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Abstract. Below we show that for any positive integer k, there exists a pos-
itive integer N(k) such that any exponential sum of order (at most) k either

has at most N(k) real zeros or infinitely many. Moreover, we show that the

set of exponential sums of order (at most) k with more than 2k − 3 real zeros
has real codimension 1 in the set of all all exponential sums of order (at most)

k.

1. Introduction

Consider a linear homogeneous differential equation

y(k) + ck−1y
(k−1) + ...+ c0y = 0, (1)

with arbitrary complex constant coefficients ck−1, . . . , c0.

The main motivation of the present study is the conjecture of J. H. Loxton
and A. J. van der Poorten from 1977 (Conjecture 1′ of [17]) claiming that for any
positive integer k, there exists a constant µk such that any non-trivial solution of
any equation (1) either has at most µk integer zeros or it has infinitely many integer
zeros.

This conjecture was first settled by W. M. Schmidt in 1999, see [23] and also
by J. H. Evertse and H. P. Schlickewei, see [7]. Apparently the best known at the
moment upper bound for µk was obtained in [2] and is given by

µk < ee
k

√
11k

.

In Problem 7 of [8], the second author jointly with R. Fröberg asked whether
there exists an analog of the latter result of Schmidt-Evertse-Schlickewei for the
set of real roots of non-trivial solutions of (1). The main purpose of this paper is
to provide a positive answer to the latter question together with some additional
information.

Given a function y(x) = p1(x)eλ1x + · · · + p`(x)eλ`x, where all λi’s are distinct
complex numbers, and pi(x)’s are univariate polynomials, we call y(x) an exponen-
tial sum of order `+ deg p1(x) + · · ·+ deg p`(x). Obviously, any non-trivial solution
y(x) of (1) is an exponential sum of order at most k and viceversa.

Zero distributions of exponential sums have been studied at least since the 1920’s,
see e.g. [3], [6], [18], [25], [26], [27], [29] and references therein. The case of
exponential sums with real exponents is closely related to the case of almost periodic
functions classically studied by H. Weyl [28], B. Ya. Levin [15], B. M. Levitan [16],
M. G. Krein [11] etc. It is also related to the fewnomial theory as developed by
A. Khovanskii in [10].

Denote by Eqk the affine space of all linear equations of the form (1) with coordi-

nates (ck−1, . . . , c0) and denote by Eq≤nk ⊂ Eqk the (closed) subset of all equations
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such that any non-trivial solution of these equations has at most n real zeros count-
ing multiplicities. (Obviously, for n < k− 1, the set Eq≤nk is empty.) Additionally,
denote by Eq∞k ⊂ Eqk the set of all equations (1) possessing a non-trivial solu-
tion with infinitely many real zeros. (The set Eq∞k is explicitly characterised in

Lemma 4 below.) Observe that for any n, Eq≤nk ∩ Eq∞k = ∅, and

Eq≤k−1
k ⊆ Eq≤kk ⊆ · · · ⊆ . . . .

The main qualitative result of this note is as follows.

Theorem 1. (i) For all n = k − 1, . . . , 2k − 3,

dimR

(
Eq≤nk \ Eq≤n−1

k

)
= dimREqk = 2k.

(ii) The closure of the set Eq≤2k−3
k coincides with Eqk. In other words, any non-

trivial solution of a generic equation (1) has a most 2k−3 real zeros and this bound
is sharp.

Our main result is as follows.

Theorem 2. For any positive integer k ≥ 2, there exists a positive integer N(k) ≥
2k − 3 such that Eqk = Eq

≤N(k)
k ∪ Eq∞(k). In other words, there exists an upper

bound of the number of real zeros taken over the set of all solutions of all equations
(1) under the additional assumption that we only consider solutions with a finite
number of real zeros, i.e. we disregard all solutions with infinitely many real roots.

Remark 3. Observe that the set of solutions considered in Theorem 2 is an open
subset of CP k−1 × Ck which implies that the existence of N(k) is by no means
obvious.

The structure of the paper is as follows. In § 2, we present our proofs of the
results formulated above. In Appendix 3, we provide some additional information
about the integer roots of exponential sums. Finally, in § 4 we present a number of
open problems related to this topic.

