus
the limit of κ(x, ϵ) at the origin exists and equals 4. The result follows. □

Remark 3.12. — A rather simple rescaling shows that a statement similar
to Lemma 3.11 holds in a more general family of curves

yϵ(x) = a
√
x2 + ϵ2(1 +O(x, ϵ))

for the quotient of the curvature Kϵ(x) and the standard curvature

kϵ(x) = aϵ2

(ϵ2 + (1 + a2)x2)3/2

of (the branch of) the hyperbola y = a
√
x2 + ϵ2, where a is a fixed positive

constant. The original case corresponds to a = 1.

Proof of Proposition 3.10. — In the above notation, consider the family
of real curves

Υϵ :
{
G(x, y) + ϵ2H(x, y) = 0

}
.

In a small neighborhood D of the chosen vertex v and for sufficiently small
ϵ, the restriction of Υϵ to D is a desingularization of the crunode at v of a
chosen type, since ϵ > 0 and H(x, y) does not vanish at v. Let us choose
affine coordinates (x̃, ỹ) centered at v which are obtained from the initial
coordinates (x, y) by a translation and rotation such that the pair of lines
belonging to A and intersecting at v will be given by ỹ = ±ax̃ for some
positive a. These coordinates will be uniquely defined if we additionally
require that in a small neighborhood of v the family Υϵ will be close to the
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14 R. Piene, C. Riener & B. Shapiro

family of hyperbolas ỹ = ±a
√
x̃2 + ϵ2. Now in these coordinates (x̃, ỹ), the

curve Υϵ will be given by(
ỹ2 − a2x̃2)L(x̃, ỹ) + ϵ2H(x̃, ỹ) = 0.

Here (after possible rescaling of the equation and parameter ϵ) we can
assume that L(x̃, ỹ) = 1 + . . . and H(x̃, ỹ) = 1 + . . . , where . . . stand
for higher order terms. Notice that L(x̃, ỹ) is the product of linear forms
defining the lines of A other than the two given by (ỹ2 − a2x̃2). From the
latter equation we obtain

(3.1) ỹ2 = a2x̃2 + ϵ2
1 + C(x̃, ỹ)
1 +D(x̃, ỹ) ,

where C(x̃, ỹ) and D(x̃, ỹ) are real analytic functions vanishing at the ori-
gin. Expanding the functional coefficient at ϵ2 in (3.1) near the origin in
coordinates (x̃, ỹ) and using the implicit function theorem, we get that (3.1)
determines the family of curves ỹϵ = ±a

√
x̃2 + ϵ2(1 +O(x̃, ϵ)). HereO(x̃, ϵ)

is a well-defined function which vanishes at the origin and is real ana-
lytic in some neighborhood of it. Dropping tildas we see that the case
yϵ =

√
x2 + ϵ2(1 +O(x, ϵ)) is exactly the one treated in Lemma 3.11 and

the case a > 0 is mentioned in Remark 3.12. The case a < 0 is obtained
from the case a > 0 by a trivial variable change.

Furthermore, by Lemma 3.11, the curvature Kϵ(x) of Υϵ is strictly posi-
tive for all sufficiently small ϵ and x lying in an a priori fixed small neighbor-
hood of v. Thus Υϵ has no inflection points in this neighborhood. Finally,
near the origin and for small ϵ, Kϵ(x) behaves very much like the standard
curvature kϵ(x) since (i) their quotient tends to a positive constant at 0;
(ii) for ϵ → 0, the standard curvature kϵ(x) tends to

√
2δ(0), where δ(0) is

Dirac’s delta function supported at the origin. Therefore, for all sufficiently
small ϵ, Kϵ(x) has a unique maximum near the origin. Finally, for a > 0,
the situation is completely parallel. □

To move further, we need more definitions. By an edge of a real line
arrangement A ⊂ R2 we mean a connected component of A \ V (A) where
V (A) is the set of its vertices (nodes). An edge is called bounded if both
its endpoints are vertices, and unbounded otherwise. Given a smoothening
R of A and a bounded edge e ∈ A, we denote by Re ⊂ R the restriction of
R onto a sufficiently small neighborhood Ue ⊂ R2 of e. Obviously, for any
smoothening R of A, Re consists of three connected components, see Fig-
ure 3.2. We say that R respects e if each of the three connected components
of Re is close to the union of edges bounding a single connected domain
of Ue \ A, see Figure 3.2a; otherwise we say that R twists the edge e, see
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A B

(a) The smoothening respects the bou-
nded edge.

A B

(b) The smoothening twists the boun-
ded edge.

Figure 3.2. A smoothening of a line arrangement around the bounded
edge AB.

Figure 3.2b. In the first case, the edge e is called respected by R and in
the second case twisted by R. The three connected components of Re are
divided into two short and one long where the long one is stretched along
e and each of the two short ones is completely located near the respective
vertex of e.

Proposition 3.10 has the following consequence.

Corollary 3.13. — Given a generic line arrangement A ⊂ R2 and its
sufficiently small real deformation R, the following facts hold:

(i) If R respects the edge e, then the short components of Re have no
inflection points while the long component has an even number of
inflection points (possibly none), see Figure 3.2a;

(ii) If R twists e, then the short components of Re have no inflection
points while the long component has an odd number of inflection
points, see Figure 3.2b;

(iii) If R respects the edge e, then there are at least five extrema of
curvature on the three components of Re; namely one maximum on
each of the short components and two maxima close to the vertices,
plus an odd number of additional extrema on the long component;

(iv) If R twists the edge e, then there are at least four extrema of
curvature on the three components of Re; namely, one maximum
on each short component and two maxima (of the absolute value of
the curvature) on the long component close to the vertices.

Proof. — To settle (i) and (ii), we notice that by Proposition 3.10 nei-
ther the short nor the long components of Re have inflection points near
the vertices of e. Furthermore, if we parameterize the long component as
(x(t), y(t)) with (x′)2(t) + (y′)2(t) non-vanishing for all t, then the signed
curvature

TOME 0 (0), FASCICULE 0



16 R. Piene, C. Riener & B. Shapiro

k(t) = x′(t)y′′(t) − y′(t)x′′(t)
((x′(t))2 + (y′(t))2)3/2

will have the same sign near the vertices if R preserves e and will change
the sign if R twists e. Therefore the long segment acquires an even number
of inflections counting multiplicities in the first case and an odd number of
inflections in the second case.

To settle (iii) and (iv), observe that by Proposition 3.10 both in the case
when R preserves e or twists e, Re will have four maxima of the absolute
value of the curvature near the vertices of e, one on each short component
and two on the long component. Additionally, if R preserves e, then the
long segment contains an even number of inflection points. If there are no
inflection points at all (as in the case shown in Figure 3.2a) then there is at
least one more minimum of the curvature on the long component between
the two maxima. In other words, between any two consecutive inflection
points on the long component there must be at least one maximum of the
absolute value of the curvature. □

4. On the maximal R-degrees of the evolute and of the
curve of normals

Recall that the degree of the evolute of a generic curve of degree d equals
3d(d− 1), see Proposition 3.1. Already consideration of the first non-trival
case of plane conics shows that the question about the maximal R-degree
of the evolute (the first part of Problem 2.4) is non-trivial. Namely, if Γ
is a generic real conic then the usual degree of EΓ equals 6 while the R-
degree of its evolute (which for a generic conic Γ is an astroid) equals 4,
see Lemma 4.4 below, Figure 2.1b) and Figure 8.2. Our initial result in this
direction is as follows.

Proposition 4.1. — For any d ⩾ 3, the maximal R-degree for the
evolutes of algebraic curves of degree d is not less than d(d− 2).

Proof. — Recall that at each real inflection point of a real-algebraic curve
Γ, its evolute EΓ goes to infinity and its asymptote at infinity is the line
normal to Γ and passing through the respective inflection point. Notice that
Klein’s formula combined with the usual Plücker formula for non-singular
plane curves imply that a real-algebraic curve of degree d has at most one
third of its total number of inflection points being real and this bound is
sharp. The sharpness had already been shown by Klein [21] (see also [28]
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for a rigorous treatment of Klein’s arguments) – it can be obtained by
considering small deformations of real line arrangements. Alternatively, one
can also obtain the sharpness of the bound through tropical arguments [4].
The number of complex inflection points of a generic smooth plane curve of
degree d equals 3d(d− 2). Thus there exists a smooth real-algebraic curve
of degree d with d(d − 2) real inflection points. The evolute of such curve
hits the line at infinity (transversally) at d(d − 2) real points. Therefore
the evolute intersects any affine line sufficiently close to the line at infinity
d(d − 2) times as well. Thus the maximal R-degree among the evolutes of
plane curves of degree d is at least d(d− 2). □

Remark 4.2. — At least for small d, the above lower bound is not sharp.
Namely, for d = 2, the maximal R-degree equals 4, while the above bound
is not applicable. For d = 3, taking a usual cubic in the Weierstrass form,
one has an example of the evolute whose R-degree is greater than or equal
to 6, see Figure 8.5. (Notice the number of real inflections of a nonsingular
real cubic always equals 3.)

Our second result solves the second part of Problem 2.4 about the max-
imal R-degree of the curve of normals.

Proposition 4.3. — There exists a real-algebraic curve Γ of degree d
and a point z ∈ R2 such that all d2 complex normals to Γ passing through
z are, in fact, real. In other words, there exists Γ such that the maximal
R-degree of NΓ equals d2, which coincides with its complex degree.

Proof. — Recall that a crunode (which is a transversal intersection of two
smooth real local branches) admits two types of real smoothening. Given a
crunode c and a point z such that the straight segment L connecting z with
c is not tangent to the real local branches at the curve at c, there exists a
smoothening of the curve at c such that one obtains two real normals to
this smoothening passing through z and close to L, see illustration in Fig-
ure 4.1. Now take an arrangement A ⊂ R2 of d real lines in general position
and a point z outside these lines. By Brusotti’s theorem, smoothening all
d(d − 1)/2 nodes in the admissible way shown in Figure 4.1 we obtain
d(d− 1) normals close to the straight segments joining z with the nodes of
A. Additional d normals are obtained by small deformations of the altitudes
connecting z with each of the d given lines. Thus, for a small deformation
of A that smoothens all its nodes in the admissible way with respect to z,
one gets d2 real normals to the obtained curve through the point z which
implies that the R-degree of its curve of normals is a least d2. But the
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18 R. Piene, C. Riener & B. Shapiro

usual complex degree of this curve of normals is (at most) d2. The result
follows. □

C

Z

Figure 4.1. An admissible smoothening (in red) of a crunode c w.r.t.
a point z and two normals (in black) to the two local branches of the
smoothening.

LT

Figure 4.2. Illustration of one possible case in the proof of Lemma 4.4.

Lemma 4.4. — The R-degree of the evolute of a non-empty generic real
conic equals 4.

Proof. — Any ellipse in R2 can be reduced by a translation and rotation
to the standard ellipse x2

a2 + y2

b2 = 1 whose evolute is parameterized as{
x = a2 − b2

a
cos3 t, y = b2 − a2

b
sin3 t

}
and is given by the equation (ax)2/3 + (by)2/3 = (a2 − b2)2/3. Analogously,
any hyperbola can be reduced by the same operations to the standard
hyperbola x2

a2 − y2

b2 = 1 whose evolute is parameterized as{
x = a2 + b2

a
cosh3 t, y = a2 + b2

b
sinh3 t

}
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and is given by the equation

(ax)2/3 − (by)2/3 =
(
a2 + b2)2/3

.

In both cases one can find a line in RP 2 such that in the affine chart
obtained as the complement to this line, the evolute E of the conic becomes
a plane closed 4-gon F with smooth and concave sides, see Figure 2.1 and
Figure 8.2. An additional property which is essential for our argument, is
that no line can intersect each of the 4 sides of F more than twice. To
prove this in the case of a standard ellipse, observe that each side of the
evolute can be considered as a convex/concave graph of a function y(x) and
therefore cannot intersect a real line more than two times, since otherwise
there will necessarily exist an inflection point. As a consequence, we get
that such a graph lies on one side with respect to the tangent line at any
of its points. The case of a hyperbola is similar.

Let us show that no real line can intersect a concave closed 4-gon F
with smooth sides more than four times if any of its sides can not intersect
a line more than twice. (Recall that we count intersection points without
multiplicities.) Indeed, assume that there is a real line L intersecting F at
least six times transversally, see Figure 4.2. (Notice that a line intersecting a
closed simple curve transversally must intersect it an even number of times.)
Then L intersects F either six or eight times since it can not intersect any
side of F more than twice.

Firstly, notice that by concavity of F , the line L can not intersect it 8
times since in this case the 4-tuple of concave sides will not be able to close
up forming a 4-gon. A similar situation occurs in all cases of the intersection
multiplicities of the line L with the 4 consecutive cyclicly ordered sides of F
are 2−2−1−1. The final possibility is the intersection multiplicities 2−2−2
with the three consecutive sides of F which is illustrated in Figure 4.2. Let
us provide more details in this special case. Consider the leftmost of these
three sides and draw a tangent line T at its leftmost vertex, see Figure 4.2.
Then the last remaining side must lie in one halfplane of the complement
to T while the rightmost vertex of the rightmost side among the three
intersecting L twice must lie in the other halfplane in the complement to
T . Thus again the 4 sides can not close up to form a 4-gon. □

5. On the maximal number of real vertices of a plane
real-algebraic curve

In this section we discuss Problem 2.5, providing a lower bound for the
maximal number RVert(d) of real vertices of a real-algebraic curve of degree
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d. Recall that by Proposition 3.3, the number CVert(d) of complex vertices
of a generic curve Γ of degree d (i.e., the number of cusps of its evolute
ẼC

Γ) equals 3d(2d− 3).
Below we obtain a lower bound of RVert(d) via small deformations of

real line arrangements.

