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SINGULARITIES ON THE BOUNDARY OF THE
HYPERBOLICITY REGION

- A. D. Vainshtein and B. Z. Shapiro UDC 512.761

The singularities of hyperbolic polynomials (hypersurfaces) and the singularities of the boundary of the hyperbolicity
region are investigated. Theorems on stabilization of these singularities in families with a fixed number of parameters
and on their relationship with elliptic singularities are proved. The problems considered in this study are part of a
research program focusing on singularities of boundaries of spaces of differential equations, proposed by V. [.
Armol'd.

L. INTRODUCTION

A real projective algebraic hypersurface of degree d is called hyperbolic if there exists a point in the projective space
such that any real line through this point (which is called a time-like point) intersects the hypersurface at d points (counting
with their multiplicities). If all these intersections are pairwise distinct for any such line, then the hypersurface is called strictly
hyperbolic. A strictly hyperbolic surface of degree d in RP® consists for even d of d/2 nested components diffeomorphic to the
sphere (these components are called ovaloids) and for odd d of [d/2] nested ovaloids plus a one-sided component diffeomorphic
to RP"~1 which is located outside the ovaloids. If for some hyperbolic hypersurface there exists a time-like point not on the
hypersurface, then the hypersurface is called totally hyperbolic. The origin of the term "hyperbolic” is in the theory of hyperbolic
diffcrential equations in which a hyperbolic hypersurface is the projectivization of the zeros of the principai symbol. Various
aspects of the geometry of hyperbolic hypersurfaces and their applications in mathematical physics wers considered in [+509,
10, 12, 13, 16, 19, 20].

Many problems require studying families of hyperbolic (elliptic) polynomials dependent on parameters. V. L. Arnol'd
formulated a number of problems requiring the study of singularities of hyperbolic poiynomials (hypersurfaces) and singularities
of the boundary of the hyperbolicity and ellipticity regions (sets of parameter values of the families for which the polynomials
are hyperbolic or elliptic, respectively) [15, p. 265). These problems are a part of a research program focusing on singularities of
boundaries of various spaces of differential equations, proposed by Arnol'd in [6]. In the hyperbolic case, Arnol'd conjectures can
be stated as follows. ) . .

1. For families with a fixed number of parameters, the collections of typical singularities of hyperbolic hypersurfaces and
boundaries of hyperbolicity regions arising in these familiés are stabilized up 0 diffeomorphism as the degree and the dimension
of the hypersurface tend 1o infinity. '

2. Similar stabilization occurs also a) for a fixed dimension of the hypersurface, whea only the degree is increasing (the
resulting stable collection, however, depends on the dimension of the hypersurface); b) for a fixed degree of the hypersurface,
when only its dimension is increasing (the stable collection in this case depends on the degree).

3. The hyperbolicity region for families in general position in spaces of polynomials of stable dimension and degree is a
topological manifold with an edge whose boundary at singular points is aligned "with the corners facing outward,” ie., the
“principle of brittleness of the good* [2] is satisfied.

Similar conjectures for typical families of elliptic polynomials were proved by Matov [14].

Hyperbolicity properties have a local analog, which was considered by Atiyah, Bott, and Garding (see [10, 20] and Sec.
2 below). Arnol'd’s conjecture for the local case is stated as follows.

Translated from Itogi Nauki i Tekhniki, Seriya Sovermennye Problemy Matematiki, Noveishie Dostizheniya, Vol 33, pp.
193-214, 1988.
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ptic singularities and singularities of the boundaries of the corresponding regions
tabilize as the dimension of the space increases.
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2. For any natural k and any hypersurface of sufficiently high degree for which the sum of Milnor numbers of the
singularities does not exceed k, the germ of its complete deformation in the space of all hypersurfaces of given degree is shown
to be a versal deformation of its multisingularity (Theorem 3.3). The germ of the discriminant (the set of singular hypersurfaces)
is locally diffeomorphic to a cylinder over the germ of the bifurcation diagram of the mulusmgulamy of the given hypersurface
(Corollary 3.4). :

3. A complete characterization of the smgulanues of totally hyperbohc hypexsurt'aces is given. Specifically, any singularity
of a totally hyperbolic hypersurface is hyperbolic in the local sense (Proposition 4.1), and any isolated hyperbolic singularity is
realizable up to diffeomorphism as a unique singular point of a totally hyperbolic hypersurface {Theorem 4.2).