Acknowledgements. The first author is grateful to the Department of Mathematics,
the Weizmann Institute of Science for the hospitality in January 2015, October
2016, and November 2017 when this project was carried out. We want to thank
G. Binyamini for discussions.

2. Proofs

It is a classical result that for any exponential sum

E(x) =
∑̀
j=1

pj(x)je
λjx, (2)

with pairwise distinct exponents λj , its zeros concentrate on the finite union of
a straight lines whose directions are perpendicular to possible differences λj′ −
λj′′ , j

′ 6= j′′; the exact location of these lines in C depends on a particular choice of
the coefficients pj(x), see e.g. [6, 18, 21]. The directions perpendicular to differences
λj′ − λj′′ , j′ 6= j′′ are classically referred to as Stokes directions. In particular, as
soon as k > 1, the number of complex zeros of E(z) is always infinite.

Lemma 4. For a given equation (1), a direction α ∈ RP 1 is Stokes for (1) if and
only if for any straight line L with slope α, there exists a non-trivial solution of (1)
with infinitely many zeros belonging to L.
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Proof. By definition of a Stokes direction, there exist at least two characteristic
roots λj′ and λj′′ such that α = iρ(λj′ − λj′′), where ρ ∈ R. Then the linear
combination

aeλj′x + beλj′′x

for appropriate a and b has infinitely many zeros on a line with slope α. On the
other hand, if α is not a Stokes direction, then there is a finite upper bound on the
number of zeros of any solution of (1), see e.g. Proposition 14 of [21]. �

Our proof of Theorem 1 consists of two parts. Firstly, we show that a generic
equation (1) with a Stokes line sufficiently close to the real axis possesses a non-
trivial solution with as least 2k − 3 real roots. Secondly, we show that the set of
equations (1) possessing a non-trivial solution with at least 2k − 2 real zeros can
not contain an open subset in Eqk.

The first part of the proof is settled by the following statement.

Proposition 5. For a generic equation (1) and any its Stokes direction α ∈ RP 1,
there exists a small neighborhood Uα ⊂ RP 1 of α such that for any β ∈ Uα, there
exists a non-trivial solution of (1) with at least 2k − 3 roots on Lβ, where Lβ is
any straight line with slope β.

Proof. By rescaling and shift we can assume that λ1 = 0 and λk = 1. Denote

a = (a2, . . . , ak−1) and r = (r2, . . . , rk−1). Set ak = −1−
∑k−1
i=2 ai and define

F (a, x) := 1 +

k∑
i=2

aie
λix.

Observe that for all a = (a2, . . . , ak−1), F (a, x) vanishes at x = r1 = 0. Define the
mapping

Φ : Ck−2 × Ck−2 → Ck−2, given by Φ(a, r) = (F (a, r2), ..., F (a, rk−1)) .

Consider the function a = ρ(r) implicitly defined by the relation

F (ρ(r), r) = 0.

Since for any fixed r = (r2, . . . , rk−1), F (a, r) is an affine function of a which implies
that ρ(r) is well-defined as soon as the differential

∂Φ(a, r)

∂a
=

{
eλjri − eλkri

}k−1

i,j=2

(3)

is non-degenerate. An easy computation shows that

det

(
∂Φ(a, r)

∂a

)
= det

{
eλjri

}k−1,k

i,j=1,2
. (4)

Lemma 6. For a generic (1), the matrix ∂Φ(a,r)
∂a is non-degenerate for r = u(0) =

(2πi, . . . , 2πi(k − 2)) ∈ Ck−2, with ρ(u(0)) = 0. The corresponding F (a, x) is given
by F (a, x) = −ex + 1.

Proof. For the tuple u(0), the right-hand side of (4) is the Vandermonde determi-
nant equal to

∏
1≤j′<j′′≤k−1(e2πiλj′ − e2πiλj′′ ). Under the genericity condition

λj′ − λj′′ 6∈ Z, 1 ≤ j′, j′′ ≤ k − 1, (5)

the latter is non-zero. As 1 − ex vanishes at all 2πij, j ∈ Z, it has to be equal to
the uniquely defined function F (ρ(u(0)), x). �
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By continuity, det
(
∂Φ(a,r)
∂a

)
6= 0 for all u ∈ Ck−1 sufficiently close to u(0), thus

defining a as a function of u in some neighborhood of u(0). The function ρ restricted
to this neighborhood will be denoted by ρ+.