Proposition 5.1.

(i) The number of real cusps for the evolute of an arbitrary small de-
formation R of any generic line arrangement A ⊂ R2 of degree d is
at least d(d− 1) plus the number of bounded edges of A respected
by R.

(ii) If the line arrangement A is given by the equation
∏d
i=1 Li = 0,

where the Li’s are linear equations describing the lines of A, then
for any sufficiently small real number ϵ ̸= 0, the deformation R
given by

∏d
i=1 Li = ϵ respects all the bounded edges of A. In this

case the total number of real cusps on its evolute is greater than or
equal to d(2d− 3).

Remark 5.2. — Apparently the number d(2d−3) is the maximal possible
number of cusps among the evolutes of small deformations of generic line
arrangements of degree d. It is exactly equal to one third of the number
CVert(d) of complex cusps.

Proof of Proposition 5.1. — Given a generic line arrangement A ⊂ R2,
consider its complement R2 \ A. It consists of

(
d−1

2
)

bounded and 2d un-
bounded convex polygons. Now take any small deformation R of A among
real curves of degree d. By Proposition 3.10, in a sufficiently small neigh-
borhood of each vertex v of A the smooth curve R consists of two convex
branches at each of which the (absolute value of the) curvature attains a
local maximum near v. These two local maxima correspond to two cusps on
the evolute ER of R which gives totally 2

(
d
2
)

= d(d−1) cusps corresponding
to the local maxima of the absolute value of the curvature.

Additionally, by Corollary 3.13(iii), every bounded edge of A respected
by R supplies at least one additional vertex on R which settles item (i). To
settle (ii), observe that for a sufficiently small deformation R of A which
twists a bounded edge e of A, the long component of Re must intersect
e, see Figure 3.2b. On the other hand, the line arrangement A given by∏d
i=1 Li = 0 and its deformation

∏d
i=1 Li = ϵ have no common points.

Therefore R respects every bounded edge of A and, in particular, has no
inflection points.

ANNALES DE L’INSTITUT FOURIER



RETURN OF THE PLANE EVOLUTE 21

The total number of bounded edges of any generic arrangement A ⊂ R2

with d lines equals d(d−2). Thus we get at least d(d−1)+d(d−2) = d(2d−3)
extrema of the curvature on the smooth curve R given by

∏d
i=1 Li = ϵ, for

small real ϵ. □

Remark 5.3. — Conjecturally, for any small deformation R of a generic
line arrangement A, the number of the minima of the curvature on R plus
the number of inflection points on R equals the number of bounded edges
of A (which is given by d(d− 2)).

6. On the maximal number of real diameters of a plane
real-algebraic curve

In this section we provide some information about Problem 2.6. Let
us denote by RDiam(d) the maximal number of real diameters for real-
algebraic curves of degree d having no circles as irreducible components
and by CDiam(d) the number of complex diameters of a generic curve Γ of
degree d. By definition, CDiam(d) equals the number δN of complex nodes
of NΓ not counting the special d-uple point at ∞, which by Proposition 3.3
implies that

CDiam(d) =
(
d
2
) (
d2 + d− 4

)
= 1

2d
4 − 5

2d
2 + 2d.

In particular, CDiam(2) = 2, and the number of real diameters of an
ellipse is also 2. Further, CDiam(3) = 24. Based on our experiments, we
conjecture that not all 24 complex diameters can be made real. In other
words, there is probably no (generic) real cubic Γ for which all 24 complex
nodes of its curve of normals NΓ are crunodes.

Below we provide a lower bound for RDiam(d) by using small deforma-
tions of real line arrangements. Assume that we have a generic arrangement
A of d lines in R2, meaning that no two lines are parallel and no three in-
tersect at the same point. Again by Brusotti’s theorem, we can find a small
real deformation of A within real curves of degree d which smoothens each
of the

(
d
2
)

crunodes of A in a prescribed way. (For a generic A ⊂ R2 of
degree d, there exist 2(d

2) topological types of its smoothening.) It turns
out that under some additional generality assumptions, one can estimate
the number of real diameters of any such smoothening R. To move further,
we need to introduce more notions related to line arrangements and their
smoothenings.
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Notation 6.1. — A line arrangement A ⊂ R2 is called strongly generic
if in addition to the conditions that no two lines are parallel and no three
lines intersect at the same point, we require that no two lines are perpen-
dicular. By an altitude of a given line arrangement A ⊂ R2, we mean a
straight segment connecting a vertex v of A with a point on a line of A not
containing v such that this segment is perpendicular to the chosen line, see
Figure 6.2. The line of A to which an altitude α is orthogonal, is called a
base line. (Notice that if A ⊂ R2 is strongly generic, then no altitude of A
connects its vertices.) Finally, we call a segment of a line belonging to A
and connecting its two vertices, a side of the arrangement A. (In particu-
lar, every bounded edge is a side, but a side can consist of several bounded
edges).

Given two intersecting lines in R2, we say that a pair of opposite sectors
of its complement form a cone. Thus the complement to the union of two
lines consists of two disjoint cones. (The closure of a cone will be called a
closed cone.) We will mainly be interested in cones in a small neighborhood
of their respective vertices.

Assume that we have chosen some type of smoothening R of a given
strongly generic arrangement A, which means that at each vertex v of A
we have (independently of other vertices) chosen which of two local cones
bounded by the lines whose intersection gives v, will merge, i.e., whose
sectors will glue together after the deformation. (Two sectors of the other
cone will stay disjoint under a local deformation.) We will call the first cone
merging and the second one persisting.

For a given line ℓ ⊂ R2 and point p ∈ ℓ, denote by ℓ⊥(p) the line passing
through p and orthogonal to ℓ. For a cone bounded by two lines ℓ1 and
ℓ2 intersecting at some vertex v, define its dual cone as the union of all
lines passing through v and such that every line is orthogonal to some
line passing through v and belonging to the initial cone. (The dual cone is
bounded by ℓ⊥

1 (v) and ℓ⊥
2 (v).)

Given a generic line arrangement A ⊂ R2 of degree d, define its derived
arrangement DA ⊂ R2 of degree d(d − 1) as follows. For any pair of lines
ℓ1 and ℓ2 from A, let v denote their intersection point. Then DA consists
of all lines ℓ⊥

1 (v) and ℓ⊥
2 (v) where ℓ1 and ℓ2 run over all pairs of distinct

lines in A.
If we choose some smoothening R of A then at each vertex v of A, we get

the persistent cone Cv(R) and its dual persistent cone C⊥
v (R) bounded by

two lines of DA which are perpendicular to the lines of A those intersection
gives v. If α is an altitude starting at v and R is some smoothening, we

ANNALES DE L’INSTITUT FOURIER



RETURN OF THE PLANE EVOLUTE 23

v w

Figure 6.1. Two vertices v and w of a line arrangement A which see
each other (along the red dashed line) with respect to R. The lines of
A are shown in solid blue, while the dashed lines belong to the derived
arrangement. The persistent cones are marked by the blue arcs.

say that α is admissible with respect to R if it lies inside Cv(R) and non-
admissible otherwise. Finally, for a given strongly generic A, its two vertices
v1 and v2 and any smoothening R, we say that v1 and v2 see each other
with respect to R if v2 ∈ C⊥

v1
(R) and v1 ∈ C⊥

v2
(R).

Lemma 6.2. — Given a strongly generic line arrangement A, the fol-
lowing holds:

(i) any smoothening R of a vertex v ∈ A has (at least) one short
diameter near v;

(ii) if an altitude α is admissible with respect to a small deformation
R then R has (at least) two diameters close to α;

(iii) if v1 and v2 see each other with respect to a small deformation R
then R has (at least) four diameters close to the straight segment
(v1, v2).

Proof. — To settle (i), observe that a small deformation R of A restricted
to a small neighborhood of a given vertex v consists of two convex connected
components which are convex “towards each other”. For each point on one
of the local branches, the distance function to the other branch increases
towards its endpoints. Therefore there exists a global minimum of the dis-
tance function between these branches, giving a diameter attained on a
pair of points lying inside both branches (and not on their boundary), see
Figure 6.2.

To settle (ii), denote by ℓ1 and ℓ2 a pair of lines belonging to A whose
intersection gives the vertex v. Recall that the Gauss map sends a point
of a curve to the normal line to the curve passing through this point. Ob-
serve that a smoothening R creates near the vertex v two short connected
components such that the Gauss map on each of them moves from a line
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V

Z

Figure 6.2. A smoothening of an admissible altitude (dashed) creating
two diameters (black). We also include a short diameter created near
the vertex v (in black).

close to ℓ⊥
1 to a line close to ℓ⊥

2 . The Gauss map of a small deformation
of the base line of α (to which the altitude α is orthogonal) is close to the
direction of the altitude. Thus by continuity and admissibility we will be
able to find (at least) one normal on each of the short components which
is also orthogonal to the small deformation of the base line, see Figure 6.2.

To settle (iii), observe that short segments are very close to the corre-
sponding hyperbolas (one for each crunode), see Figure 6.3. For the hyper-
bolas the statement is true and the four diameters are located close to the
connecting segment vw. To prove this, notice that we have four pairs of
branches of hyperbolas to consider, lying in four pairs of respective sectors.
These pairs of sectors can be of three possible types. We say that a pair
of sectors “look away from each other” if each cone contains the apex of
the other cone; “look towards each other” if their intersection is empty;
“one looks after the other” if the apex of one cone belongs to the other,
but not the other way around. For a pair whose sectors “look away from
each other”, we get a maximum of the distance between the branches of
hyperbolas near their apices, for the pair whose sectors “look towards each
other”, we get a minimum of the distance between the branches of hyper-
bolas near their apices, and for the pairs where “one looks after the other”,
we get a saddle point. Finally, the same phenomena will be present in a
sufficiently small deformation of hyperbolas. To prove this, we consider the
pairwise distance as the function on the small square, one side of which
gives the position of the point on one considered branch and the other side
gives the position of the point on the other side. Then if the sectors “look
away from each other”, the distance function is concave on each horizontal
and vertical segment of the square; if the sectors “look towards each other”,
the distance function is convex on each horizontal and vertical segment of
the square; if the sectors “one looks after the other”, the distance function
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is convex on each horizontal and concave on the each vertical segment of
the square. The result follows. □

V Z

Figure 6.3. A smoothening of two vertices which see each other, re-
sulting in four diameters (black).

Lemma 6.2 immediately implies the following claim.

Proposition 6.3. — Given any smoothening R of a strongly generic
arrangement A consisting of d lines, the number of real diameters of R is
greater than or equal to

(
d
2
)

plus twice the number of admissible altitudes
with respect to R, plus four times the number of pairs of vertices which
see each other with respect to R.

Conjecture 6.4. — The number of diameters of any real smoothening
of any line arrangement of degree d does not exceed the number

(6.1)
(
d

2

)
+ 2
(
d

2

)
(d− 2) + 4

((d
2
)

2

)
= 1

2d
4 − 3d2 + 5

2d.

Example 6.5. — Figure 6.4 shows a special case of a line arrangement for
d = 3 and its smoothening which results in 21 diameters. The arrangement
itself is shown by 3 blue lines and its derived arrangement is shown by
6 black lines, the three altitudes are shown by 3 red lines. The chosen
smoothening is shown by 3 short red segments at the vertices A,B,C which
indicate how we cut out arrangement at its vertices. As the result of such a
smoothening we will obtain a compact triangle-formed oval inside together
with 3 infinite arcs. Three pairs of persistent sectors will include EAD −
D′AE′, FBG−F ′BG′, and HCI−H ′CI ′. Every two vertices see each other
with respect to R for this smoothening, and each altitude is admissible.
Therefore we get 3+2×3+3×4 = 21 real diameters on this smoothening R.
We conjecture that 21 is the maximal number of real diameters which can
be obtained by a small deformation of three real lines.
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A C

B

D

D'

E

E'

F

F'

G

G'

I

I'

H

H'

-2 -1 0 1 2

-2

-1

0

1

2

(a) Three lines (shown
in blue), their altitudes
(shown dotted in orange),
and their derived arrange-
ment (shown in black).
Red lines indicate the
smoothening.

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

(b) A smoothening cre-
ating a smooth triangle-
shaped oval with 3 infinite
arcs having 21 diameters,
which are drawn in black.

-4 -2 0 2 4

-2

-1

0

1

2

(c) The curve of nor-
mals corresponding to the
smoothening has 24 real
singularities in the affine
plane. 21 of these are cru-
nodes, of which 18 are vis-
ible in this picture – there
are two more out left and
one more to the right.

Figure 6.4. An example of a smoothening of three lines with 21 diam-
eters.

Proposition 6.3 implies the following lower bound for RDiam(d).

Proposition 6.6. — In the above notation,

(6.2) RDiam(d) ⩾ 1
2d

4 − d3 + 1
2d.

To settle Proposition 6.6, we need to introduce a certain class of real line
arrangements. We say that an arrangement A is oblate if the slopes of all
lines in A are close to each other. As a particular example, one can take d
lines tangent to the graph of arctan x for d values of the variable x of the
form 101, 102, 103, . . . , 100 + d.