4. We consider the question, originally suggested by . G. Petrovskii, of the realization of singularities of wave fronts, i.e.,
the orders of flatness of the ovaloids of strictly hyperbolic hypersurfaces (Theorems 43 and 4.4).

5. Conjecture 1 is proved for hyperbolicity in relation to a fixed time-like point (Theorems 5.2 and 5. ;t)

6. Stabilization of the list of typical singularities of totally hyperbolic hypersurfaces with increasing degree is proved for
farnilies with a fixed number of parameters and hypersurfaces of fixed dimension (a weaker version of conjecture 2a, see

Theorem 5.3).
7. Table 1 lists the multisingularities that arise in typical one-, two-, and three- -parameter families of hyperbolic hypersur-
faces of sufficiently high degree with a fixed time-like point. -

Figure 1 shows the hyperbolic curves on which these multisingularfu’es are realized (hypersurfaces of arbitrary dimension
are obtained by revolution of these curves). Figure 2 shows the corresponding germs of the boundary of the hyperbolicity region.
The hyperbolicity region in all cases has "outward facing corners" and is a topological manifold with an edge.

Some of the results of this paper were previously reported in [11]. We would like to thank V. L Arnol'd for suggesting
the topic and for his continued support. We acknowiedge the useful comments of V. A. Vasil'ev, A. M. Gabrielov, A. B.

Givental’, and V. M. Kharlamov.

2. STABILIZATION OF HYPERBOLIC SINGULARITIES AND THEIR RELATIONSHIP
WITH ELLIPTIC SINGULARITIES

In this section, we consider the space of germs of analytic functions of n variables with a singularity at zero and prove

that

1) the list of hyperbolic singularities in typical families with a fixed number of parameters stabilizes as n increases;

2) the stable list of hyperbolic singularities coincides with the stable list of elliptic singularities with the same number of
parameters;

3) the stable singularities of the boundaries of ellipticity and hyperbolicity regions coincide.

2.1. Definition. Let h: (R%, 0) = (R, 0) be a germ of an analytic funcuon the singularity at zero of the germ h is called
hyperbolic if there exists a line y through 0 (this line is called time- -like) such that the germ of the hypersurface H: {h = 0} has
a constant real intersection multiplicity in the bundle of lines parallel 10 y. :

2.2. Definition. Let e: (R", 0) - (R, 0) be a germ of an analytic function and let 0 be an isolated real solution of the
equation e = 0. Then the singularity at zero of the germ e is called elliptic.
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Note that we will consider only singularities with a finite Milnor number. I the context of this pépef, by an isolatc *
singularity we mean a singularity whose complexification is isolated (is of finite multiplicity), although some results are valid als
for real isolated singularities (but not for isolated singularitics).

The ellipticity property of a singularity is obviously invariant relative to diffeomorphisms. The corresponding assertio
for isolated hyperbolic singularities is proved in a number of lemmas.

2.3. LEMMA. Let h: (R", 0) - (R, 0) be an isolated hyperbolic singularity, and y a time-like line for h. Thean any lin
sulficiently close to y and passing through 0 is also time-like.

Proof. For n = 2, the germ of the curve H is a collection of smooth branches transverse to 7 [9, p- 62]. They corre
spondingly make positive angles with y. Denote the- smallest of these angles by . Clearly, h is hyperbolic relative ta. an
direction forming an angle less than ¢ with 7. Moreover, for at least one of the rays making an angle ¢ with y, the real jntersec
tion multiplicity of the germ H is greater than for y. We denote this ray by y.

For n > 2, consider the set Ma<RP~-2 of aj| two-dimensional planes through y. The restriction of h 10 each of these

that the real intersection multiplicity of the germ H for all these lines is greater than for y, which contradicts the upper
semicontinuity of multiplicity, because y is a limit of the sequence y. Q.E.D.

24. Let S, C R" be a small neighborhood of zero. Fix the orientation of a time-like line y and consider the connected
components of the set ITIE = S,\H. By hyperbolicity of h, we can associate to these components integers from 0 to d such that
along any sufficiently close line parallel 0 y these numbers are incremented by 1 as we successively traverse the components
(here d is the intersection multiplicity of y with H). For an arbitrary point x € i—{c, we dcnote by ¥(x) the number associated 10
the componen: containing the point x.