From the equation Φ(ρ+(u), u) = 0 we find that

∂ρ+

∂u
= −

(
∂Φ(a, u)

∂a

)−1

· ∂Φ(a, u)

∂u
,

and

∂Φ(a, r)

∂r
(a(0), r(0)) = diag

{
k∑
l=2

λlale
λlrj

}k−1

j=2

∣∣∣∣
(0,u(0))

= −Id,

so
∂ρ+

∂r
(u(0)) =

(
∂Φ(a, u)

∂a
(0, u(0))

)−1

.

Now, replace u(0) with w(0) = −u(0) = (−2πi,−4πi, . . . ,−2(k − 2)πi) ∈ Ck−2,
i.e., with the (k − 2)-tuple of roots of ex − 1 opposite to uj(0). The same compu-
tations as above hold, and the formulas are the same up to replacing λj by −λj .
So, in some neighborhood of w(0) there is a uniquely defined mapping a = ρ−(w)
satisfying the condition Φ(ρ−(w), w) = 0 with

∂ρ−
∂w

(w(0)) =

(
∂Φ(a,w)

∂a

)−1

(0, w(0)) .

Taking the composition, we obtain the holomorphic mapping w = ξ(u) with
ξ = ρ−1

− ◦ ρ+ which is defined in some neighborhood of u(0) and such that

M(λ) =
∂ξ

∂u
(u(0)) =

∂Φ(a,w)

∂a
(0, w(0)) ·

(
∂Φ(a, u)

∂a
(0, u(0))

)−1

is non-degenerate.

We need to find pairs (u,w = ξ(u)) such that all uj , wl lie on the same line
L ⊂ C close to iR and passing through r0 = 0. First, consider the case of L = iR,
i.e. (u,w) ∈ (iR)2k−4 ⊂ C2k−4 = Ck−2

r × Ck−2
w .

Lemma 7. Assume that det (ImM(λ)) 6= 0. Then (iR)2k−4 intersects the graph
Γξ of ξ transversally.

Proof. Standard computation. �

Corollary 8. If det (ImM(λ)) 6= 0, then for any line L close to imaginary axis,
there exists a solution having 2k− 3 zeros on L close to 2πij, j = −k+ 2, ..., k− 2.

Indeed, the set {(r, w), rj , wl ∈ `} ⊂ C2k−2 is a deformation of (iR)2k−2, so it
intersects Γρ at a point close to (r(0), w(0)).

�

Example 9. For k = 3, we obtain

∂Φ(a,w)

∂a
(0, w(0)) = e−2πiλ2 − 1, and

∂Φ(a, r)

∂a
(0, r(0)) = e2πiλ2 − 1,

which implies that

M(λ) =
e−2πiλ2 − 1

e2πiλ2 − 1
= −e−2πiλ2 6∈ R

if and only if Reλ2 6∈ 1/2Z.
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Let us now compute ImM(λ). We have
1 0 . . . 0
−1 1 . . .

. . . . . .
0 . . . −1 1

 ∂Φ(a,w)

∂a
(0, w(0)) =

=


1 . . . 1

e−2πiλ1 . . . e−2πiλk−1

. . .
e−2πi(k−2)λ1 . . . e−2πi(k−2)λk−1

 diag
{
e−2πiλj − 1

}k−1

j=2
. (6)


1 0 . . . 0
−1 1 . . .

. . . . . .
0 . . . −1 1

 ∂Φ(a, u)

∂a
(0, u(0)) =

=


1 . . . 1

e2πiλ2 . . . e2πiλk−1

. . .
e2πi(k−2)λ2 . . . e2πi(k−2)λk−1

 diag
{
e2πiλj − 1

}k−1

j=2
. (7)

Therefore, up to a conjugation by a real matrix (which doesn’t affect the non-
degeneracy of ImM(λ)), we get

M(λ)T =

1 e2πiλ2 . . . e2πi(k−2)λ2

. . . . . .
1 e2πiλk . . . e2πi(k−2)λk

−1

diag
{
−e−2πiλj

}k−1

j=21 e−2πiλ2 . . . e−2πi(k−2)λ2

. . . . . .
1 e−2πiλk . . . e−2πi(k−2)λk

 . (8)

M(λ)T is the operator which takes a vector a = (a2, . . . , ak−1), produces a vector

of evaluations of the sum f(a, λ) =
∑k−1
j=2 aje

2πijλ at the points λ = −λ2, . . . ,−λk−1,

then multiplies these values by the values of −e2πiλ at these points, and finally finds

a function g(z) =
∑k−1
j=2 bje

2πijλ taking these values at points λl.

