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HIGHER-DIMENSIONAL ANALOGS OF THE THEOREMS OF NEWTON AND IVORY

A. D. Vainshtein and B. Z. Shapiro uDC S514.

Well-known theorems of Newton and Ivory [1, 2] assert that the potential of a charged
metallic ellipsoid equals a constant in the interior of the ellipsoid and is constant on the
confocal ambient ellipsoids.  In this paper we prove the analogs of these theorems for hypei
boloids of arbitrary signature in Fuclidean space of arbitrary dimension.

The authors thank V. L. Arnol'd for formulating this problem and for his constant suppc
and A. B. Givental' and B. V. Yusin for useful discussions.

1. Three-Dimensional Case. First, we state the result for the case of a one—sheeted
hyperboloid in three—dimensional space. To this end, we include the given hyperboloid in a
family of confocal surfaces. This family traces a net of orthogonal lines on the surface of
the hyperboloid. The closed (open) lines of this net will be referred to as the parallels
(respectively, meridians) of the ellipsoid. The family of meridians extends to a fibering ¢
the simply comnected domain bounded by the hyperboloid into open curves; these will be re-
ferred to as the meridians of the inner domain. Similarly, the family of parallels extends
to a fibering of the outer, nonsimply connected domain bounded by the hyperboloid on closec
curves, termed the parallels of the outer domain.

THEOREM 1. There exists a unique (moduloc a constant factor) surface current, flowing
along the meridians of the hyperboloid, which produces a magnetic field that vanishes in the
inner domain and is directed along parallels in the outer domain of the hyperboloid. Simi-
larly, there exists a unique (modulo a constant factor) surface current, flowing along the
parallels of the hyperboloid, which produces a magnetic field that vanishes in the outer
domain and is directed along meridians in the inner domain of the hyperboloid.

The magnetic field in the inner domain, outside of a charged conducting ellipsoid con-
focal to the given hyperboloid, coincides, up to its sign, with the electric field of the el-
lipsoid. Also, the magnetic field in the region of the outer domain between the sheets of =
confocal two-sheeted hyperboloid coincides, up to its sign, to the electric field produced
by two charges equal in magnitude, distributed on the sheets of the conducting two-sheeted
hyperboloid.

The fields constructed in Theorem 1 also yield exact solutions of the problems of poter
tial flow of an incompressible fluid through the inner domain of a triaxial hyperboloid and
of the vortex—-free flow around this hyperboloid.

Theorem 1 was communicated to the authors by Arnold (see [3, 4]), who asked whether thi
theorem may be generalized to higher dimensions and signatures. The theorems of Newton and
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of Ivory were extended to the cgsg.of a two-sheeted hyperboloid in a. space of arbitrary di-
mension by Arnold (5, 6] and Shcherbak, respectively.

2. General Case. Consider in n-dimensional ‘Euclidean space a central hypersurface of
second degree (quadric). We include our surface in a family of confocal surface g

o 2

A z

Y=t ‘v
i=1

an < ap-1 <-+» < ak+2 <0 < apyy <...< a1, as the surface corresponding to the value A = 0,
and define the elliptic coordinates of an arbitrary point in space as the values of A for
which a hypersurface of the family (1) passes through this point. Our hypersurface is diffeo-
morphic to the direct product 8§ x Rk, k + 7 =n — 1. It distinguishes two regions in space:
the inner one, diffeomorphic to D¢+l x Rk, and the outer one, diffeomorphic to sl x rRE x R,,
where R, designates the real positive half axis.

There are two fiberings of the inmer region:

a) one into "meridians,". diffeomorphic to RK, and given by the condition of constancy of
the elliptic coordinates that are negative (in the inner region);

b) the second, into domains orthogonal to the "meridians," diffeomorphic to pl+l and
given by the condition of constancy of the elliptic coordinates that are positive (in i
the inner region).

Similarly, there are two fiberings of the outer region:

a) one into "parallels," diffeomorphic to s’ and given by the condition of constancy of
the elliptic coordinates that are positive (in the outer region);

b) the second, into domains'orthogonal to the '"parallels," diffeomorphic to Rk x R, and
given by the condition.of constancy of the elliptic coordinates that are negative (in
the outer region).. .

P —————

Let w be an arbitrary current, regarded as a form with distribution coefficients (see
{7]1). We shall say that form w is harmonic off our hypersurface if it is continuous off this

hypersurface, coclosed, and if its exterior derivative is a form supported on the hypersur-’ 1
face.

THEOREM 2. 1) There exists a unique (modulo a constant factor) differential form wt,
which is nontrivial in the inner region of the space, is harmonic off the hypersurface, is
decomposable in elliptic coordinates, and has no real poles.

2) There exists a unique (modulo a constant factor) differential form w™ , which is non-
trivial in the outer region of the space, is harmonic off the hypersurface,. is decomposable
in elliptic coordinates, and has no real poles.

The forms w' and w”™ can be computed explicitly.

THEOREM 3. 1) The form w' vanishes identically in the outer region of the space, and in E
the inner region is representable as w* = ¢;(£)dg, where df =d§ A. - -./\ @5, and -7 <
£7-1 S... < g1 are positive (in the entire space) elliptic coordinates. )

2) The form w™ vanishes identically in the inner region of the space, and in the outer

region is representable as w™ = & (n)dn, where dq =dn A\ . . ./\ dp, and M < M1 << - - . mare )
negative (in the entire space) elliptic coordinates. %

THEOREM 4. Function ¢,(x) is given by the formula

(Dm (I) = (Dm (-171) ooy xm) = ]___[ .(:ci— z,-) H II (xi + a,j)_.'l'. (2) ‘ : !

