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Abstract. Geometry of polynomials whose classical achievements are beau-
tifully summarized in Marden’s treatise [Ma] deals with the location of roots

and critical points of univariate polynomials. Below, given a univariate poly-

nomial P (z), we consider the closure of the union of all roots of all polynomials

of the form dm

dzm
(Pn(z)) where n and m are arbitrary positive integers; we call

this closure the shadow of P (z). Under some mild non-degeneracy assump-

tions, the shadow of P (z) is a domain inside the convex hull of its zero locus.

Imposing some extra assumptions, we describe the boundary and study some
properties of the shadow. Many open questions are formulated.

1. Introduction

The area of mathematics called the geometry of polynomials was initiated by
C. F. Gauss after his discovery of what is now called Gauss-Lucas theorem and
his interpretation of the critical points of a polynomial as the points of equilibria
for the logarithmic electrostatic field created by the configuration of charges placed
at the roots of the polynomial where the charge placed at a given root equals its
multiplicity. Since then numerous generalizations of both Gauss-Lucas theorem
and the study of points of equilibria for configurations of point charges in the plane
and higher dimensions have been suggested. A number of fascinating (and still
open) conjectures relating the roots and the critical points of a complex univariate
polynomials have been formulated over the years; among them the most notorious
being the Sendov and the Smale conjectures. In addition to the critical points of
a given polynomial P (z), i.e., the roots of P ′(z), many papers discuss the roots of
higher derivatives of P (z), its polar derivatives etc. ADD MANY REFERENCES
HERE INCLUDING SENDOV-SENDOV...

In this paper, for any given polynomial P of degree d ≥ 1, we consider a double-
indexed family {Pm,n,P } of polynomials given by

Pm,n,P (z) :=
dm

dzm
(Pn(z)) , n = 1, 2, 3, . . . and m = 0, 1, . . . , nd− 1.

Following [BoHaSh], we call polynomials Pm,n,P (z) Rodrigues’ descendants of P .
We will refer to the roots of Pm,n,P (z) as generalized critical points of P (z). (Since
a polynomial P will be fixed, in what follows, we sometimes skip the index P and
use the notation Pm,n(z).)
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Further, let us define the sequence {Qn,P }∞n=1 as

Qn,P (z) :=

nd−1∏
m=0

Pm,n,P (z). (1.1)

Example 1. An interesting example of polynomials Pn,n(z) has been introduced
in 1816 by (Benjamin) Olinde Rodrigues who discovered his famous formula

Pn(z) =
1

2nn!

dn

dzn
(
(z2 − 1)n

)
(1.2)

for the Legendre polynomials which since then became a standard tool in the theory
of classical orthogonal polynomials and special functions, see e.g. [AbSt]. (Later
the same formula was rediscovered by J. Ivory and C. G. Jacobi, see [As]). For
many classical families of orthogonal polynomials there is an analog of Rodrigues
formula.

The main object of our study is the asymptotics as n→∞ of the sequence {µn}
of the root-counting measures for the polynomial sequence {Qn} and show that it
weakly converges to a certain probability measure µP supported on a domain ΥP

which we call the shadow of the polynomial P and which lies inside the convex hull
of its roots, see illustrations in Fig. 1. We will show that ΥP is the closure of the
set of all generalized critical points of P (z) and we shall study its properties.

The shadow of a polynomial has been earlier introduced in our manuscript
[BoHaSh] where the following conjecture was formulated. We say that a polynomial
P of degree at least 3 has roots in convex position if they are not aligned and each
of them is a vertex of their convex hull. In particular, every cubic polynomial P
whose roots are not aligned has this property.

Conjecture 1. For any polynomial P of degree at least 2 whose roots are in convex
position but do not form a regular polygon,
(i) ΥP is a concave domain.
(ii) The boundary of ΥP is contained in the union of all critical values (w.r.t. z)
of the rational function

Fα(z) = z − α P (z)

P ′(z)
. (1.3)

where the parameter α runs over the interval [0, d]. In other words, ΥP consists

of all u for which the family Φ̃(α, z, u) = αP (z) + (u− z)P ′(z) has a multiple root
w.r.t. z when α ∈ [0, d].

Remark 1. In the case when the roots of P (z) form a regular polygon, ΥP is the
union of straight intervals connecting its vertices with its center.