Consider an arbitrary smooth curve p: [0, 1] = S, with endpoints lying on the surface H. The index of this curve is the
difference v(p(1)) — v(p(0)). For curves in gencral position the index relative to the hypersurface H clearly does not exceed the
number of intersection points of the curve with this hypersurface. Note that Arnol'd [7] introduced a similar notion of the index
for the particular case of the hyperbolic hypersurface of degenerate quadratic forms in the space of all quadratic forms.

By Lemma 2.3, we can select a closed cone [ at zero that includes y and consists entirely of lincs time-like relative 1o h.
Denote by I'+ the connected component of MO such that v = d for all its points. Define ir S, the field of cones I'(x) obtained
by parallel translation of the cone I". The Smoath curve p: [0, 1] = S, is called positive if the tangent vector to p at an arbitrary
point x belongs to I'+(x).

2.5. LEMMA. Let h: (R, 0) - (R, 0) be an isolated hyperbolic singularity. Then in some sufficiently small neighborhood
of zero the index of a positive curve in general position relative to the hypersurface H is equai to the number of intersection
points of this curve with H.

Proof. It suffices to show that v is nondecreasing along any positive curve. Let P(1), t € [0, 1], be an arbitrary point of
the positive curve p, A(t) the tangent vector to the curve at this point. Consider the bundle of lines parallel to the vector 5(t)
with a matching orientation. Since the curve P is positive, if the initial point p(1) is sufficiently close to 0, then these lines are
time-like for h. Thcrefore, v is nondecreasing along these curves (otherwise, the number of intersection points of the line with
the hypersurface H would exceed d). Thus, v is also nondecreasing along the curve p in the reighborhood of the point p(t).
Q.E.D.

2.6. COROLLARY. Diffeomorphism sends an isolated hyperbolic singularity to a hyperbolic singularity. The image of the
old time-like direction may be taken as the new time-like direction. .

Proof. Consider the diffeomorphic image of a vector from I'+ tangent to a time-like line at the origin. In the new system
of coordinates, construct a bundle of lines parallel to this vector. It is easy to see that the local preimage of this bundle is a
bundle of positive curves leading from the connected component ﬁ: with v = 0 to the component with v = d. By Lemma 2.5,
the intersection multiplicity with H in this bundle is d, which proves the corollary.

2.7. Now consider the space ®, of power series with a zero 1-jet that converge in the neighborhood of the point 0 in R",
We will ideatify the hyperbolic singularities that may arise in k-parameter families in general position in &, as n increases.
Recall that germs of functions (of different number of variables) are called stably equivalent if they become equivalent (diffeo-

morphic) after nondegenerate quadratic forms of additional variables are added to them (8, p. 146].
Definition. The singularity h € ®, of some class (e.g., elliptic, hyperbolic, etc.) is called stable (relative to its class) if for
allm > n there is a singularity of the same class in ®,, which is stably cquivalent to h.
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-Note that in the class of all singularitics and in the class of elliptic singularities, every singularity is stable. In the class

of hyperbolic singularitics, the situation is differcnt.
2.8. LEMMA. Let h € @, n > 2, be an isolated hyperbolic singularity, and y its time-like line. Then the following

assertions are equivalent:

1) the intersection multiplicity of the germ of the hypersurface H: {h = 0} with the time-like line yis2;

2) the 2-jet of h is nonzero;

3) h is a stable hyperbolic singularity.

Proof. The implication 1 = 2 is obvious. Let us establish the converse, Indeed, let the 2-jet of h be nonzero and let the
intersection multiplicity of the germ of the hypersurface H with the time-like line y be d > 2. Then by Lemma 2.3, for any line
through 0 and sufficiently close to y, the intersection multiplicity with this germ is also d. Hence, h has a zero (d — 1)-jet, which
contradicts 2. :

Let us now show that 2 implies 3. Without loss of gencerality, assume that the restriction of h to yisu??+ .. .By
Morse's lemma, h is reducible to the form %=z} F (z, ..., z) and f is hyperbolic relative to the axis . Then for any m >
n the germ /z,.,=l_tf~71i+x — . —UN+F (2, ..., z,) hasa hyperbolic singularity stably equivalent to h.