Set t = e2πiz, tl = e2πiλl . Using this notation, M(λ)T is the matrix of the
operatorM which maps a polynomial f to a polynomial g such that g(1/t) = −tf(t)
at points t = tl in the basis {1, t, . . . , tk−3}. In other words, the rows of M(λ) are

the coefficients of the polynomials gj(t) such that gj(t
−1
l ) = −tjl , j = 1, . . . , k − 2.

Lemma 10. Let D(t) =
∏

(t− t−1
l ) = tk−2 +

∑k−2
j=1 djt

k−3−j. Then

g1 = −d−1
k−2

tk−4 +

k−3∑
j=1

djt
k−3−j

 , gj = (−1)j−1gj1 mod D(t).

In order to prove that det ImM(λ) 6= 0 generically, one should show this for

just one tuple of λl. Take t−1
l = exp

(
2πi l−1

k−2 + iε
)

. Then D(t) = tk−2 − ei(k−2)ε,

and gj = −ei(k−2)εtk−2−j . Therefore ImM(λ) = − sin((k − 2)ε)∆c, where ∆c
ij =

δi,k−1−j . Hence det ImM(λ) 6= 0.

Now we start proving the second part of Theorem 1. Let Γn,k ⊂ CP k−1
a ×Ck−1

λ ×
Cnz be the closure of the set of solutions of the system

n⋂
i=1


k∑
j=1

aje
λjzi = 0.

 ,
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where λ1 + · · ·+ λk = 0.

Lemma 11. For any k ≥ 1 and n ≥ 1, Γn,k is a complex analytic subvariety of
dimension dimC Γn,k = 2k − 2.

Proof. Indeed, for any non-trivial solution of any equation, the set of its zeros is
discrete. Moreover, typically the number of zeros is infinite which implies that the
set Γn,k has the same dimension for any n ≥ 1. �

REMARK, Show that Γn,k is irreducible???

Consider the projection πz : CP k−1
a × Ck−1

λ × Cnz → Cnz and restrict it to Γn,k.
Set In,k := πz(Γn,k) ⊆ Cnz .

Lemma 12. For n ≥ 2k − 2, the map πz : Γn,k → In,k is discrete over a generic
point in In,k. In particular, for n ≥ 2k − 2, In,k is a complex analytic variety of
dimension 2k − 2.

Maybe πz : Γn,k → In,k is 1− 1 over a generic point in the image. Is it true that
In,k is equidimensional?

Proof. There is a natural mapping In,k → I2k−2,k, sending a tuple (z1, . . . , zn) to
(z1, . . . , z2k−2), which commutes with πz. Therefore, it is enough to prove it for
n = 2k − 2.

As the set Γn,k is locally parameterized by (a, λ), it is enough to provide one
point (a, λ, z) ∈ Γn,k where the mapping φ : (a, λ) → z has a non-degenerate
differential dφ. For n = 2k − 2 this means that φ is a local diffeo.

Let us compute dφ. Let F : CP k−1
a ×Ck−1

λ ×C2k−2
z → CP 2k−2 be the mapping

F (a, λ, z) = (
∑k
j=1 aje

λjzi)2k−2
i=1 , so Γ2k−2,k = {F = 0}. Then F (a, λ, φ(a, la)) ≡ 0,

and

dφ = −
(
∂F

∂z

)−1(
∂F

∂(a, λ)

)
.

The matrix ∂F
∂z = diag{

∑k
j=1 ajλje

λjzi} is generically non-degenerate.
To compute the second matrix, we take a chart ak = 1. Also, we assume λk = 1.