Proof. — For the special smoothening of an oblate arrangement for which
we choose the narrow cone at each vertex to be the persistent, the following
diameters will be present. Every pair of persistent cones will be in proper
position and contribute 4 diameters and each vertex will contribute 1 diam-
eter. On the other hand, all altitudes will be non-admissible. Thus we get
at least 4

((d
2)
2

)
+
(
d
2
)

= 1
2d

4 − d3 + 1
2d diameters for this smoothening. □

Remark 6.7. — It might happen that using some other types of line
arrangements and their special smoothening, one can improve the lower
bound (6.2) and get closer to 1

2d
4 −3d2 + 5

2d. For d = 3, Figure 6.4 contains
such a construction. However, for d ⩾ 4 it is not clear whether 1

2d
4−3d2+ 5

2d

is achievable by small deformations of line arrangements. It seems difficult
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to make all pairs of vertices to see each others while simultaneously keeping
all the altitudes admissible.

Figure 6.5. Example of an oblate line arrangement.

7. On the maximal number of crunodes of the evolute

In this section we discuss Problem 2.7. Recall that the number of complex
nodes of the evolute of a generic curve of degree d is given by

δE = 1
2d(3d− 5)

(
3d2 − d− 6

)
.

Denote by δcru
E (d) the maximal number of crunodes for the evolutes of

real-algebraic curves of degree d. At the moment we have only a rather
weak lower bound for this number of crunodes, which we again obtain by
smoothening of a line arrangement.

Proposition 7.1. — We have δcru
E (d) ⩾ 1

2 (⌊d(d−2)
2 ⌋2 + 3⌊d(d−2)

2 ⌋).

Proof. — Take a line arrangement A and assume that in this arrange-
ment we have a line which intersects two other lines in acute angles such
that there is a bounded edge e between the two resulting nodes A and B.
By Brusotti’s theorem there exists a smoothening R in which A and B are
smoothened in such a way that the long component of the resulting local
branch Re has curvatures of different signs near the two nodes, the tangent
direction changes by more than 90 degrees near each of the nodes, and such
that it twists e. We call such a smoothening a “zig-zag”. By Corollary 3.13
we know that the long component of Re will have at least one inflection
point as well as two maxima of the absolute value of curvature close to the
vertices. Considering the part of the evolute corresponding to Re, we have
that these two maxima correspond to two cusps of the evolute, which, due
to the different signs of curvature, are oriented towards each other. Further-
more, the existence of the inflection point results in a line, perpendicular to
the compact line segment, which is an asymptote of the evolute, in such a
way that from each of the two cusps one branch of the evolute approaches
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this asymptote. Furthermore, since the smoothening can be chosen in such
a way to ensure that the curvature radius becomes as large as necessary, the
remaining two branches are guaranteed to intersect with the other branches
(the described situation can also be seen in Figure 7.1a). Now it follows that
the two branches which tend to the asymptotical line are connected via the
other two branches, and that the part of the evolute corresponding to Re

therefore contains a pseudo-line, Moreover, R can be chosen in such a way
that every bounded edge that can be smoothened in a zig-zag, contributes
a pseudo-line in the evolute. For d ⩾ 3, consider a set of ⌊d2 ⌋ parallel lines as
well as another set of ⌊d+1

2 ⌋ parallel lines which are almost parallel to the
first set of lines. The union of these two sets will yield a line arrangement
with ⌊d(d−2)

2 ⌋ many bounded edges, and there exists a smoothening of the
line arrangement which smoothens each of the bounded edges in a zig-zag.
The resulting evolute thus has ⌊d(d−2)

2 ⌋ pseudo-lines, which will intersect
pairwisely leading to one crunode per intersection. Moreover, by construc-
tion, each of the pseudo-lines contributes 2 crunodes. Adding these to the
number of pairwise intersections we arrive at the announced lower bound
of crunodes. □

B

A

0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(a) An arrangement of three lines
(in gray) together with a zigzag de-
formation in red, with the inflec-
tion point on the compact segment
between A and B. The resulting
evolute (in blue) has an asymptote
(dashed in blue).

-2 -1 0 1 2

-2

-1

0

1

2

(b) Two sets of 3 lines. By a
smoothening of the 6 lines with
changing the colours at every vertex
and following the orientation indi-
cated by the arrows one obtains the
desired smoothening.

Figure 7.1. Visualization of zig-zag-smoothenings.

Remark 7.2. — The above lower bound is obtained in a crude way, and
it is surely possible to improve this construction. However, the bound is of
the same degree as the complex bound.
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8. A florilegium of some real curves, their evolutes, and
curves of normals

Here we present some classical examples to showcase the interplay be-
tween a real algebraic curve, its evolute, and its curve of normals. Since
many of the equations defining these curves are quite lengthy, we sepa-
rately collect most of them in Appendix B. Many of our examples are
known in the literature, see e.g. [30, § 9], but, to the best of our knowledge,
curves of normals have not been explicated earlier. For convenience of the
readers, we collected the information about the standard invariants of the
complexifications of the curves under consideration in Subsection 8.4. Re-
call from Section 6 that the real singular point (an ordinary d-uple point if
the curve Γ is in general position) of the curve of normals corresponding to
the line at infinity does not contribute to the count of the diameters of Γ.

8.1. Conics

I. As we saw in Example 2.1(2), for the standard ellipse Γ given by the
equation

x2

a2 + y2

b2 = 1,

its evolute EΓ is a stretched astroid given by the equation

(ax)2/3 + (by)2/3 =
(
a2 − b2)2/3

,

see Figure 2.1b.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

(a) A rotated ellipse in blue and its evo-
lute in red.

-4 -2 0 2 4

-4

-2

0

2

4

(b) Corresponding curve of normals
shown in gold.

Figure 8.1. A rotated ellipse, its evolute, and its curve of normals.
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The evolute and the curve of normals are better seen in case of the
rotated ellipse (x+ y)2 + 4(y − x)2 − 1 = 0, shown in Figure 8.1.

The evolute is a sextic with 4 real cusps, 2 complex cusps, and 4 complex
nodes. The curve of normals is a quartic with 2 real crunodes (correspond-
ing to the diameters of the ellipse), and its double point corresponding to
the line at infinity z = 0 has no real branches, i.e., is an acnode, see Fig-
ure 8.1b. Klein’s formula for the evolute in this case reads as 6 + 2 = 4 + 4,
where the second 4 in the right hand side comes from real cusps of the
evolute and 2 in the left hand side comes from the acnode of the curve of
normals.

The ellipse has 4 vertices and 2 diameters.

II. For the hyperbola Γ given by the equation
x2

a2 − y2

b2 = 1,

its evolute EΓ is a version of a Lamé curve given by the equation

(ax)2/3 − (by)2/3 =
(
a2 + b2)2/3

.

-2 -1 0 1 2

-2

-1

0

1

2

(a) A rotated hyperbola
in blue and its evolute in
red.
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(b) Same situation in a
different affine chart.
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(c) Corresponding curve
of normals shown in gold.

Figure 8.2. Rotated hyperbola, its evolute and its curve of normals.

The evolute and the curve of normals are better seen in case of the rotated
hyperbola (x+ y)2 − 4(y− x)2 − 1 = 0, see Figure 8.2. As in the case of an
ellipse, the evolute of a hyperbola is a sextic with 4 real cusps, 2 complex
cusps, and 4 complex nodes. This is best visible in a different affine chart
(see Figure 8.2b). The curve of normals again is a quartic with 1 crunode
and 1 acnode in addition to its double point corresponding to the line at
infinity z = 0, which is a crunode. In Figure 8.2c one can see the (affine)
crunode corresponding to the unique real diameter of the hyperbola; this
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diameter connects the pair of points on its two branches minimizing the
distance function. Klein’s formula for the hyperbola is exactly the same as
for the ellipse.

The hyperbola has 2 vertices and 1 diameter.

8.2. Cubics

III. The cuspidal cubic classically referred to as cissoid is given by the
equation (

x2 + y2)x = ay2.

This rational curve is circular, meaning that it passes through the two
circular points (i : 1 : 0) and (−i : 1 : 0) on the line at infinity. Besides
the circular points, it intersects the line at infinity in the point (0 : 1 : 0),
which is an inflection point. The numerical characters of the curve are
d = 3, κ = 1, d∨ = 2d− 2 − κ = 3, ι = 1.

The evolute has two inflectional tangents passing through the circular
points, so ιE = 2. Hence the degree of the curve of normals is degNΓ =
d+ d∨ − ιE = 4, and the degree of its evolute is degEΓ = 3d+ ι− 3ιE = 4,
see column III in Table 8.1. The evolute is given by the equation 27y4 +
288a2y2 +512a3x = 0. It is apparent from the equation that the evolute has
only one singular point, namely (1 : 0 : 0), which has type E6 (with tangent
being the line at ∞), hence a point of multiplicity 3 and δ-invariant 3.

The curve of normals has an acnode (− 2
3 : 1 : 0) and two complex

ordinary cusps (i : 2i : 1) and (−i : −2i : 1) (corresponding to the inflection
points of EΓ).

For the Klein–Schuh formula applied to the evolute, we have that the
degree and the class (equal to the degree of the curve of normals) are
equal, and the curve of normals has one real singularity, an acnode, and
the evolute has a cusp of multiplicity 3. Hence the formula checks: 4 − 4 =
(2 − 0) − (3 − 1) = 0. Since the curve of normals has no crunodes, and the
evolute has no cusps in the affine real plane, the cissoid has no vertices or
diameters, see Figure 8.3.

IV. The nodal cubic given by the equation

5
(
x2 − y2) (x− 1) +

(
x2 + y2) = 0

has a crunode at the origin, and three real branches transversal to the line
at ∞, hence is in general position with respect to the line at infinity and
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(a) A cissoid (x2 + y2)x = 4y2 in blue
and its evolute given by 27y4+4608y2+
32768x = 0 in red.
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(b) The corresponding curve of nor-
mals shown in gold is given by 36u3v +
uv3 + 12u2v2 + 64u2 + 96uv + 128 = 0.

Figure 8.3. Cissoid, its evolute and its curve of normals.

the circular points, except that the point (0 : 1 : 0) is an inflection point.
Its numerical characters are d = 3, δ = 1, κ = 0, ι = 3, d∨ = 3 · 2 − 2 = 4.

The degree of its curve of normals is degNΓ = 3 + 4 = 7, and the degree
of its evolute is degEΓ = 3 · 3 + 3 = 12, see column IV of Table 8.1. We
find that the evolute has 11 cusps in the affine plane, of which 5 are real.
Furthermore, it has two real cusps and a real E6-singularity at infinity. (The
reason the third cusp is an E6-singularity rather than an ordinary cusp is
that the curve has an inflection point at (0 : 1 : 0), with tangent transversal
to the line at infinity. This gives an “extra” tangent to the evolute passing
through the point (0 : 1 : 0)⊥ = (1 : 0 : 0), so that the formula for the
degree of the evolute can be written 2·3+(3+1)+(ι−1) = 12.) Furthermore
EΓ has 39 complex nodes, of which 3 are real (crunodes).
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(a) The nodal cubic in
blue and its evolute in
red with marked singular
points.
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(b) The curve of normals
for the latter nodal cubic
in the (u, v) chart, with
marked singular points.
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(c) The curve of normals
in the (u, w) chart, with
marked singular points.

Figure 8.4. The nodal cubic 5(x2 − y2)(x − 1) + (x2 + y2) = 0, its
evolute, and its curve of normals.
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Using Maple [23] we determine that NΓ has 13 singular points, all of
which are real. 10 of these singular points can bee seen in Figure 8.4.
Furthermore, NΓ has a triple points at (0 : 1 : 0) (which does not contribute
to the count of diameters) and two double points at (− 5

8 : 1 : 0) and
(− 5

3 : 1 : 0). All singular points can be seen in the different affine chart
shown in Figure 8.4c, and we see 10 crunodes and two acnodes. Hence this
nodal cubic has 5 vertices and 10 diameters.

V. Our next example is a generic cubic in the Weierstrass form given by
the equation

y2 + x(x− 2)(x+ 1) = 0.

The line at infinity is an inflectional tangent, at the point (0 : 1 : 0). Hence
the curve is not in general position. Its numerical characters are d = 3,
ι = 9, d∨ = 6.

According to [19, Theorem 8], the degree of its curve of normals is
degNΓ = d + d∨ − ιE , with ιE = 3 − 1 = 2, hence degNΓ = 7, which
checks with the computation of the equation for NΓ. The degree of its evo-
lute is degEΓ = 3d+ ι− 3ιE = 12, which also checks with the computation
of the equation for the evolute. According to Proposition A.8,

κ(E) = 6d− 3d∨ + 3ι− 5ιE = 18 − 18 + 27 − 10 = 17,

see column V in Table 8.1. The evolute has an inflection point at (0 : 1 :
0)⊥ = (1 : 0 : 0), with tangent the line at infinity that intersects the evolute
with multiplicity 4.

Indeed, the evolute has 17 cusps, of which 9 are real (we only see 7 of
these in Figure 8.5a), and

(11
2
)

− 1 − 17 = 37 nodes, of which 3 are real
crunodes, see Figure 8.5a.

We see from Figure 8.5a that NΓ has a triple point at u = 0, v = 0.
This comes from the fact that the line y = 0 is perpendicular to Γ at
the three distinct points (−1 : 0 : 1), (0 : 0 : 1), (2 : 0 : 1), and gives
3 diameters. Additionally, NΓ has an E6-singularity (corresponding to the
inflection point of EΓ), with δ-invariant 3. The remaining singular points
of NΓ are

(degNΓ−1
2

)
− g −

(3
2
)

− 3 = 15 − 1 − 3 − 3 = 8 nodes, of which 2
are real: 1 is an acnode and 1 is a crunode.