Recall that a polar derivative of a polynomial P (z) of degree d w.r.t. a point
u ∈ C is defined by

DuP (z) = dP (z) + (u− z)P ′(z),
see [Ma]. Thus if we introduce the generalized polar derivative of P (z) w.r.t a point
u ∈ C with parameter α as given by

D(α)
u P (z) = αP (z) + (u− z)P ′(z)

then Conjecture 1 claims that the boundary of ΥP is contained in the union of all

u for which there exists α ∈ [0, d] such that D
(α)
u P (z) has a multiple root w.r.t. z.
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Figure 1. The union of all zeros of Pm,30,P (z) for m = 0, 1,
. . . , 30 degP − 1 shown by small red dots. The large dots are
the zeros of P , the large squares are the critical points of P , the
triangle is the center of mass of the zero locus of P , and the small
squares are the branch points of (5.1) and (5.3) in the z-plane.

The goal of this paper is to settle Conjecture 1. In case when the roots of P (z)
are not in convex position Conjecture 1 is no longer true as it stands. We are
currently looking for its generalization.

Corollary 1. The usual critical points of P and its mass center lie on the boundary
of ΥP .

The structure of the paper is as follows......

Acknowledgements. The second author wants to acknowledge the financial support
of his research provided by the Swedish Research Council grant 2016-04416.

2. Properties of the shape curve ΘP and the shape contour BP
Notation 1. Given a polynomial P (z) as above, consider the trivariate polynomial
ΦP (α, z, y) given by

ΦP (α, z, y) :=

d∑
k=0

α− k
k!

P (k)(z)yk. (2.1)

Denote by ΓP ⊂ Cα × Cz × Cy the affine surface in the space with coordinates
(α, z, y) given by the equation ΦP (α, z, y) = 0 and denote by ΓP (α) ⊂ Cz × Cy
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the affine curve obtained as the plane section of ΓP if one fixes α. Finally, for α
fixed, let BrP (α) ⊂ Cz be the branching locus of the projection of the curve ΓP (α)
on the z-coordinate. Define the discriminant of critical values (shorthand, the
c.v-discriminant) of the polynomial P as given by the formula

DscP (α, z) := Discriminanty(ΦP (α, z, y)) = Resultant(ΦP (α, z, y),
d

dy
ΦP (α, z, y), y)

and define the c.v-curve CP ⊂ Cα × Cz of P as the zero locus of its c.v-
discriminant. (The explanation for the terminology can be found in § 2.) We
will call ΦP (α, z, y) the generating family of the c.v-curve CP .

Observe that DscP (α, z) is a bivariate polynomial in the variables (α, z) and
that BrP (α) is given by the condition DscP (α, z) = 0 where α is fixed.

Notation 2. Given a univariate polynomial P , define its shape curve ΘP as

ΘP := ∪α∈RBrP (α) ⊂ Cz ' R2

and define its shape contour BP as

BP = ∪α∈[0,d]BrP (α) ⊂ ΘP .

The set BP is shown by the blue curves in Figure 1.

Remark 2. Obviously, ΘP is obtained by projecting to the coordinate Cz the re-
striction CR

P of the c.v-curve CP ⊂ Cα × Cz to the 3-dimensional space Rα × Cz.

Theorem 1. If the roots of P are in convex position then the boundary of ΥP is
contained in the shape contour BP .

Lemma 2. In the above notation,

(i) ΦP (α, z, y) = αP (z + y)− y d
dy
P (z + y);

(ii) DscP (α, z) = b(α − d)D̂P (α, z), where D̂P (α, z) is a bivariate polynomial in
(α, z), b is the leading coefficient of P , and d = degP .
(iii) The c.v-curve CP ⊂ Cα ×Cz can be obtained as the zero locus of the discrimi-
nant with respect to the variable u of the trivariate polynomial

Φ̂(α, z, u) = αP (u)− (u− z)P ′(u). (2.2)

(iv) For any fixed α (real or complex), the divisor BP (α) coincides with the divisor
of all critical values (in the variable u) of the rational function

Fα(u) = u− α P (u)

P ′(u)
. (2.3)

Therefore the shape curve ΘP is the union of all critical values of Fα(u) taken over
all α ∈ R.

Proof. To prove (i), observe that

ΦP (α, z, y) :=

d∑
k=0

α− k
k!

P (k)(z)yk = α

d∑
k=0

P (k)(z)

k!
yk−

d∑
k=1

P (k)(z)

(k − 1)!
yk = αP (z+y)−y d

dy
P (z+y).

The last equality is valid since P is a univariate polynomial of degree d to which
we apply the Taylor expansion in the variable y at the point z. �
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Lemma 3. Consider the expansion of D̂P (α, z) in powers of z:

D̂P (α, z) = κ
(0)
P z2d−2 + κ

(1)
P z2d−3 + κ

(2)
P z2d−4 + · · ·+ κ

(2d−3)
P z + κ

(2d−2)
P .