Finally, let us show that 3 implies 1. In fact, we will prove a stronger proposition: let h € ®, be an isolated hyperbalic
singularity for which the intersection multiplicity of the germ of the hypersurface H with the time-like line yisd > 2; then h
may not be stably equivalent to any hyperbolic singularity of any other number of variables.

Indeed, if d > 2, then, as we have shown above, the 2-jet of h is identically zero and thus h may not be stably equivalent
10 a germ of a function of fewer variables. Let h be stably equivalent to the singularity h’ of a greater number of variables. Now,
since the 2-jet of h is zero, by Proposition 6.5 of 3], b’ is diffeomorphic to a singularity h(uy, ., up) + Q(vy, ., Vo) where Q
is a nondegenerate quadratic form (here we use the fact that h' is complex isolated). By Corollary 2.6 it remains to show that no
germ of this kind may be hyperbolic. We prove this by contradiction. Assume that for some Q the germ h' is hyperbolic, then by
the equivalence of 1 and 2 the time-like line 7 of this germ does not lie in the subspace generated by uy, ..., u,, and the restric-
tion of h’ t0 y is at2, where t is a parameter on y and « is a nonzero constant. Note that if the germ h of a function of two or
more variables has an isolated hyperbolic singularity, then it necessarily changes its sign in the neighborhood of zero. Consider
the line y* obtained by a small shift of the line y in the direction of the vector u in the subspace generated by uy, ..., u, and
such thai ah(u) > 0. Then the restriction of h’ to ¥’ obviously does not have roots in the neighborhood of zero and h’ is thus
not a hyperbolic singularity. The contradiction proves the lemma. Q.E.D.

) 2.9. Let us now investigate the relationship of stable hyperbolic and stable elliptic singularities, and also the relationship
of the boundaries of ellipticity and hyperbolicity regions (i.e, of the sets of parameter values corresponding to elliptic and
hyperbolic singularities) in k-parameter families of function germs in general position.

Definition. Let h: (R", 0) —~ (R, 0) te a function germ defining a hyperbolic singularity for which the intersection
multiplicity with a time-like line is d. The hyperbolic perturbation h’ is a small perturbation of the germ h such that the bundle
of lines parallel to the time-like line intersects the set {h’ = 0} in the neighborhood of zero at d points (counting according to
their multiplicities).

Tt is easy to show that hyperbolic perturbations fill the closures of some components of the complement of the bifurca-

tion diagram of h in its versal deformation. The union of these closures will be called the hyperbolicity region of the given -

singularity. We similarly define the ellipticity region in the complement of the bifurcation diagram of an elliptic singularity.

2.10. TIHHEOREM. 1) Isolated stable hyperbolic singularities of functions of n variables are stably equivalent to elliptic
singularities of functions of n — 1 variables.

2) The hyperbolicity region in the miniversal deformation of a stable hyperbolic singularity of a function of n variables
coincides with the ellipticity region of a miniversal deformation of an elliptic singularity of a function of n — 1 variables stably
equivalent to the given hyperbolic singularity.

" Proof. Consider a stable hyperbolic singularity h € ®_. By Lemma 2.8, it is reducible to the form h = au,? + F(u,, ..,
U,), @ = 0. The u,-axis is time-like. Then in order 1o have intersection multiplicity 2 in the bundle of lines parallel to the u,-axs
with the germ of the hypersurface {h = 0}, it is necessary and sufficient that the germ e = F(uy, ..., u,) defines an élliptic
singularity in the subspace generated by Uy, .., Uy, i.e., is sign-definite and its sign outside zero is the opposite of the sign of a.
Hence, using Corollary 2.6, we obtain part 1. :

Let us prove part 2. As before, leth € D, be a stable hyperbolic singularity reduced to the form h = czul2 + F(ug, -,
U,), where u, is a time-like line and e = F(up, ..., u,) is an elliptic singularity stably equivalent to h. By equivalence of all
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A singular hyperbolic hypersurface (in general with nonisolated singularities) is called ordinary if it has no dompon A

- that are hyperplancs intersecting the set of its time-like points. : '

2. Is it true that for an ordinary hyperbolic hypersurface the local number of connected components of the region H:

in its neighborhood is equal to the number of connected componcats of the set of its time-like points (Fig. 4)?

Notc that in the stable case the set of time-like points is connected. This fact and a positive answer to question 2 wc

imply that in the stable case the hyperbolicity region in k-parameter familics is a topological manifold with corners (Arno.
conjecture 3).