The Weierstrass cubic has 9 vertices and 4 diameters.

VI. Our final example among cubics is a nonsingular cubic given by the
equation (

x2 − y2) (x− 1) + 1/64 = 0
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(a) The Weierstrass cubic
in blue and its evolute in
red.
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(b) The curve of normals
in the (u, v) chart.
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(c) The curve of normals
in the (v, w) chart.

Figure 8.5. The Weierstrass cubic y2 +x(x−2)(x+1) = 0, its evolute,
and its curve of normals in different charts.

with three real branches transversal to the line at infinity, see Figure 8.6.
This is a curve in general position, but the three intersection points with the
line at infinity are inflection points. By Proposition 3.1, its curve of normals
has degree degNΓ = 3+6 = 9 and its evolute has degree degEΓ = 3d+ ι =
18.

Using Maple, we find that the evolute EΓ has 21 ordinary complex cusps
and 105 complex nodes, see column VI of Table 8.1. The three cusps on
the line at infinity are E6-singularities, for the same reason as for the nodal
cubic IV. We find 18 real singular points in the (x, y)-plane, of which 9 are
real cusps and 9 are crunodes (not all of them can be seen in Figure 8.6a).

Using Maple, we find that the curve of normalsNΓ has 2 real triple points,
one at (0 : 0 : 1) and one at (0 : 1 : 0). The first contributes 3 diameters
of the curve, whereas the second corresponds to the line z = 0 and does
not contribute to the diameters. Furthermore, we find 21 complex nodes,
of which three are on the line w = 0, namely at the real points (α : 1 : 0),
where α is any of the three real roots of ϕ(t) = t3+128t2+256t+128. Of the
remaining 18 nodes, 10 are real. The real affine situation in the (u, v)-chart
is visible in Figure 8.6b, where we see two acnodes among the 10 visible
real affine nodes. In Figure 8.6c we can see the triple point (0 : 1 : 0) and
two of the points (α : 1 : 0) – the third of these, an acnode, is further out
and not shown to allow for a detailed vision around the origin. We thus
have that 3 of the 13 real nodes are acnodes.

The cubic has 9 vertices and 13 diameters.
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(a) The cubic in blue and
its evolute in red.
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(b) The curve of normals
in the (u, v) chart, with
marked singular points.
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(c) The curve of normals
in the (u, w) chart, with
marked singular points.

Figure 8.6. A nonsingular cubic with three real branches transversally
intersecting the line at infinity, its evolute, and its curve of normals in
two charts.

8.3. Rational curves of higher degree

VII. The ampersand curve is a rational curve given by the equation

(−1 + x)(−3 + 2x)
(
−x2 + 1

2y
2)− 4

(
−2x+ x2 + 1

2y
2)2 = 0.

It intersects the line at infinity transversally in four (non-circular) points,
hence is in general position. Its numerical characters are d = 4, d∨ = 6, δ =
3, κ = 0, ι = 6, τ = 4. We see 2 real inflection points on the curve, so by
Klein’s formula 4+2τ ′ +ι′ = 6+2δ′ +κ′, we get 4+2τ ′ +2 = 6+0+0 (since
all nodes are crunodes, δ′ = 0), hence τ ′ = 0 (i.e., there are no conjugate
double tangents).

The degree of its curve of normals is degNΓ = 4 + 6 = 10 and that of
its evolute is degEΓ = 12 + 6 = 18. We get κ(N) = 0, δN = δ(N) −

(6
2
)

=
36 − 6 = 30 and κ(E) = 24, δE = δ(E) − κ(E) = 136 − 24 = 112, see
column VII of Table 8.1.

The evolute has 24 ordinary cusps, of these 6 are real and in the (x, y)-
plane. It has 112 nodes, of these 4 are crunodes and 4 are acnodes (except
for 2 acnodes, these can all be seen in Figure 8.7a).

The curve of normals has a quadruple point at (0 : 1 : 0). Using Maple
we find that NΓ has additional 30 singular points, all nodes. Of these, 14
are real – 11 of these points can bee seen in Figure 8.7b, and the nodes
at (−2 : 1 : 0) and (−159/209 ±

√
201
209 : 1 : 0) can be seen in Figure 8.7c.

Hence we can see all the real singular points by considering the two affine
charts shown in Figure 8.7. The point (0 : 0 : 1) is an acnode. Note that the
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“acnode” (0 : 1 : 0) we see in Figure 8.7c is the ordinary quadruple point
corresponding to the line z = 0 – this point has four complex branches.
Thus we see that NΓ has 13 crunodes.

The ampersand curve has 6 vertices and 13 diameters.
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(a) The ampersand curve
in blue with its evolute in
red.

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

(b) The curve of normals
in the (u, v) chart.
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(c) The curve of normals
in the (u, w) chart, with
marked singular points.

Figure 8.7. The ampersand curve, its evolute, and its curve of normals.

VIII. The cross curve is a rational curve given by the equation

x2y2 − 4x2 − y2 = 0.

The curve is not in general position: it intersects the line at infinity in
two points that are crunodes of the curve, with tangents transversal to the
line at infinity, and with each branch of the crunodes having an inflection
point at the crunode. The curve has an acnode at the origin (0 : 0 : 1). Its
numerical characters are d = 4, d∨ = 6, δ = 3, κ = 0, ι = 6, τ = 4. Klein’s
formula gives 4 + 2τ ′ + ι′ = 6 + 2δ′ + κ′, hence 4 + 2τ ′ = 6 + 2 (since one
node is an acnode, δ′ = 1), hence τ ′ = 2.

We get degNΓ = d+d∨ = 10, κ(N) = 0, δN = δ(N)−
(4

2
)

= 36−6 = 30,
and degEΓ = 3d+ ι = 18.

The evolute has 16 ordinary cusps, of which 4 are real, and two real
singularities on the line at infinity, each with multiplicity 6, δ-invariant 18,
and 2 branches. (Each of these singularities is the coming-together of two
E6-singularities.) The evolute has κ(E) = 24, and δE = δ(E)−16−2 ·18 =
84 nodes, of these two are real and are acnodes.

The curve of normals has a quadruple point at (0 : 1 : 0) (which does
not contribute to the number of diameters) with four real branches and
δ-invariant 12 – it can be seen in Figure 8.8c. Furthermore, using Maple,
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we find that the curve of normals has 24 double points in the affine (u, v)-
plane, namely (±

√
2 : 0 : 1), (±

√
−2 : 0 : 1), and (±

√
α : ±

√
γ(α) : 1),

where α is any of the five roots of ϕ(t) = t5 − 6t4 + 44t3 − 56t2 + 24t − 4
and γ(α) = 1

3 (84 + 6α4 − 33α3 + 252α2 − 219α). Thus in total we have 6
real affine nodes in the (u, v)-chart, 4 of which are acnodes, as can be seen
in Figure 8.8b.

The cross curve has 4 vertices and 2 diameters.
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(a) The cross curve in
blue with its evolute in
red with marked singular
points.
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(b) The curve of nor-
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(c) The curve of normals
in the (u, w) chart with
marked singular points.

Figure 8.8. The cross curve, its evolute, and its curve of normals.

IX. The bean curve is a rational curve given by the equation

x4 + x2y2 + y4 − x
(
x2 + y2) = 0.

The curve intersects the line at infinity in four distinct (non-circular) points,
so it is in general position. It has an ordinary triple point at the origin, with
one real branch. The point (1 : 0 : 1) is an inflection point with tangent
line x = 1. The intersection number of the curve with its tangent at this
point is 4. The corresponding point on its dual curve is an E6-singularity
(a cusp of multiplicity 3), hence ι′ = 2. The numerical characters of the
curve are d = 4, d∨ = 6, δ = 3, κ = 0, ι = 6, τ = 4. Klein–Schuh’s formula
gives 4 − 6 = (3 − 1) − ι′ − 2τ ′ = 2 − 2 − 2τ ′, hence τ ′ = 1.

Its curve of normals has degNΓ = 10, κ(N) = 0, and δ(N) = 36 nodes,
and its evolute has degEΓ = 18, κ(E) = 24, δ(E) = 136, see column IX of
Table 8.1.

The evolute has 124 nodes and 24 cusps. There are 5 real cusps in the
(x, y)-plane and one at (0 : 1 : 0). This last one corresponds to the higher
order inflection point (1 : 0 : 1) of the curve, which gives a critical point of
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the curvature radius function and hence this cusp is a vertex of Γ. We see
3 crunodes and 5 acnodes in Figure 8.9a.

The curve of normals has an ordinary quadruple point at (0 : 1 : 0), with
all branches complex. In addition, NΓ has a crunode visible in Figure 8.9b,
and singularities at (− 3

2 : 1 : 0), (1 −
√

5 : 1 : 0), (1 +
√

5 : 1 : 0), which can
be seen in the (u,w)-chart shown in Figure 8.9c, which gives two acnodes
and an additional crunode.

The bean curve has 6 vertices and 2 diameters.
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(a) The bean curve in blue
with its evolute in red.
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(b) The curve of normals
in the (u, v) chart.
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(c) The curve of normals
in the (v, w) chart with
marked singular points.

Figure 8.9. The bean curve, its evolute, and its curve of normals.

X. The trifolium is a rational curve given by the equation

(x2 + y2)2 − x3 + 3xy2 = 0.

The trifolium is a 2-circular curve: the highest degree homogeneous part
of its equation is divisible by (x2+y2)2. The curve touches the line at infinity
at the two circular points. It has one singular point, an ordinary triple point
at the origin (0 : 0 : 1). Its numerical characters are d = 4, d∨ = 6, δ = 3,
κ = 0, ι = 6, τ = 4. Klein–Schuh’s formula gives 4 − 6 = −ι′ − 2τ ′ = −2τ ′,
since there are no real inflection points. Hence Γ has one pair of conjugate
tangents.

The evolute has totally 24 nodes and 12 cusps of which no nodes are real,
i.e., it has neither acnodes nor crunodes. Of totally 12 cusps 6 are real and
6 are non-real. All real cusps can be seen in Figure 8.10a.

For the curve of normals we get from Equation (A.4) degNΓ = 4 +
6 − 2(2 − 1 + 1) = 6, and for the evolute we get from Equation (A.3)
degEΓ = 2 degNΓ + d∨ − 2d + κ − ι(E) = 12 + 6 − 8 + 0 − 0 = 10, see
column X of Table 8.1. The curve of normals has 7 double points in the
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affine (u, v)-plane, all of which are crunodes, as can be seen in Figure 8.10b.
Furthermore, it has three real nodes at the line at infinity w = 0, two
crunodes at ( 1

3 +
√

33
3 : 1 : 0) and ( 1

3 −
√

33
3 : 1 : 0), and an acnode at

(0 : 1 : 0). Its evolute is a hypocycloid, with 6 real cusps in the affine plane,
and is again a 2-circular curve.

The trifolium has 6 vertices and 9 diameters.
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(a) The trifolium in blue with its evolute
in red.
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(b) The curve of normals in the (u, v)
chart.

Figure 8.10. The trifolium, its evolute, and its curve of normals.

XI. The quadrifolium is a rational curve given by the equation(
x2 + y2)3 − 4x2y2 = 0.

The quadrifolium is a 3-circular curve. It has cusps (with tangent the
line at infinity) at the two circular points. Its quadruple point at the origin
has δ-invariant 8. Its numerical characters are d = 6, d∨ = 8, δ = 10, κ = 2,
ι = 8, τ = 21.

The degree of the curve of normals is degNΓ = 6+8−2(3−2+2) = 8, by
Equation (A.4). It has 17 nodes in the affine (u, v)-plane, all real and visible
in Figure 8.11b, and four real nodes (0 : 1 : 0), (1 : 0 : 0), ( 3

4
√

6 : 1 : 0), and
(− 3

4
√

6 : 1 : 0) on the line w = 0. All of these nodes are crunodes, except
for (0 : 1 : 0) which is an acnode.

The evolute is a hypocycloid of degree degEΓ = 2 degNΓ + d∨ − 2d +
κ− ιE = 16 + 8 − 12 + 2 − 0 = 14, by (A.3). It has 8 real cusps in the affine
plane and no other real singularities.

The quadrifolium has 8 vertices and 20 diameters.

XII. The Dürer folium is a rational curve given by the equation(
x2 + y2) (2 (x2 + y2)− 1

)2 − x2 = 0.
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(a) The quadrifolium in blue with its
evolute in red.
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(b) The curve of normals in the (u, v)
chart.

Figure 8.11. The quadrifolium, its evolute, and its curve of normals.

It is a 3-circular curve. It has E6-singularities at the circular points, and two
crunodes and one A3-singularity in the affine plane. Its numerical characters
are d = 6, d∨ = 6, δ = 10, κ = 4, ι = 4, τ = 10, see row XII of Table 8.1.

Its evolute is a 3-circular epicycloid of degree degEΓ = 10, with 4 real
cusps in the affine plane, and no other real singularities.

Its curve of normals has degree degNΓ = 6 + 6 − 2(3 − 3 + 3) = 6
and 10 double points, all real. Of these, 7 are in the affine (u, v)-plane
and are crunodes, as can be seen in Figure 8.12b. Additionally the curve
of normals has three crunodes at the line at infinity w = 0. These are
(1 : 0 : 0), ( 3

2
√

6 : 1 : 0) and (− 3
2
√

6 : 1 : 0).
The Dürer folium has 4 vertices and 10 diameters.
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(a) The Dürer folium in blue with its
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(b) The curve of normals in the (u, v)
chart.