Then, for every j = 1, . . . , 2d − 2, κ
(j)
P is a polynomial in α and coefficients of P .

Moreover except for j = 2d− 3 the degree of κ
(j)
P in the variable α equals j. In the

remaning case the degree of κ
(2d−3)
P in the variable α equals 2d− 4.

For α fixed, define the positive divisor ΘP (α) in the complex plane Cz obtained

as the locus of solutions D̂P (α, z) = 0. If κP 6= 0 which is equivalent to P ′(z)
having simple roots, then ΘP (α) is a divisor of degree 2d − 2 for every (complex)
value of α.

Lemma 4. (i) The shape curve ΘP ⊂ Cz ' R2 is real semi-algebraic in the
coordinates (x, y) where x and y are the real and imaginary parts of z respectively.
(ii) If P ′ has only simple roots, then ΘP (0) = 2 · div(P ′).
(iii) ΘP (1) ⊃ div(P ).
(iv) ΘP (d) 3 mass center.
(v) For generic P , ΘP is smooth except for the cusps at all roots of P .
(vi) limα→±∞ΘP (α) =???

Proof. To settle (i) notice that as we mentioned in Remark 2, the shape curve is
the projection of the curve CR

P ⊂ R3 to the last two coordinates. CR
P is obviously

real algebraic. So its projection is real semialgebraic. Figure 2 below shows that
semialgebraicity can actually occur.

To settle (ii), first observe that the family Φ̃(α, z, y) can be rewritten as

Φ̂(α, z, u) = αP (u)− (u− z)P ′(u)

where u = z+ y. Thus Φ̂(0, z, u) = −(u− z)P ′(u). If P ′ has only simple roots then

Φ̂(0, z, u) has a multiple root in the variable u if and only if z coincides with one
of the roots of P ′(u). The degree of ΘP (1) equals 2d − 2. Thus it is more or less
clear that ΘP (0) = 2 · div(P ′).

To settle (iii), observe that Φ̂(1, z, u) = P (u) − (u − z)P ′(u). If P (z) = (u −
u1)(u − u2) . . . (u − ud), then P ′(u) = P (u)

(
1

u−u1
+ 1

u−u2
+ · · ·+ 1

u−ud

)
. Thus if

z = uj then Φ̂(1, z, u) has a double root at uj . Computer experiments show that

for a generic P (u), Φ̂(1, z, u) has additional d− 2 distinct roots away from div(P ).

To settle (iv), observe that Φ̂(d, z, u) = dP (u) − (u − z)P ′(u). Assume that
P (u) = (u−u1)(u−u2) . . . (u−ud). Thus the mass center m is given by u1+u2+···+ud

d .

Further Φ̂(d, β1

d , u) will become a polynomial of degree at most d − 2, i.e. its two
leading coefficieints will cancel out. Thus it will gain a multiple root at ∞. �

Lemma 5. Given a monic polynomial P , the α-curve CP ⊂ Cα×Cz is birationally
equivalent to the curve ΛP ⊂ Cν ×Cµ which is induced from the standard discrim-
inant in the space of all monic polynomials of degree d by the map given by the
2-dimensional affine subspace

ΨP (ν, µ, u) = P (u) + ν(dP (u)− uP ′(u)) + µP ′(u), (2.4)

under the birational variable change ν = 1
α−d , µ = z

α−d ⇔ α = 1
ν + d, z = µ

ν .
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Figure 2. The shape curve of the quartic polynomial P (z) =
z(z − 1)(z − I)(z − 1− I).

Proof. Assume that P (u) = ud + β1u
d−1 + β2u

d−2 + · · ·+ βd. Then using (2.2) we
get

Φ̂P (α, z, u) = αud + αβ1u
d−1 + . . . αβd + z(dud−1 + (d− 1)β1u

d−2 + · · ·+ βd−1)

−(dud + (d− 1)β1u
d−1 + · · ·+ βd−1u) = (α− d)ud + ((α− d + 1)β1 + zd)ud−1+

+((α− d + 2)β2 + z(d− 1)β1)ud−2 + ((α− d + 3)β3 + z(d− 2)β2)ud−3 + . . . .

Diving Φ̂(α, z, u) by (α− d) and using ν = 1
α−d we get the family

ud+((1+ν)β1+zdν)ud−1+((1+2ν)β2+z(d−1)β1ν)ud−2+· · ·+(1+dν)βd+zβd−1ν.