Then
∂F

∂(a, λ)
=
(
eλjzi |ajzieλjzi

)2k−2,k−1

i,j=1
, (9)

and

det
∂F

∂(a, λ)
=

k−1∏
j=1

aj · detM,where M =
(
eλjzi |zieλjzi

)2k−2,k−1

i,j=1
(10)

For a = (1, 1, . . . , 1), λ = ( 1
k , . . . ,

k−1
k , 1) the function

f(z) =
∑

aje
λjz =

k∑
j=1

e
j
k z =

ez − 1

1− e−z/k

has zeros zi = 2πIl(i), where l(i) = i for i = 1, . . . , k − 1, and l(i) = i + 1 for
i = k, . . . , 2k − 2 (where I =

√
−1).

For these values of (a, λ) we have

k∑
j=1

ajλje
λjz =

k∑
j=1

j

k
e

j
k z = f ′(z) =

ez(1− e−z/k)− 1
k (ez − 1)e−z/k

(1− e−z/k)2
=
kez − (k + 1) ez−z/k + e−z/k

k(1− e−z/k)2
.

For the values of zi above, ezi = 1 6= ezi/k, so f ′(zi) = 1
1−e−zi/k

6= 0 for all

i = 1, . . . , 2k−2. Thus the matrix ∂F
∂z is non-degenerate for these values of (a, λ, z).
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It remains to show that detM 6= 0 for these values of (a, λ, z). Note that
zi+k−1 = zi+2πIk for i = 1, . . . , k−1. Therefore eλjzi = eλjzi+k−1 , i = 1, . . . , k−1,
and zi+k−1e

λjzi+k−1 = zie
λjzi + 2πIkeλjzi . Therefore the matrix M has the form

M =

(
M1 M2

M1 M2 + 2πIkM1

)
,

where M1 = {eλjzi}k−1
i,j=1. Subtracting the first (k − 1) rows from the last (k − 1)

rows, we see that detM = (2πIk)k−1(detM1)2. Finally,

detM1 = det{e2πI j
k i}k−1

i,j=1 =
∏

1≤j≤k−1

e2πI j
k ·

∏
1≤j<j′≤k−1

(
e2πI j

k − e2πI j′
k

)
6= 0.

(11)
�

Remark. Set IRn,k := In,k ∩ Rn ⊂ Cnz . Then, for n ≥ 2k − 2, dimR I
R
n,k ≤ 2k − 2.

(More generally, Rn can be substitutes by a totally real subvariety of dimension n.)
Set ∆n,k := π−1

z (IRn,k) ⊆ Γn,k.
Let ∆2 be the critical locus of the projection πz. Then

∆n,k = (∆n,k \∆2) ∪ (∆n,k ∩∆2)

Lemma 13. For any k and n ≥ 2k − 2, dimR ∆n,k \∆2 ≤ 2k − 2.

Proof. On ∆n,k \∆2 the projection πz is a local biholomorphism. �

Introduce πλ : CP k−1
a × Ck−1

λ × Cnz → Ck−1
λ . The fiber of the projection πλ :

∆n,k → Jn,k are real 1-dimensional since the parallel translation of the roots on
the real axis preserves the equation.

Corollary 14. For n ≥ 2k − 2, dimR πλ (∆n,k \∆2) ≤ 2k − 3 < dimCk−1
λ .

Proposition 15. For n ≥ 2k − 2, dimC ∆2 < k − 1.

Proof of Theorem 2. Let us first observe that each Eqk ≤ n ⊆ Eqk can be fibered
over the

�

3. Appendix. Integer roots of exponential polynomials

This material is included here for the sake of completeness and is mainly bor-
rowed from [8]. Take the first non-trivial case m = 2k − 1 and assume that
(0 = t1 < t2 < ... < t2k−1) all are rational numbers. Multiply them by their
least common denominator and assume, therefore, that they are positive integers.
We have the following intriguing problem.

Question 4. Which sequences I = (0 = i1 < i2 < ... < i2k−1) are bad and which are
good meaning that there exist pairwise distinct (x1, ..., xk) forming the (2k−1)×k-
matrix of incomplete rank.