Questions 1 and 2 apparently have simpler local analogs.
3. Is it true that for a hyperbolic singularity of three or more variables, the hyperbolicity region (Definition 2.9) occuj

precisely one connected component of the complement of the bifurcation diagram which is aligned with its corner fac

outward?

For stable hyperbolic singularities, this follows from the results of Matoy [14].
3. Is it true that for a hyperbolic singularity of two variables, the hyperbolicity region occupies I components of

complement of the bifurcation diagram, where ! is the number of transversely intersecting branches of this singularity?

10.

11.

12

13.
14.

15.

16.

17.

18

19.

21.

LITERATURE CITED

V. L. Arnol'd, "Hyperbolic polynomials and Vandermonde maps,” Funkts. Anal. Prilozhen., 20, No. 2, 52-53 (1986).
V. L. Arnol'd, Supplementary Chapters in the Theory of Ordinary Differcntial Equations (in Russian], Nauka, Mosc
(1978).

V. L. Arnol'd, "Normal forms of functions near degenerate critical points, Weyl groups Ay, D,, E,, and Lagrar
singularitics,” Funkts. Anal. Prilozhen., 6, No. 4, 3-25 (1972).

V. I. Amol'd, "On Newtonian potential of hyperbolic fibers,” Trudy Thoilis. Univ., Ser. Mat.,, Mekh., Astron., No. 232-2
23-29 (1982).

V. I. Arnol'd, "On Newtonian attraction of agglomerations of dust particles,” Usp. Mat. Nauk, 37, No. 4,.125 (1982).
V. L. Arnol'q, 'Singulari}ies of the boundaries of spaces of differential equations,” Usp. Mat. Nauk, 41, No. 4, 1552-1
(1986).

V. L. Arnol'd, "Sturm theorems and symplectic geometry,” Funkts. Anal. Prilozhen,, 19, No. 4, 1-10 (1985). »

V. L. Arnol'd, A N. Varchenko, and S. M. Gusein-Zade, Singulariatics of Differcntiable Maps, Vol. I {in Russiar
Nauka, Moscow (1982).

M. F. Atyah, R. Bott, and L. Garding, "Lacunas for hyoerbolic diffzrential operators with constant coefficients. I," Us
Mat. Nauk, 26, No. 2, 25-100 (1971).

M. F. Atyah, R. Bott, and L. Garding, "Lacunas for hyperbolic differential operators with constant coefficients. I, Us
Mat. Nauk, 39, No. 3, 171-224 (1984). .

A. D. Vainshtein and B. Z Shapiro, "Singularities of hypebolic curves and boundaries of hyperbolicity,” Usp. Mat. Nau
40, No. 5, 305 (1985).

V. A Vasil'ev, "Sharpness and the local Petrovskii condition for strictly hyperbolic operators with constant coefficients
Izv. Akad. Nauk SSSR, Ser. Mat,, 50, No. 2, 242-283 (1986).

A. B. Givenual’, "Polynomiality of electrostatic poteatials,” Usp. Mat. Nauk, 39, No. 5, 253-254 (1984).

V. 1. Matov, "Ellipticity regions of general families of homogeneous poynomials and extremum functions,” Funkts. Anz
Prilozhen., 19, No. 2, 26-36 (1985).

O. A. Oleinik and M. A. Shubin, "International confcrence of graduates of the Faculty of Mechanics and Mathematic
of the Moscow State University on Differential Equation and Their Applications,® Usp. Mat. Nauk, 37, No. 6, 261-28
(1982).

I. G. Petrovskii, "On the diffusion of waves and the lacunas for hyperbolic equations,” Mat. Sb., 14, 289-370 (1945).
V. A. Rokhlin, "Complex topological characteristics of rcal algebraic curves,” Usp. Mat. Nauk, 33, No. 5, 77-78 (1978)
J. M. Ball, *Differentiability properties of symmetric and isotropic functions,” Duke Math. J., 51, No. 3, 699-728 (1984
L. Garding, "An inequality for hyperbolic polynomials,” J. Math. Mech., 8, No. 6, 957-965 (1959).

L. Garding, "Local hyperbolicity,” Isr. J. Math., 13, No. 1-2, 65-81 (1972).

W. Nuij, “A note on hyperbolic. polynomials,” Math. Scand., 23, No. 1, 69-72 (1968).

333