1<i<i<m i=] j=1
Formula (2) has the following geometrical meaning.
Given our hypersurface, we construct two sets. The first lies in the inner region and
is obtained by fixing the coordinates ng = —@2 < ng-1 = —@3 <...< N1 = —adk+ = & The second

lies in the outer region and is obtained by fixing the coordinates § = —ak+z = &7 < ... < ’
—ap-1 = €2 < —ap = £1. These sets will be referred to as the focal sets of our hypersurface. :
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Proposition. The focal sets are smooth manifolds. The first of them is a two-sheeted
hyperboloid diffeomorphic to the disconnected union of two copies of RZ, whereas the second
is an ellipsoid diffeomorphic to Sk.

We call homeoid density on the nondegenerate second degree central surface V the form
of highest degree which is obtained from the Euclidean volume form of the layer enclosed be
tween V and a hypersurface homothetic to V relative to its center when the width of this la
is made infinitesimally small. The homeoid density on an intersection of nondegenerate cen
tral hypersurfaces is defined similarly. On the focal sets the homeoid density is defined a
the limit of the corresponding forms on nondegenerate intersection-manifolds for a fixed va
of the integral of these.forms on the manifold.

THEOREM 5. Form w' in the inner region and form w™ in the outer region are induced by
the homeoid densities on the focal sets by translation along the hypersurfaces of family (1
transverse to these sets.

Remark. The assertion of Theorem 5 remains true if, instead of the first focal set, o
considers the manifold given by the condition of comstancy of the coordinates —u1 < ny <
—a2 < Ng-y <...< N1 =-Ay; = (which is diffeomorphic to R%), and, instead of the second
focal set, the manifold given by the condition of constancy of the coordinates ¢ = —Ak+y =
€7 <...< &2 < —ap < &1 (which is diffeomorphic to a disconnected union of 2¢~1 copies of &

3. Proofs of the Theorems. Proof of Theorems 2-4. Let w be the sought-for form. The:
dxo=0, do =308 (0)dt A Q, C

where 8(z) is the delta-function and Q is a form on the hypersurface, In agreement with the
assumption of Theorem 2, we seek w in the form o =a (, n, §) d&’ A dn’ , where dE’ = dE, A .../
dg%, dn’ =dn;, /A ... /\ .. Then from (3) we obtain

4 x 0 =d (ahghyhehy hyt dE° A dE /\ dn’) =0, (¢
Qo= P G A G A dn S g A G A Gt 08 e n e
d«o_Z w2 RN N\ dn +2, v AN+ F NG N dw =5 @)L\
Here d£" is a decomposable form, which completes d€' up to df, hz' is the product of the Lar

coefficients appearing in d&', and dn", hg", hyt, hy" are defined similarly. From (4) we ot
tain the system of equations

9 ( e ey ) =92 ( ahyhorhy ) —0,

;. hyhy, 5Tl;- v
da _ 6Ba =0 (s
— = — WU
6&1 .anj

F =006,

and Q = b (§, n) d&" A dn'.
Taking account of the explicit expressions of the Lamé coefficients for elliptic coor-
dinates [8] we get .
He -, — i—
by @y @0 e 3 OO0 I G0
hyhy O, E)D_(n) IT ¢, —n),) !

v, ®

where functions 9p(x) are defined by formula (2). Substituting in (5) and solving the equa-
tions in the order in which they are written, we get

b (8 m) = B®, ()0, (n) II & — 49,
L)
aEn 0 =00 +0)bE ),

where x(z) is the Heaviside function, and B and C are constants.

(6

Now let us impose the condition that w have no poles. Recalling that the elliptic co-
ordinates themselves degenerate at some points of the space, we are led to the investigation
of the zeros of the expression
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H(&—t)H(m —0) H En— ) II E—&) IT (e —20 I (o — m2).

u, v W,z

Since always —a, <N <=8 <. - L Gy KK =g < E< - - - < —a, <&y, we conclude
that'{l (Em—mp) and 1-£ (nu — &) do not vanish in ER. Further, the expressions yt — (&85 and
' P u, 0

IIhﬁ,—-nD must have roots for ¢ > 0 as well as for g < 0, provided that the number of com-

W,Z

ponents in these products is different from zero. This implies that either d&' = df or dg" =

‘'df and, similarly, either dn' = dn or dn" = dn. Finally, the expression II(g;_.g) has a
i

zero for ¢ > 0O, and expression II(qg-— ) — a zero for ¢ < 0. Consequently, if d&' = dg,
i

then dn" = dn and C = U, whereas di" = df implies dn' = dn and C = —1. In conjunction with
(6) this proves the stated results.

Theorem 1 follows from Theorems 2 and 3; the current is interpreted as the form Q, and
the magnetic field as the vector field corresponding to the form *w.

Proof of Theorem 5. Since the forms we are interested in are defined modulo a constant
factor, it suffices to show that for every pair of p01nts x' (¢', n, ) and x" = (&", n, ©)
lying in the inner region of the space the ratio w (x')/m*(x") equals the ratio of the homeoid
densities at the points £' and &" on the first focal set (there is no point in taking the co-
ordinates n, ¢ of the points x' and x" distinct, because neither w* nor the homeoid density
depend on these coordinates).

It is clear that the homeoid density on the focal set is inversely proportional to the
product of the Lamé€ coefficients corresponding to the fixed elliptic coordinates- (see [9]).
Therefore, the ratio of the homeoid densities at the points £' and &" equals

ey (=) by (%) By 1 B\
h(z)ht(z) (Ha_n HE —C)

On the other hand, Theorems 3 and 4 yield

ot (@) _ P EVE() O (E) hy (") — "
@) T D EVEE) | O, @V k@) (H , H & —r;) '

Theorem 5 for the form w* is thus proved. The proof for the form w~ is analogous.
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