Denoting µ = zν, we get the family

ΨP (ν, µ, u) = ud+((1+ν)β1+µd)ud−1+((1+2ν)β2+µ(d−1)β1)ud−2+((1+3ν)β3+µ(d−2)β2)ud−3

· · ·+ (1 + dν)βd + µβd−1.

Regrouping the terms we get

ΨP (ν, µ, u) = P (u)+ν(β1u
d−1+2β2u

d−2+· · ·+dβd)+µ(dud−1+(d−1)ud−2+· · ·+βd−1)

= P (u) + ν(dP (u)− uP ′(u)) + µP ′(u).

The curve ΛP ⊂ Cν × Cµ consisting of those pairs (ν, µ) for which (2.4) has a
multiple root in the variable u is birationally equivalent to the α-curve CP . The
isomorphism is induced by the birational variable change ν = 1

α−d , µ = z
α−d =

zν. �

Remark 3. We can also use the generating family

ΞP (ν, z, u) = P (u) + ν(dP (u)− uP ′(u)) + zνP ′(u),

where ν = 1
α−d . This family gives the same shape curve ΘP as the initial family

when ν runs over R and the same shape contour BP when ν runs over the interval
(−∞,− 1

d ].

Remark 4. Using (2.2), we can determine the branching locus BrP (α) ⊂ Cz as
the locus of all z such that the hyperbola α

u−z has a non-transversal intersection

with the graph of the logarithmic derivative P ′(u)
P (u) . Indeed, BrP (α) consists of those
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z for which Φ̂(α, z, u) has a multiple root in the variable u. Zeros of Φ̂(α, z, u) are
given by the equation

P ′(u)

P (u)
=

α

u− z
which implies the claim.

3. Examples: Simplifying the discriminant

In this section, we will simplify D α
P (z) := Discriminantu(f(u)), where f(u) :=

αP (u) + (z − u)P ′(u) and P (z) := zd + ad−1z
d−1 + . . .+ a1z + a0.

3.1. Cubic polynomials. We begin with the polynomial P (z) := z3 +bz2 +cz+κ.
In this situation we have d = 3, and

D α
P (z) = 36

(
b2 − 3c

)
z4 +

[
48b(b2 − 3c)− 4(2b3 − 9bc+ 27κ)α

]
z3

+
[
8(b2 − 3c)(2b2 + 3c)− 4(4b4 − 21b2c+ 18c2 + 27bκ)α+ 4(b2 − 3c)2α2

]
z2

+
[
16bc(b2 − 3c) + 4(−4b3c+ 15bc2 + 18b2κ− 81cκ)α+ 4(b2 − 3c)(bc− 9κ)α2

]
z

+ 4c2(b2 − 3c) + 4(−3b2c2 + 10c3 + 8b3κ− 27bcκ)α

+ (13b2c2 − 48c3 − 48b3κ+ 198bcκ− 243κ2)α2 − 6
(
b2c2 − 4c3 − 4b3κ+ 18bcκ− 27κ2

)
α3

+
(
b2c2 − 4c3 − 4b3κ+ 18bcκ− 27κ2

)
α4. (3.1)

Notice that

D 0
P (z) = Discriminantu(0 · P (u) + (z − u)P ′(u)) = (P ′(z))2 ·Discriminantz(P

′(z))

= 36
(
b2 − 3c

)
z4 + 48b

(
b2 − 3c

)
z3 + 8

(
b2 − 3c

) (
2b2 + 3c

)
z2

+ 16bc
(
b2 − 3c

)
z + 4c2

(
b2 − 3c

)
.

By comparing the latter expression to (3.1), we see that

D α
P (z) = D 0

P (z) −
[
4(2b3 − 9bc+ 27κ)α

]
z3 −

[
4(4b4 − 21b2c+ 18c2 + 27bκ)α− 4(b2 − 3c)2α2

]
z2

+
[
4(−4b3c+ 15bc2 + 18b2κ− 81cκ)α+ 4(b2 − 3c)(bc− 9κ)α2

]
z

+ 4(−3b2c2 + 10c3 + 8b3κ− 27bcκ)α+ (13b2c2 − 48c3 − 48b3κ+ 198bcκ− 243κ2)α2

− 6
(
b2c2 − 4c3 − 4b3κ+ 18bcκ− 27κ2

)
α3 +

(
b2c2 − 4c3 − 4b3κ+ 18bcκ− 27κ2

)
α4.

(3.2)

Furthermore, note that

α
(
D 0
P (z) −D

−1
P (z)

)
= −4(2b3 − 9bc+ 27κ)αz3 − 4(5b4 − 27b2c+ 27c2 + 27bκ)αz2

+ 4(−5b3c+ 18bc2 + 27b2κ− 108cκ)αz + 4(−8b2c2 + 29c3 + 27b3κ− 108bcκ+ 108κ2)α.