We get the following reduction of Question 4. For any sequence of non-negative
integers J = (0 ≤ j1 < j2 < ... < jk) consider the associated Schur polynomial
SJ(x1, ..., xk) given by

SJ(x1, ..., xk) =

∣∣∣∣∣∣
xj11 xj12 ... xj1k
· · · · · · · · · · · ·
xjk1 xjk2 ... xjkk

∣∣∣∣∣∣ /W (x1, ..., xk),

where W (x1, ..., xk) is the van der Monde determinant.
Now given a sequence I = (0 = i1 < i2 < ... < i2k−1) cover it by k sub-

sequences J1, ..., Jk of length k each. For example, take J1 = (i1, ..., ik−1, ik);
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J2 = (i1, ..., ik−1, ik+1); J3 = (i1, ..., ik−1, ik+2); ...; Jk = (i1, ..., ik−1, i2k−1). Take
the corresponding Schur polynomials SJ1(x1, ..., xk), ..., SJk(x1, ..., xk) and form the
ideal< IJ1,...,Jk > within the ring S[x1, ..., xk] of all symmetric functions in x1, ..., xk
generated by SJ1(x1, ..., xk), ..., SJk(x1, ..., xk). Finally, take the quotient ring

RJ1,...,Jk = S[x1, ..., xk]/ < IJ1,...,Jk > .

Proposition 16. The sequence I of length 2k− 1 is good (resp. bad) if for any its
covering by subsequences J1, ..., Jk each of length k the quotient ring RJ1,...,Jk is a
finite-dimensional vector space over C, i.e. is a 0-dimensional ring (resp. is a ring
of positive dimension).

Remark 17. The same statement holds for sequences I of an arbitrary length
bigger than 2k − 1 and their coverings.

4. Final remarks

Given a slope α ∈ RP 1, let Lα be a straight line in C with slope α. (We use
the real and the imaginary parts of z as standard coordinates in C ' R2 and Lα is
defined up to a parallel translation.)

Definition 18. For a given equation (1) and a slope α ∈ RP 1, define the oscillation
number of (1) in the direction α as:

O(α) := sup
y∈Sol

](y, Lα), (12)

where Sol denotes the projective space of all non-trivial solutions of (1) considered
up to non-vanishing factor and ](y, Lα) is the counted with multiplicities number
of zeros of a nontrivial solution y ∈ Sol lying on the straight line Lα. The number
O(α) considered as an integer-valued function of α ∈ RP 1 is called the oscillation
function of (1).

Remark 19. (i) by translation invariance, the right-hand side of (12) is indepen-
dent of a particular choice of Lα;
(ii) the number O(α) is allowed to attain value +∞;
(iii) for any equation (1) of order k and any α ∈ RP 1, O(α) ≥ k − 1.

Further, for a given slope α ∈ RP 1 and a non-negative number w ≥ 0, let Sα,w
be an infinite open strip of width w bounded by two straight lines with slope α.
By definition, Sα,0 is a straight line with slope α. (Notice that Sα,w is defined up
to a parallell translation.)

Definition 20. For a given equation (1) and a given α ∈ RP 1, define the width of
(1) in the direction α as

W (α) := sup
w
{](y, Sα,w) ≤ O(α), ∀y ∈ Sol} , (13)

where ](y, Sw,α) is the number of counted with multiplicities zeros of a nontrivial
solution y ∈ Sol lying in the strip Sα,w. The number W (α) considered as an
non-negative function of α ∈ RP 1 is called the width function of (1).

Remark 21. (i) by translation invariance, the right-hand side of (13) is indepen-
dent of a particular choice of Sα,w;
(ii) W (α) is allowed to attain value +∞; if W (α) = +∞, then Sα,+∞ ' C.

The following question is the main topic of the present paper.

Problem 22. For a given equation (1), find/estimate its oscillation function O(α)
and its width function W (α).
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Example 23. (1) For any equation (1) of the first order, O(α) ≡ 0 and W (α) ≡
+∞ for any α ∈ RP 1.
(2) For equations (1) of order 2, the situation is as follows. If (1) has coinciding
characteristic numbers λ1 = λ2, then O(α) ≡ 1 and W (α) ≡ +∞. If λ1 6= λ2, then
O(α) = 1 for all α not perpendicular to λ1 − λ2 and O(α?) = +∞ for the unique
value of α? perpendicular to λ1 − λ2. W (α?) = +∞ while for α 6= α?, W (α) = .....
(3) For an equation of any order k with all coinciding characteristic numbers,
O(α) ≡ k − 1 and W (α) ≡ +∞ for any α ∈ RP 1.
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