Figure 8.12. The Dürer folium, its evolute, and its curve of normals.

XIII. The nephroid is a rational curve given by the equation

4
(
x2 + y2 − 1

)3 − 27y2 = 0.
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It is a 3-circular curve, with an E6 singularity at each circular point. It
has two real ordinary cusps, two complex nodes, and no inflection points.
Its numerical characters are d = 6, d∨ = 4, δ = 10, κ = 6, ι = 0, τ = 3.
Klein–Schuh’s formula checks: 6 − 4 = 2(2 − 1) − 0 = 2.

The nephroid is an epicycloid, hence its evolute EΓ is again a nephroid
(turned by 90 degrees), hence also 3-circular. It has equation(

4
(
x2 + y2)− 1

)3 − 27x2 = 0.

We have degEΓ = 6, and its numerical characters are κ(E) = 6, ι(E) = 0,
and δE = 10 − 2 · 1 − 2 · 3 = 2.

Since the curve of normals is the dual of the evolute, we have degNΓ =
d∨ = 4, κ(N) = ι(E) = 0, and δN = δ(N) = 3, see column XIII of
Table 8.1. The curve of normals has three crunodes (we see two of them in
Figure 8.13, the third correspond to the line x = 0).

The nephroid has 2 vertices and 3 diameters.
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(a) The nephroid in blue with its evo-
lute in red.
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(b) The curve of normals in the (u, v)
chart.

Figure 8.13. The nephroid, its evolute, and its curve of normals.

XIV. Cayley’s sextic is a rational curve given by the equation

4
(
x2 + y2 − x

)3 − 27
(
x2 + y2)2 = 0.

It is 3-circular, with E6 singularities at the two circular points. It has two
other singular points: one crunode and one E6 singularity at the origin. Its
numerical characters are d = 6, d∨ = 4, δ = 10, κ = 6, ι = 0, τ = 3, see
column XIV of Table 8.1.

Its evolute EΓ is a nephroid, hence degEΓ = 6 and κ(E) = 6. Its dual,
the curve of normals of Γ, has degree 4 and 3 crunodes (we see one in the
affine (u, v)-plane).

Cayley’s sextic has 2 vertices and 3 diameters.
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(a) Cayley’s sextic in blue with its evo-
lute in red.
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Figure 8.14. Cayley’s sextic, its evolute, and its curve of normals.

XV. The ranunculoid is an epicycloid given by the equation

0 = − 52521875 + 93312x5 + x12 − 1286250y2 − 933120x3y2

− 32025y4 + 466560xy4 − 812y6 − 21y8 − 42y10 + y12

+ 6x10 (−7 + y2)+ 3x8 (−7 − 70y2 + 5y4)
+ 4x6 (−203 − 21y2 − 105y4 + 5y6)
+ 3x4 (−10675 − 812y2 − 42y4 − 140y6 + 5y8)
+ 6x2 (−214375 − 10675y2 − 406y4 − 14y6 − 35y8 + y10)
=
(
x2 + y2)6 + terms of lower degree.

This is a rational curve which is 6-circular, with cuspidal singularities
with multiplicity 6 and δ-invariant 15 at the two circular points, and addi-
tional five real cusps. Its numerical characters are d = 12, d∨ = 7, δ = 55,
κ = 15, ι = 0, τ = 15.

Its evolute EΓ is again a ranunculoid, hence 6-circular, and has degEΓ =
12. For the curve of normals, we get degNΓ = 7, κ(N) = 0, δN = δ(N) =
15, see column XV of Table 8.1. All of the nodes are real and we can see
12 of these in Figure 8.15b. Additionally, there are three nodes at the line
at infinity at the points (α : 1 : 0), where α runs through the roots of
ϕ(t) = 125t3 − 100t2 − 20t+ 8. Changing again to a different affine chart,
all of the nodes are visible in Figure 8.15c and we find that NΓ has 15
crunodes.

The ranunculoid has 5 vertices and 15 diameters.
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(b) The curve of normals
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Figure 8.15. The ranunculoid, its evolute, and its curve of normals.

8.4. Tables of invariants of the complexifications of the above
examples

Let Γ ⊂ R2 be a real, plane curve. Let C0 ⊂ P2
C denote the projective

closure of its complexification and ν : C → C0 the normalization map. We
are interested in studying the evolute EC and the curve of normals NC of
Γ and of C. In Table 8.1 we give the numerical characters (cf. Appendix A)
of the curve C, its evolute, and its curve of normals for each of the fifteen
examples in § 8.1. We set d := degC, d∨ := degC∨, δ := δ-invariant of
C0, κ := the degree of the ramification locus of ν, τ := δ-invariant of C∨,
ι := the ramification divisor of C → C∨, d(E) := degEC , d(N) := degNC ,
δ(E) := the δ-invariant of EC , κ(E) := the degree of the ramification
divisor of C → EC , τ(E) := the δ-invariant of EC , ι(E) := the degree of the
ramification divisor of C → E∨

C = NC . Since we have NC = E∨
C , by duality,

we have κ(E) = ι(N), ι(E) = κ(N), τ(E) = δ(N), and τ(N) = δ(E).
In Table 8.2 we list the actual complex singularities of the evolute and

the curve of normals, namely the number of singularities of types A1, A2,
D4, E6, and other. The last row indicates whether the curve of normals has
a point of multiplicity d corresponding to the line at infinity with respect
to Γ.

In Table 8.3 we list the terms appearing in the Klein–Schuh formula
(Theorem 3.5) for the evolute and its dual curve, the curve of normals, and
the number of vertices and diameters of Γ.
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Table 8.1. Table of invariants case-by-case.

I II III IV V VI VII VIII IX X XI XII XIII XIV XV

d 2 2 3 3 3 3 4 4 4 4 6 6 6 6 12
d∨ 2 2 3 4 6 6 6 6 6 6 8 6 4 4 7
δ 0 0 1 1 0 0 3 3 3 3 10 10 10 10 55
κ 0 0 1 0 0 0 0 0 0 0 2 4 6 6 15
τ 0 0 1 3 9 9 10 10 10 10 10 10 3 3 15
ι 0 0 1 3 9 9 6 6 6 6 8 4 0 0 0

d(E) 6 6 4 12 12 18 18 18 18 10 14 10 6 6 12
d(N) 4 4 4 7 7 9 10 10 10 6 8 6 4 4 7
δ(E) 10 10 3 55 54 135 136 136 136 36 78 36 10 10 55
κ(E) 6 6 2 15 17 27 24 24 24 12 18 12 6 6 15
τ(E) 3 3 3 15 14 27 36 36 36 10 21 10 3 3 15
ι(E) 0 0 2 0 2 0 0 0 0 0 0 0 0 0 0

Table 8.2. Table of actual (complex) singularities of the evolute and
the curve of normals. The two “other” singularities for VIII are singu-
larities with multiplicity 6, δ-invariant 18, and 2 branches: the merging
of two E6-singularities, and the two “other” singularities for XV are
singularities with multiplicity 6, δ-invariant 15, and 1 branch.

I II III IV V VI VII VIII IX X XI XII XIII XIV XV

A1(E) 4 4 0 39 37 105 112 84 112 24 60 18 2 2 20
A2(E) 6 6 0 13 17 21 24 16 24 12 18 12 2 2 5
E6(E) 0 0 1 1 0 3 0 0 0 0 0 2 2 2 0
other 0 0 0 0 0 0 0 2 0 0 0 0 0 0 2

A1(N) 2 2 1 12 8 21 30 30 30 10 21 10 3 3 15
A2(N) 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0
D4(N) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
E6(N) 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

d-uple(N) 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0

Table 8.3. The first four rows show the terms in the Klein–Schuh for-
mula, applied to EΓ and NΓ. The last two rows show the number of
vertices V (Γ) and the number of diameters D(Γ).

I II III IV V VI VII VIII IX X XI XII XIII XIV XV
d(E) 6 6 4 12 12 18 18 18 18 10 14 10 6 6 12
d(N) 4 4 4 7 7 9 10 10 10 6 8 6 4 4 7

Σ(mp(E) − rp(E)) 4 4 2 9 9 15 14 16 16 6 8 4 2 2 5
Σ(mq(N) − rq(N)) 2 2 2 4 4 6 6 8 8 2 2 0 0 0 0

V (Γ) 4 2 0 5 9 9 6 4 5 6 8 4 2 2 5
D(Γ) 2 1 0 10 4 13 14 2 2 9 20 10 3 3 15

9. Some further problems

Below we present very small sample of natural questions related to the
topic of the paper.
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(1) The basic technical tool which we use to approach Problems 2.4–2.7 formu-
lated in § 2 is to consider small deformations of real line arrangements. Line
arrangements themselves do not have evolutes in the conventional sense,
but probably such evolutes can be defined as certain limiting piecewise lin-
ear geometric objects. In general, our approach has a strong resemblance
with methods of tropical geometry. One wonders if it is possible to develop
a rigorous tropical geometry in the context of evolutes and their duals.

(2) Analog of the problem about the maximal number of ovals.

Problem 9.1. — For a given degree d, what is the maximal number
of connected components of the complements of R2 \ NΓ, R2 \ EΓ and
R2 \ (EΓ ∪ Γ)? (One can ask the same question for the complements in
RP 2.)

This question is an analog of the problem about the maximal number
of ovals for a plane curve of a given degree answered by Harnack’s theo-
rem, but since our curves are always singular it is better to ask about the
maximal number of components of the complement.

(3) Most of the examples of our florilegium are rational curves. This motivates
the question of the range of real characteristics of the evolutes and curves
of normals for real rational curves of a given degree. However, our basic
technique of smoothening products of lines does not immediately apply to
the case of rational curves.

(4) Notice that if we fix a real polynomial defining Γ then normals to Γ split into
two complementary classes – gradient-like and antigradient-like. Namely,
each normal is proportional to the gradient with either a positive or a
negative constant. If we change the sign of the defining polynomial then
we interchange gradient-like and anitgradient-like normals.

Problem 9.2. — Given d, what is the maximal number of normals of
one type which can pass through a given point?

By Proposition 4.3 the total number of real normals through a point can
reach d2, but it is not clear at the moment how many of them can belong
to one class.

(5) Are the leading coefficients in our lower bounds for the Problems 1–4 sharp?

Appendix A. Dual curves, envelopes, and evolutes over C.

In this appendix we consider curves in the complex projective plane.
We define dual and reciprocal curves, envelopes, evolutes, and curves of
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normals, and provide modern proofs for some of the formulas found in [7,
16, 30].

A.1. Dual curves

Let V be a complex vector space of dimension 3. Let C0 ⊂ P(V ) ∼= P2
C

be a plane curve, with normalization map ν : C → C0. Let VC → P
denote the Nash quotient extending VC0,sm → P1

C0
(1)|C0,sm and let K denote

the kernel. The dual curve C∨ ⊂ P(V )∨ := P(V ∨) is the image of the
morphism γ : C → P(V )∨ given by the quotient V ∨

C
∼=
∧2

VC →
∧2 P, or,

equivalently, by the quotient V ∨
C → K∨.

Let d denote the degree of C0 and d∨ that of its dual curve. Let κ (resp.
ι) denote the degree of the ramification locus of the map ν : C → C0 (resp.
γ : C → C∨). It was shown in [24, Ex. (3.5), p. 265] that

(A.1) 3 (d∨ − d) = ι− κ.

We also have the Plücker formulas [24, Ex. (3.9), p. 267]

d∨ = d(d− 1) − e

d = d∨ (d∨ − 1) − e∨

d∨ = 2d+ 2g − 2 − κ

d = 2d∨ + 2g − 2 − ι,

where e (resp. e∨) denotes the sum of the multiplicities of the Jacobian
ideal at the singular points of C0 (resp. C∨), and g denotes the geometric
genus of C0 (i.e., the genus of C). Note that the multiplicity of the Jacobian
ideal at a point of C0 is equal to the degree of the conductor plus the degree
of the ramification locus at that point. Since the degree of the conductor
is equal to 2δ, where δ is the sum of the δ-invariants of the singular points
of C0, the genus of C is equal to g =

(
d−1

2
)

− δ. In the case that C0 is a
Plücker curve, with δn nodes, κ cusps, ι inflection points, and τt double
tangents, we have e = 2(δn+κ) +κ = 2δn+ 3κ and similarly e∨ = 2τt+ 3ι.

The reciprocal curve of C0 ⊂ P(V ) was classically defined (cf. [30, Art. 80,
p. 63]) as a curve in the same plane P(V ), defined via a nondegenerate
quadric Q ⊂ P(V ). Let p ∈ C0 be a nonsingular point, let Tp denote the
tangent line, and let p∗ be the polar point of Tp with respect to Q. Define
C∗ ⊂ P(V ) as the closure of the set of points p∗. Then C∗ and C∨ are
isomorphic under the isomorphism V ∼= V ∨ given by Q.
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Consider a (local or global) parameterization of the curve C0,

r(t) := (r0(t) : r1(t) : r2(t)) : VC → OC(1).

Then the dual curve has a parameterization

s(t) : V ∨
C

∼=
2∧
VC →

2∧
P ∼= γ∗OC∨(1),

where

s(t) :=
2∧(

r(t)
r′(t)

)
= (r1r

′
2 − r′

1r2 : −r0r
′
2 + r′

0r2 : r0r
′
1 − r′

0r1) .

We get

s′(t) =
2∧(

r′(t)
r′(t)

)
+

2∧(
r(t)
r′′(t)

)
= (r1r

′′
2 − r′′

1 r2 : −r0r
′′
2 + r′′

0 r2 : r0r
′′
1 − r′′

0 r1) ,

since the first summand is 0. Therefore the dual of the dual curve is given
by

2∧(
s(t)
s′(t)

)
=
(
r0 (r′

1r
′′
2 − r′′

1 r
′
2) − r1 (r′

0r
′′
2 − r′′

0 r
′
2) + r2 (r′

0r
′′
1 − r′′

0 r
′
1)
)

(r0 : r1 : r2) .

Note that the multiplier is the determinant of the map VC → P2
C(1), i.e.,

the determinant of the matrix

W (r(t)) :=

 r0(t) r1(t) r2(t)
r′

0(t) r′
1(t) r′

2(t)
r′′

0 (t) r′′
1 (t) r′′

2 (t)

 .

This comes as no surprise, since it follows from the well known correspond-
ing identity for the cross product of vectors in 3-dimensional space:

(r ∧ r′) ∧ (r ∧ r′′) = (r ∧ r ∧ r′′)r′ + (r ∧ r′ ∧ r′′)r = (r ∧ r′ ∧ r′′)r.

In particular this reproves the classical fact that the dual of the dual curve
is the curve itself, provided that the determinant of W (r(t)) is not identi-
cally 0.
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A.2. Envelopes

Let P(V ) ∼= P2
C be the projective plane and C a smooth curve. Suppose

Z ⊂ C × P(V ) is a flat family of plane curves parameterized by C. Let
π : Z → C and ψ : Z → P(V ) denote the projection maps. The envelope of
Z is the branch locus D ⊂ P(V ) of the finite morphism ψ. Note that the
degree of ψ is equal to the number of curves in the family passing through
a given, general point. For a classical definition, see e.g. [30, Art. 84, p. 67].

Let C0 ⊂ P(V ) be a plane curve of degree d and geometric genus g.
Assume given an exact sequence of locally free sheaves on the normalization
C of C0, with F of rank 2, L of rank 1,

0 → L → VC → F → 0,

and consider the induced family of lines Z := P(F) ⊂ C × P(V ) parame-
terized by C. Set OZ(1) := OP(F)(1) = ψ∗OP(V )(1).

Proposition A.1. — The rational equivalence class of the envelope D
of Z is given by

[D] = ψ∗

((
π∗ (c1

(
Ω1
C

)
+ c1(F)

)
+ c1(OZ(1))

)
∩ [Z]

)
,

and its degree by

degD = 2g − 2 + deg c1(F) + degψ.

Proof. — The ramification locus of ψ is the subscheme of Z defined by
the 0th Fitting ideal F 0(Ω1

ψ). The exact sequence

0 → ψ∗P1
P(V )(1) ∼= VZ → P1

Z(1) → Ω1
ψ ⊗ OZ(1) → 0,

gives that the class of the ramification locus is equal to

c1
(
P1
Z(1)

)
∩ [Z] =

(
c1
(
Ω1
Z

)
+ 3c1(OZ(1))

)
∩ [Z].

From the standard exact sequences

0 → π∗Ω1
C → Ω1

Z → Ω1
Z/C → 0

and
0 → Ω1

Z/C → π∗F ⊗ OZ(−1) → OZ → 0
we deduce the formula for the class of D. The degree is equal to

degD = π∗

( (
π∗ (c1

(
Ω1
C

)
+ c1(F)

)
+ c1(OZ(1)))ψ∗c1

(
OP(V )(1)

))
∩ [Z]

)
,

hence to

degD =
( (
c1
(
Ω1
C

)
+ c1(F)

)
π∗c1 (OZ(1)) + π∗c1(OZ(1))2

)
∩ [C],
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from which the formula in the proposition follows, since the degree of the
Segre class s1(F) = π∗c1(OZ(1))2 is the degree of the finite map ψ. □

The surjection VC → F induces a surjection V ∨
C

∼=
∧2

VC →
∧2 F , hence

a morphism C → P(V ∨) = P(V )∨. Let C ′ denote the image of C.

Proposition A.2. — The dual curve of the envelope D ⊂ P(V ) of Z
is equal to the the curve C ′.

Proof. — Let the map VC → F be given (locally) by
(
v(t)
w(t)
)
. Then the

curve C ′ is parameterized (locally) by
∧2 (v(t)

w(t)
)

= v(t)∧w(t). Its dual curve
is given by

2∧(∧2 (v(t)
w(t)
)∧2 (v(t)

w(t)
)′

)
= (v ∧ w) ∧ (v′ ∧ w) + (v ∧ w) ∧ (v ∧ w′).

As in Subsection A.1, this gives

(v ∧ v′ ∧ w)w − (w ∧ v′ ∧ w)v + (v ∧ v ∧ w′)w − (w ∧ v ∧ w′)v,

which is equal to
(v ∧ w ∧ w′)v + (v ∧ v′ ∧ w)w,

since the two middle terms are 0.
A local parameterization of Z is given by (t, u) 7→ v(t)+uw(t). The map

VZ → P1
Z(1) is then given locally by the matrix v(t) + uw(t)

v′(t) + uw′(t)
w(t)

 ∼=

 v(t)
v′(t) + uw′(t)

w(t)


The ramification locus of q is the set of (t, u) satisfying

3∧ v(t)
v′(t)
w(t)

− u

3∧ v(t)
w(t)
w′(t)

 = 0.

With this value of u, we see that the ramification curve is parameterized
(locally) by

(v ∧ w ∧ w′)v + (v ∧ v′ ∧ w)w.

This shows that the dual of the curve C ′ is equal to D generically. In
addition to C

′∨, D can contain a finite number of normals to C (see the
argument in Example A.3), but since the dual of a line is a point, the dual
of D is equal to the curve C ′. □
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Example A.3. — Let C → C0 ⊂ P(V ) and

0 → K → VC → P → 0

be as in Subsection A.1. The degree of the branch curve D of ψ : P(P) →
P(V ) is equal to 2g− 2 + deg P + degψ = 2g− 2 + 2 degC∨. Now degC =
degC∨∨ = 2 degC∨ + 2g− 2 − ι, where ι is the (weighted) number of cusps
of C∨, hence equal to the (weighted) number of inflection points of C. This
corresponds to the well known fact the the branch locus of ψ is equal to the
curve C union its inflectional tangents. Locally we can see this as follows.
The map ψ : P(P) → P(V ) is given by (t, u) 7→ r(t) +ur′(t). Its differential
is given by

dψ =
(
r′(t) + ur′′(t)

r′(t)

)
.

So the rank of dψ is < 2 when u = 0 (corresponding to the points on the
curve C), and also on points (t0, u), for t0 such that r′′(t0) = 0 (these are
the points on an inflectional tangent). Since the bundle P is twisted, the
cusps will not appear here.

Example A.4. — Let C → C0 ⊂ P(V ) be a plane curve. Let Q ⊂ P(V )
be a nondegenerate quadric. Set F =: Coker(OC(−1) → V ∨

C ). Identify
V ∼= V ∨ via the quadric Q. Then the surjection VC → F gives a family of
lines P(F) ⊂ C × P(V ). As observed by Salmon [30, Art. 84, p. 67], the
reciprocal curve C∗ is the envelope of this family of lines.

Example A.5. — A caustic is the envelope of rays either reflected or
refracted by a curve.

A.3. Evolutes

Fix a line L∞ ⊂ P(V ) and a binary quadratic form giving a degree 2
subscheme Q∞ ⊂ L∞. Let C0 ⊂ P(V ) be a plane curve, with normalization
map ν : C → C0. Let E denote the Euclidean normal bundle of C0 with
respect to L∞ and Q∞, defined on C [25, Section 4]. Recall that we have
E ⊆ K∨ ⊕ OC(1), where K = Ker(VC → P) is as in Subsection A.1. If
L∞ = P(V ′) and V ′∨ ∼= V ′ is the isomorphism given by Q∞, then the map
VC → K∨ ⊕ OC(1) defined by VC → V ′

C
∼= V ′∨

C → K∨ and VC → OC(1)
factors via the surjection VC → E .

Consider the exact sequence

0 → Q → VC → E → 0.
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Define the curve of normals NC ⊂ P(V )∨ to be the image of the morphism
C → P(V )∨ given by the quotient V ∨

C
∼=
∧2

VC →
∧2 E . The evolute

EC ⊂ P(V ) ∼= P(V )∨∨ of C is the dual curve of NC (cf. [30, Art. 99, p. 82]).
By Proposition A.2, the envelope of the family of normals P(E) ⊂ C×P(V )
is equal to EC union its inflectional tangents (cf. Example A.3).

Remark A.6. — Assume the quadric Q∞ ⊂ L∞ is the restriction of a
nondegenerate quadric Q ⊂ P(V ). Let p ∈ C be a nonsingular point. By
definition, the normal Np is the line between the point p and the polar
of the intersection Tp ∩ L∞ with respect to Q∞. But this is the same as
the line between the point p and the polar point p∗ of Tp with respect
to Q. It follows that the normal to C at p is the same as the normal to the
reciprocal curve C∗ at p∗ (cf. [30, Art. 109, p. 93]). We conclude that the
evolute of the reciprocal curve C∗ is the same as the evolute of C (cf. [10,
Theorem 5.2, p. 123]).

The degree of NC is equal to the degree of c1(E). By Equation (A.1) the
degree of EC satisfies

(A.2) 3(degEC − degNC) = ι(N) − κ(N),

where κ(N) is the (weighted) number of cusps and ι(N) the (weighted)
number of inflections of NC . Note that ι(N) = κ(E) and κ(N) = ι(E). By
Proposition A.1, the degree of the envelope of P(E) is equal to

2g − 2 + deg c1(E) + degψ = 2 degNC + 2g − 2 = degEC + ι(E),

where ψ : P(E) → P(V ) and ι(E) is the (weighted) number of inflectional
pooints on EC . This is the same as we get from one of the Plücker formulas
for the class of the curve NC :

degEC = 2 degNC + 2g − 2 − κN = 2 degNC + 2g − 2 − ι(E).

Since NC and EC have the same geometric genus g as C, the same formula
applied to the curve C0 gives

2g − 2 = d− 2d∨ + ι,

hence we get

degEC = 2 degNC + d∨ − 2d+ κ− ι(E).

Assume C0 is in generic position with respect to L∞ andQ∞, i.e., C0∩L∞
is equal to d distinct points, none contained in Q∞. Then, by [25, Prop. 8],
E = K∨ ⊕ OC(1), hence

degNC =
(
c1(P) + c1 (OC(1))

)
∩ [C] = d∨ + d,

where d := degC0 and d∨ := degC∨.
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Remark A.7. — For each p ∈ C0 ∩ L∞, we have Np = L∞. Hence L∞ ∈
NC is an ordinary d-uple point. A way to understand the degree of the
curve of normals is the following: Let q ∈ Q∞ ⊂ L∞. The degree of NC is
the number of normals to C passing through q. Since q⊥ = q, the normal
from a point p ∈ C0, p /∈ L∞, through q is the same as the tangent at that
point. To the number d∨ of such normals, we must add d times L∞, so we
do get d∨ + d for the degree of NC (cf. [30, Art. 111, p. 95].

When C0 is not necessarily in generic position with respect to L∞,
Salmon gives the formula degNC = d∨ + d− f − g, where f is the number
of times the curve passes through a circular point and g is the number of
times the curve is tangent to L∞ [30, Art. 111, p. 94–95]. This formula is
made precise in [19, Theorem 8, p. 3]. Indeed, if p ∈ C∩Q∞, but L∞ ̸= Tp,
then Np = Tp ̸= L∞, so the contribution to degNC from C∩L∞ is d−1 in-
stead of d. If L∞ = Tp for some p ∈ C, then the number of other tangents
to C through p is d∨ − 1 instead of d∨. Both these phenomena produce
an inflectional tangent of the evolute EC , as explained in [30, Art. 108,
112, p. 96], so that Salmon’s f + g is equal to ιE . In both cases, we have
E ⊊ K∨ ⊕ OC(1), and ιE = deg c1(K∨) + deg c1(OC(1)) − deg c1(E). There-
fore, under the assumption that the intersections of C with L∞ are not
worse than described above, we get the following formulas for the degrees
of NC and EC .

Proposition A.8. — Let C0 be a plane curve of degree d and class d∨.
Let NC denote its curve of normals and EC its evolute. Let ι(E) denote the
(weighted) number of inflections on EC . Then we have, as in [30, Art. 113,
p. 96],

degNC = d+ d∨ − ιE and degEC = 3d+ ι− 3ι(E).

The number of cusps of EC is equal to, as in [30, Art. 113, p. 97],

κ(E) = 6d− 3d∨ + 3ι− 5ι(E).

Proof. — The last formula follows from Equation (A.2). □

In the case that the curve is singular at a circular point, or touches the
line at infinity at a circular point, these formulas must be modified. If ιE
denotes the weighted number of inflection points on EC , the formula

(A.3) degEC = 2 degNC + d∨ − 2d+ κ− ι(E)
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still holds. For the degree of the curve of normals, it was shown in [19,
Theorem 8, p. 3] that we have

(A.4) degNC

= d+ d∨ −
∑

p∈C0 ∩L∞

(ip(C0, L∞) −mp(C0)) −mq1(C0) −mq2(C0),

where ip denotes intersection multiplicity, mp denotes multiplicity, and
Q∞ = {q1, q2}.

Corollary A.9. — Assume C0 is in general position with respect to
L∞ and Q∞. Then the number of cusps of EC that lie in the affine plane
P(V ) \ L∞ is equal to

κ(E) − d = 5d− 3d∨ + 3ι.

Proof. — By assumption, ι(E) = 0. If p ∈ C0 ∩ L∞, then the evolute
has a cusp at p⊥ ∈ L∞, and L∞ is the tangent to the evolute at this point
(see [16, p. 162]). □

In the situation of the corollary, if q ∈ L∞, then the tangents to EC
passing through q are the d∨ normals to C0 corresponding to the tangents
to C0 through q⊥, plus the line L∞ counted one time for each cusp of EC
on L∞. Hence the class of EC is d∨ + d, which is, as it must be, equal to
degree of its dual curve NC .

Corollary A.10. — Assume NC has no cusps (i.e., κ(N) = ι(E) = 0)
and that all singular points of NC other than the d-multiple point are
nodes. Then the number δN of nodes of NC , i.e., the number of (complex)
diameters of C0, is equal to

δN = 1
2

(
d∨2 + 2d∨d− 4d∨ − κ

)
,

in agreement with [16, Ex. 6, p. 163].
If in addition C0 = C is nonsingular, we get

δN =
(
d
2
) (
d2 + d− 4

)
,

which agrees with the formula for (half of) the “bottleneck degree” BND(C)
in [8, Cor. 2.11(1)].

Proof. — The delta invariant of NC is equal to(
d∨+d−ι(E)−1

2
)

− g =
(
d∨+d−ι(E)−1

2
)

− 1
2 (d∨ − 2(d− 1) + κ) .
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When ι(E) = 0, this gives

δN = 1
2

(
d∨2 + 2d∨d− 4d∨ + d(d− 1) − κ

)
−
(
d

2

)
= 1

2

(
d∨2 + 2d∨d− 4d∨ − κ

)
,

since the contribution to the delta invariant from the d-uple point is
(
d
2
)
.

When X0 is nonsingular, we have κ = 0 and d∨ = d(d− 1). □

Note that when C0 has cusps (κ ̸= 0), then the formula for δN is not
expressable as a polynomial in only the degree and class of C0, but that if
κ = 0 (e.g., if C0 is a general projection of a smooth curve in Pn, n ⩾ 3),
then it is.

Corollary A.11. — Assume C0 is in general position with respect to
L∞ and Q∞ and has only δ ordinary nodes and κ cusps as singularities.
Then

degNC = d2 − 2δ − 3κ
degEC = 3d(d− 1) − 6δ − 8κ
κ(E) = 3(d(2d− 3) − 4δ − 5κ).

If in addition C0 is nonsingular, then the number of (complex) nodes δE
of EC is

δE = d
2 (3d− 5)

(
3d2 − d− 6

)
.

Proof. — The δ-invariant of EC is equal to(degEC−1
2

)
− g =

(3d+ι−ι(E)−1
2

)
− 1

2 (d∨ − 2d+ 2 + κ) .

When C0 is nonsingular and ι(E) = 0, this gives(3d(d−1)−1
2

)
−
(
d−1

2
)

= d
2
(
9d3 − 18d2 − d+ 12

)
.

Assuming that all the cusps of EC are ordinary and that the remaining
singular points are ordinary nodes, we get for the number of nodes of EC ,

δE = d
2
(
9d3 − 18d2 − d+ 12

)
− 3d(2d− 3) = d

2 (3d− 5)
(
3d2 − d− 6

)
. □

Example A.12. — Let C0 ⊂ P(V ) be a nodal cubic (in general position
with respect to L∞ and Q∞). Then degC = d = 3, δ = 1, ι = 3, and
degC∨ = d∨ = 4. Its curve of normals NC has degree d+d∨ = d2 −2δ = 7,
and its evolute EC = N∨

C has degree 3d + ι = 9 + 3 = 12. The number of
diameters of X0 is

δN = 1
2 (16 + 24 − 16) = 12.
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The number of cusps of EC is

κ(E) = 6d− 3d∨ + 3ι = 18 − 12 + 9 = 15.

The (complex) vertices of C are the cusps of EC that do not lie on L∞.
Hence, the number of vertices is κE − d = κE − 3 = 12. Since δE + κE =
1
2 (11 · 10) = 55, we get δE = 40.

Example A.13. — Let C0 ⊂ P(V ) be a tri-cuspidal quartic (in general
position with respect to L∞ and Q∞). Then degC = d = 4, δ = 0, κ = 3,
τ = 1, ι = 0, and degC∨ = d∨ = 4 · 3 − 3 · 3 = 3. (This curve is the dual
curve of a nodal cubic.) Its curve of normals NC has degree d + d∨ = 7,
and its evolute EC = N∨

C has degree 3d+ ι = 12 + 0 = 12. The number of
(complex) diameters of C0 is

δN = 1
2 (9 + 24 − 12 − 3) = 9.

The number of cusps of EC is

κ(E) = 6d− 3d∨ + 3ι = 24 − 9 + 0 = 15.

The (complex) vertices of C are the cusps of EC that do not lie on L∞.
Hence, the number of (complex) vertices is κ(E) − d = 15 − 4 = 11. Since
δE + κ(E) = 1

2 (11 · 10) = 55, we get δE = 40.

Remark A.14. — We observed in Remark A.6 that the evolute of a curve
is equal to the evolute of its reciprocal curve. Since the reciprocal curve is
just a realization in the original plane of the dual curve, this explains why
the evolutes of the curves of Examples A.12 and A.13 are “equal”.

Example A.15. — Let C0 ⊂ P(V ) be a nodal, rational curve of degree d,
in general position with respect to L∞ and Q∞. Then C0 has δ =

(
d−1

2
)

nodes, κ = 0 cusps, ι = 3(d− 2) inflection points, and τ = (d− 2)(2d− 3)
double tangents.

The degree of the curve of normals is degNC = 3d − 2. By genericity,
the curve of normals has no cusps: κ(N) = 0. The curve of normals has
one ordinary d-uple point and δN = 2(d− 1)(2d− 3) nodes, which are the
(complex) diameters of C0. The degree of the evolute is degEC = 6(d− 1).
The number of cusps of the evolute is κ(E) = 3(3d− 4), of which d lie on
L∞. Hence the number of (complex) vertices of C0 is κ(E) −d = 4(2d− 3).
The number of nodes of the evolute is δE = 2(3d− 4)(3d− 5).

Example A.16. — Choose coordinates x, y, z in P(V ) such that L∞ :
z = 0. Let (x(t), y(t)) be a local parameterization of the affine curve C0 ∩
(P(V ) \L∞) ⊂ A2

C. Assume Q∞ : x2 +y2 = 0. Then the normal vectors are
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(y′(t),−x′(t)), and hence the curve of normals (in the dual plane) is given
by (in line coordinates)

V ∨
C

∼=
2∧
VC →

2∧(
x(t) y(t) 1
y′(t) −x′(t) 0

)
=
(
x′(t) : y′(t) : −x(t)x′(t) − y(t)y′(t)

)
.

The evolute is obtained by taking the dual of the curve of normals:
2∧(

x′(t) y′(t) −x(t)x′(t) − y(t)y′(t)
x′′(t) y′′(t) −x(t)x′′(t) − x′(t)2 − y(t)y′′(t) − y′(t)2

)
,

which gives(
x(x′y′′ − x′′y′) − y′

(
x′2 + y′2

)
: y(x′y′′ − x′′y′) + x′

(
x′2 + y′2

)
: x′y′′ − x′′y′

)
.

Appendix B. Formulas of evolutes and curves of normals

We collect here the polynomials describing the evolutes and curves of nor-
mals associated to the examples presented in Section 8.

I

For the rotated rotated ellipse given by

(x+ y)2 + 4 (y − x)2 − 1 = 0

we have that its evolute satisfies the equation

− 729 + 8000x6 + 28800x5y + 4860 y2 + 4752 y4 + 8000 y6

+ 72xy
(
−20 y2 + 9

)2 + 576x3y
(
124 y2 − 45

)
+ 48x4 (1220 y2 + 99

)
+ 12x2 (4880 y4 − 5688 y2 + 405

)
= 0,

and its curve of normals is given by

9 + 9u4 + 96 uv2 − 80 v2 − 2u2 (40 v2 + 9
)

= 0.
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II

For the hyperbola given by

(x+ y)2 − 4 (y − x)2 − 1 = 0

we find that the evolute satisfies the equation

1728x5 (x+ 10 y) + 320x3 (308 y3 − 225 y
)

+ 144x4 (436 y2 − 375
)

+ 120xy
(
−12 y2 + 25

)2 + 36 y2 (48 y4 − 1500 y2 + 625
)

+ 12x2 (5232 y4 − 4600 y2 + 1875
)

− 15625 = 0,

and its curve of normals is given by

25u4 − 48u2v2 + 160uv2 − 50u2 − 48v2 + 25 = 0.

III

For the cissoid given by(
x2 + y2) x− 4 y2 = 0

its evolute satisfies the equation

27 y4 + 4608 y2 + 32768x = 0,

and its curve of normals

36u3v + uv3 + 12u2v2 + 64u2 + 96uv + 128 = 0.

IV

For the nodal cubic(
x2 − y2) (x− 1) +

(
x2 + y2)

5 = 0

we find that the evolute satisfies the equation

− 488281250 y12 + 46875 y10 (30575x2 − 152140x+ 383802
)

− 1875 y8(
730625x4 − 7387250x3 + 23656175x2 − 43852680x+ 76534938

)
+ 625 y6 (629375x6 − 10092000x5 + 84123600x4 − 410620540x3

+911163303x2 − 935543844x+ 779972058)

+ 9 y4(3515625x8 − 45781250x7 − 137328125x6 + 7169212500x5
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− 60395290625x4 + 203741224750x3 − 293265283275x2

+ 149181852960x− 23028463296
)

− 3456 y2(78125x8 + 212500x7

− 17741875x6 + 168959000x5 − 720050525x4

+ 1581501920x3 − 1757722701x2 + 922580820x− 181515600
)

− 552960x3 (25x3 − 195x2 + 507x− 245
)2 = 0

and its curve of normals is given by

576u7 + 2640u6v + 4225u5v2 − 2208u5 + 2750u4v3 − 7800u4v

+ 625u3v4 − 8325u3v2 + 2016u3 − 2750u2v3 + 4920u2v

− 625uv4 + 3000uv2 + 720v = 0.

V

For the generic cubic in the Weierstraßform

y2 + x(x− 2)(x+ 1) = 0

we have that its evolute satisfies the equation

+ 800000 − 76800x10 − 18432x11 − 964467 y12 − 19680000 y2

− 135854400 y4 − 64x9 (243 y2 − 1864
)

+ 3x8 (2187 y4 + 50784 y2

+236800) − 25779744 y8 + 48x7 (18315 y4 + 98324 y2 − 5152
)

− 16x6 +
(
784035 y4 + 290784 y2 + 154400

)
− 24x5 (40785 y6

−2337974 y4 + 878400 y2 − 8768
)

− 54925856 y6

− 6x4 (45927 y8 − 1058636 y6 + 28232696 y4 − 5225040 y2 − 652800
)

+ 32x3 (104841 y8 + 842479 y6 + 5626392 y4 + 80640 y2 − 2000
)

− 1113480 y10 + 24xy2 (136809 y8 + 1320150 y6 + 7282976 y4

+2225120 y2 + 3956000
)

+ 48x2 (10935 y10 − 677964 y8

−2140874 y6 − 666748 y4 − 1444800 y2 − 60000
)

= 0,

and its curve of normals is given by

20u3 + 40u5 + 12u7 + 8u2v + 112u4v − 24u6v + 20uv2

+ 4u3v2 − 24u5v2 − 8v3 − 12u2v3 + 36u4v3 + 27u3v4 = 0.
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VI

For the general cubic(
x2 − y2) (x− 1) + 1

64 = 0

we find that the evolute satisfies the equation
285538540233809 − 347892350976 x15 + 12626967476170688 y2

+ 128036161928610816 y4 − 18027998121295872 y6

− 3053418754693660672 y8 + 6058527426255781888 y10

− 4845664041659531264 y12 + 1797362861832404992 y14

− 258632622643609600 y16 + 2147483648 x14
(

512 y4 − 1536 y2 − 16191
)

+ 1073741824 x13 (101376 y4 − 4914234 y2 − 764287
)

+ 1048576 x12(
15310258176 y6 − 48055451648 y4 + 120010568704 y2 + 3866199417

)
− 2097152 x11 (108027969536 y6 − 358901725184 y4 + 536921704448 y2

−32630561909) − 1048576 x10
(

169114337280 y8 − 1736199897088 y6

+ 4786706368512 y4 − 5011201864935 y2 + 619329002179
)

+ 65536 x9
(

26062616526848 y8 − 138635522375680 y6 + 284762194624512 y4

− 215834088591072 y2 + 34518636868591
)

= 0

and its curve of normals is given by
u9 + 256 u8v + 16896 u7v2 + 65792 u6v3 + 98304 u5v4 + 65536 u4v5 + 16384 u3v6

+ 1009 u7 + 3328 u6v − 43008 u5v2 − 126976 u4v3 − 131072 u3v4 − 65536 u2v5

− 16384 u v6 − 1973 u5 − 3328 u4v + 44544 u3v2 + 64768 u2v3

+ 32768 u v4 + 899 u3 − 256 u2v − 14336 u v2 + 512 v3 = 0.

VII

For the ampersand curve given by the equation

(−1 + x)(−3 + 2x)
(

−x2 + y2

2

)
− 4

(
−2x+ x2 + y2

2

)2

= 0

we find that the evolute satisfies the equation
+
(

14189132952974131200000 y
16 + 170398879576067211264000 y

14 − 381211747138806044590080 y
12

+ 1316567506701481365510144 y
10 − 555746023848741721855488 y

8 + 2376500257894024307732640 y
6

+ 1079660070840409026907104 y
4 − 232367367731112288440676 y

2 − 72453454503241228456644
)

x
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+
(

516470220914688000000 y
16 − 165122138814001643520000 y

14 + 188958757229861621760000 y
12

− 2696999420593780028467200 y
10 + 1190920572545964905977344 y

8 − 6981194929097981792227488 y
6

+ 1259188508355594228237792 y
4 + 2113492574765255484253248 y

2 + 368436954348821351723724
)

x
2

+
(

− 16514783351105126400000 y
14 + 161133138253823016960000 y

12 + 1477642254834900016742400 y
10

+ 492689269773585678532608 y
8 + 5636759081952628005950720 y

6 − 11030931021992461708485024 y
4

− 5131962297288198923626224 y
2 − 749312183644081938387648

)
x

3

+
(

9139138881454080000000 y
14 + 156102041598933565440000 y

12 + 464954283105194856038400 y
10

+ 895893179712472723166208 y
8 + 3354625992301094644254336 y

6 + 23662827441239781026569824 y
4

+ 4579931612162068642790016 y
2 + 1215111170084394604620528

)
x

4

+
(

− 56510219189315174400000 y
12 − 1318818013502133583872000 y

10 − 2973429851944718044200960 y
8

− 13204872129378101105256960 y
6 − 22590031523777430946108800 y

4 − 666183695858358116066496 y
2

− 1506839814034251881049792
)

x
5 +
(

13339555563405312000000 y
12 + 385976265612887900160000 y

10

+ 2795509334576630486016000 y
8 + 11346560638136539363105280 y

6 + 11219652644662107620252928 y
4

− 3706401234038334720496128 y
2 + 1564154216003823193668160

)
x

6

+
(

− 64119262672325836800000 y
10 − 868539197495937761280000 y

8 − 3747819321749535408230400 y
6

− 2036013473969817278971392 y
4 + 5543028047756058225863424 y

2 − 1380102793606261280311296
)

x
7

+
(

10390802432311296000000 y
10 + 198593670536522588160000 y

8 + 93878636823930729369600 y
6

− 1041849832068904881193728 y
4 − 4588956519916286903657472 y

2 + 1045450945995318948120576
)

x
8

+
(

− 41419320989589504000000 y
8 + 15411963692995633152000 y

6 + 926371061110394275829760 y
4

+ 2628618143845183404392448 y
2 − 691507745750015024807936

)
x

9

+
(

5345655877287936000000 y
8 + 53036338585741885440000 y

6 − 328074665789973717504000 y
4

− 1078016613583757824819200 y
2 + 396550012793183158714368

)
x

10

+
(

− 17310072284754739200000 y
6 + 59677698364616171520000 y

4 + 303544424692845998899200 y
2

− 198357132132989480730624
)

x
11 +

(
1880330535124992000000 y

6 + 9361119428837498880000 y
4

− 49456225953852044083200 y
2 + 85614841611796218904576

)
x

12

+
(

454041885818880000000 y
4 + 2768688090835845120000 y

2 + 9770202768808083456000
)

x
14

+
(

− 4717469091314073600000 y
4 − 1297725291667390464000 y

2 − 31529832219803878686720
)

x
13

+
(

69009662803968000000 y
2 + 479273840698982400000

)
x

16

+
(

− 789841921808793600000 y
2 − 2441112028320890880000

)
x

15

+ 47925795225600000 x
17 (−1347 + 115 x) + 4591488798441627367329 − 4172637165060096000000 y

18

+ 20569725762943057920000 y
16 − 165200704420888874188800 y

14 + 427788300003766762512384 y
12

− 623038688469087703386624 y
10 + 325739861292108362174208 y

8 − 311109184315558946826424 y
6

− 325085551620906170070891 y
4 − 43158007590429842976492 y

2 = 0
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and its curve of normals is given by

87362u10 + 615296u9v + 1715408u8v2 + 2426304u7v3

+ 1849632u6v4 + 725760u5v5 + 115200u4v6

− 364287u8 − 1181120u7v − 1324760u6v2 − 242464u5v3

+ 560784u4v4 + 362880u3v5 + 57600u2v6

+ 721335u6 + 1284976u5v

+ 816008u4v2 + 306720u3v3 + 255536u2v4

+ 120960uv5 + 19200v6 − 456152u4 − 305200u3v

− 215984u2v2 − 124800uv3 − 37632v4 + 31692u2

− 2592uv + 13248v2 = 0.

VIII

For the cross curve with equation

x2y2 − 4x2 − y2 = 0

we find that the evolute satisfies the equation

0 = 729 x10y8 + 2916 x8y10 − 15552 x10y6 − 63909 x8y8 − 15552 x6y10

+ 193536 x10y4 + 813888 x8y6 + 405162 x6y8 + 255744 x4y10

− 1048576 x12 − 5259264 x10y2 − 4760448 x8y4 − 5609600 x6y6

− 5464338 x4y8 − 697344 x2y10 − 1048576 y12

+ 5898240 x10 + 39121920 x8y2 + 40709376 x6y4

+ 68111424 x4y6 + 17387325 x2y8

+ 25896960 y10 − 93229056 x8 − 530841600 x6y2 − 374813568 x4y4

− 231180480 x2y6 − 350999001 y8 + 182255616 x6

+ 2202992640 y2x4 + 3063536640 x2y4 + 2416483584 y6

− 1560674304 x4 − 10510663680 x2y2

− 9406347264 y4 − 2293235712 x2 + 5159780352 y2 − 764411904,

and its curve of normals is given by

4u10 + u8 − 27u6v2 + 3u4v4 − u2v6 − 32u6 + 36u4v2

+ 12u2v4 − 8u4 − 72u2v2 + 64u2 + 16 = 0.
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IX

For the bean curve with equation

x4 + x2y2 + y4 − x(x2 + y2) = 0
we find that the evolute satisfies the equation

256 x
2
(

864 x
5 − 2160 x

4 + 3096 x
3 − 2012 x

2 + 900 x − 351
)2

(2 x − 1)3

+96 y
2
(

429981696 x
16 − 3171115008 x

15 + 11776720896 x
14 − 28201623552 x

13

+ 48035275776 x
12 − 61103835648 x

11 + 59493307392 x
10 − 44961636096 x

9

+ 26472116480 x
8 − 12011650656 x

7 + 4092880800 x
6 − 997573744 x

5 + 137853588 x
4

+ 20304720 x
3 − 18209205 x

2 + 3765528 x − 328536
)

+3 y
4
(

51355938816 x
14 − 314140446720 x

13 + 1115812205568 x
12 − 2938568564736 x

11

+ 5660819149824 x
10 − 7895670587136 x

9 + 8029804108608 x
8

− 5971068755968 x
7 + 3223972150400 x

6 − 1244073808976 x
5

+ 346985190244 x
4 − 79435551768 x

3 + 16250152905 x
2 − 1968586416 x + 96367968

)
y

6
(

385024720896 x
12 − 2016306597888 x

11 + 5162451812352 x
10 − 10385947063296 x

9

+ 19309670210304 x
8 − 28682276426496 x

7 + 30444692917312 x
6 − 22032469027008 x

5

+ 10353776994672 x
4 − 2993483501120 x

3

+ 539350526268 x
2 − 82761154920 x + 11144688831

)
y

8
(

610314227712 x
10 − 2573903278080 x

9 + 4143727632384 x
8 − 3206575558656 x

7

+ 3055349272320 x
6 − 8069718410496 x

5 + 12228895076352 x
4 − 9177621332544 x

3

+ 3482787853200 x
2 − 561650718672 x + 10389105792

)
y

10
(

739237072896 x
8 − 2464365441024 x

7 + 2094082025472 x
6

+ 2994602876928 x
5 − 6260831013888 x

4 + 3286274637312 x
3

+ 412614261120 x
2 − 896116472448 x + 215802164448

)
+y

12
(

631825256448 x
6 − 1483045687296 x

5 − 223384200192 x
4

+ 3164174807040 x
3 − 3115413377280 x

2 + 1214872899840 x − 186640115968
)

+y
14
(

411913506816 x
4 − 621021966336 x

3 − 4616331264 x
2 + 88194438144 x + 37629709056

)
+y

16
(

170201088000 x
2 − 92565504000 x − 20777472000

)
+ 46656000000 y

18 = 0,

and its curve of normals is given by
4u2 + 4u4 + 24u6 + 20u8 + 4u10 − 8uv + 68u3v + 104u5v + 56u7v

− 4u9v + 136u2v2 + 63u4v2

+ 51u6v2 − 55u8v2 + 64uv3 + 40u3v3 + 120u5v3 − 20u7v3 + 32v4 + 276u2v4

+ 312u4v4 + 220u6v4 + 336uv5 + 336u3v5 + 336u5v5

+ 144v6 + 144u2v6 + 144u4v6 = 0.
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X

For the trifolium with equation(
x2 + y2)2 − x3 + 3xy2 = 0

we find that the evolute satisfies the equation
128000 x10 + 614400 x9 +

(
603136 y2 + 1175040

)
x8

+
(
−110592 y2 + 684288

)
x7

+
(
1230848 y4 − 1520640 y2 − 1632960

)
x6

+
(
−3280896 y4 − 684288 y2 − 3452544

)
x5

+
(
1288192 y6 + 4976640 y4 + 14136768 y2 − 1527984

)
x4

+
(
−5148672 y6 − 3421440 y4 + 6905088 y2 + 2344464

)
x3

+
(
656384 y8 + 8156160 y6 − 17589312 y4 − 3055968 y2 + 3306744

)
x2

+
(
−1806336 y8 − 2052864 y6 + 10357632 y4 − 7033392 y2)x

+ 123904 y10 + 483840 y8 + 482112 y6 − 1527984 y4 + 3306744 y2 − 1594323 = 0,

and its curve of normals is given by

81u6 − 108u5v − 540u4v2 + 384u3v3 + 1024u2v4

− 486u4 + 216u3v − 1080u2v2

− 1152uv3 + 1024v4 + 729u2 + 324uv − 540v2 = 0

XI

For the quadrifolium given by the equation(
x2 + y2)3 − 4x2y2 = 0

we find that the evolute satisfies the equation
746496x14 + 5085504x12y2 + 14983137x10y4 + 24747363x8y6 + 24747363x6y8

+ 14983137x4y10 + 5085504x2y12 + 746496y14 − 1741824x12 + 6796224x10y2

+ 40595580x8y4 + 64220040x6y6 + 40595580x4y8 + 6796224x2y10 − 1741824y12

+ 2598912x10 − 8320320x8y2 + 38078208x6y4 + 38078208x4y6 − 8320320x2y8

+ 2598912y10 − 4220928x8 + 66646080x6y2 − 168386688x4y4 + 66646080x2y6

− 4220928y8 + 4338688x6 − 19968000x4y2 − 19968000x2y4 + 4338688y6

− 3228672x4 + 11126784x2y2

− 3228672y4 + 2555904x2 + 2555904y2 − 1048576 = 0,
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and its curve of normals is given by

64u6v2 − 432u4v4 + 729u2v6 − 64u6 + 336u4v2 − 1296u2v4 + 729v6

+ 128u4 + 336u2v2 − 432v4 − 64u2 + 64v2 = 0.

XII

For the Dürer folium given by the equation(
x2 + y2) (2 (x2 + y2)− 1

)2 − x2 = 0

we find that the evolute satisfies the equation

9000000x10 + 45432000x8y2 + 91733184x6y4 + 92607552x4y6

+ 46743552x2y8 + 9437184y10 − 330000x8 − 2364960x6y2

− 5116176x4y4 − 4457472x2y6 − 1376256y8 − 31175x6 − 14424x4y2

+ 57792x2y4 + 40960y6 + 1149x4

− 11868x2y2 + 1536y4 + 27x2 − 48y2 − 1 = 0,

and its curve of normals is given by

16u4v2 − 432u2v4 + 2916v6 − u4 + 41u2v2 − 540v4 − u2 + 25v2 = 0.

XV

For the ranunculoid we find that the evolute satisfies the equation

823543x12 + 4941258x10y2 + 12353145x8y4 + 16470860x6y6

+ 12353145x4y8 + 4941258x2y10 + 823543y12 − 17647350x10

− 88236750x8y2 − 176473500x6y4 − 176473500x4y6 − 88236750x2y8

− 17647350y10 − 4501875x8 − 18007500x6y2 − 27011250x4y4

− 18007500x2y6 − 4501875y8 − 88812500x6 − 266437500x4y2

− 266437500x2y4 − 88812500y6 − 7290000000x5 + 72900000000x3y2

− 36450000000xy4 − 1787109375x4 − 3574218750x2y2 − 1787109375y4

− 36621093750x2 − 36621093750y2 − 762939453125 = 0,
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and its curve of normals is given by

78125u7 − 109375u6v + 35000u4v3 − 2800u2v5 + 64v7 − 703125u5

− 328125u4v + 70000u2v3 − 2800v5 − 390625u3 − 328125u2v + 35000v3

+ 390625u− 109375v = 0.
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