Adding and subtracting the above expression from (3.2) and simplifying the result-
ing expression, we obtain

D α
P (z) = D 0

P (z) + α
(
D 0
P (z) −D

−1
P (z)

)
+ 4α(α+ 1)(b2 − 3c)2z2 + 4α(α+ 1)(b2 − 3c)(bc− 9κ)z

+ 4(5b2c2 − 19c3 − 19b3κ+ 81bcκ− 108κ2)α+ (13b2c2 − 48c3 − 48b3κ+ 198bcκ− 243κ2)α2

− 6(b2c2 − 4c3 − 4b3κ+ 18bcκ− 27κ2)α3 + (b2c2 − 4c3 − 4b3κ+ 18bcκ− 27κ2)α4.
(3.3)
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Clearly, the last four terms in (3.3) resemble

Discriminantz(P (z)) = b2c2 − 4c3 − 4b3κ+ 18bcκ− 27κ2, (3.4)

while the z and z2 terms are identical to those found in

α(α+ 1)

4
Discriminantz(P

′(z))D d
P (z) = 4α(α+ 1)(b2 − 3c)2z2

+ 4α(α+ 1)(b2 − 3c)(bc− 9κ)z + 4α(α+ 1)(b2 − 3c)(c2 − 3bκ). (3.5)

By adding and subtracting (3.5) from (3.3) and using (3.4), this yields

D α
P (z) = D 0

P (z) + α
(
D 0
P (z) −D

−1
P (z)

)
+ α(α+ 1)

(
Discriminantz(P

′(z))D d
P (z)

4
+ (α(α− 7) + 16) Discriminantz(P (z))

)
,

(3.6)

or, apparently,

D α
P (z) = D 0

P (z) + α
(
D 0
P (z) −D

−1
P (z)

)
+
α(α+ 1)

2!

((
D 0
P (z) −D

−1
P (z)

)
−
(
D−1
P (z) −D

−2
P (z)

))
+ α(α+ 1)(α+ 2)(α− 9) ·Discriminantz(P (z)). (3.7)

3.2. Quartic and higher polynomials. We will now consider the polynomial
P (z) := z4+bz3+cz2+ez+f . In this situation we have d = 4, and as in the previous
subsection we want to simplify D α

P (z) = Discriminantu(α · P (u) + (z − u)P ′(u)).

By considering the pattern in equation (3.7) above, we quickly find that

D α
P (z) = D 0

P (z) + α
(
D 0
P (z) −D

−1
P (z)

)
+
α(α+ 1)

2!

((
D 0
P (z) −D

−1
P (z)

)
−
(
D−1
P (z) −D

−2
P (z)

))
+
α(α+ 1)(α+ 2)

3!

[((
D 0
P (z) −D

−1
P (z)

)
−
(
D−1
P (z) −D

−2
P (z)

))
−
((
D−1
P (z) −D

−2
P (z)

)
−
(
D−2
P (z) −D

−3
P (z)

))]
+
α(α+ 1)(α+ 2)(α+ 3)

4!

[[((
D 0
P (z) −D

−1
P (z)

)
−
(
D−1
P (z) −D

−2
P (z)

))
−
((
D−1
P (z) −D

−2
P (z)

)
−
(
D−2
P (z) −D

−3
P (z)

))]
−
[((
D−1
P (z) −D

−2
P (z)

)
−
(
D−2
P (z) −D

−3
P (z)

))
−
((
D−2
P (z) −D

−3
P (z)

)
−
(
D−3
P (z) −D

−4
P (z)

))]]
+ α(α+ 1)(α+ 2)(α+ 3)(α+ 4)(α− 22) ·Discriminantz(P (z)). (3.8)

Note that if Yk denotes the coefficient of
∏k
j=1(α + j − 1)/j in equation (3.8),

k = 0, . . . , 4 (with Y0 = D 0
P (z)), then Yk+1 = Yk−Y ′k, k = 0, . . . , 3. Here Y ′k is equal

to Yk with the indices of all generalized polar derivatives contained therein shifted
down by 1. This “sum of finite differences” hints at a differential operator being at
work. It also hints at a sum of binomial coefficients with alternating signs. In fact,
we find that

D α
P (z) =

(
0

0

)
D 0
P (z) + α

((
1

0

)
D 0
P (z) −

(
1

1

)
D−1
P (z)

)
+
α(α+ 1)

2!

((
2

0

)
D 0
P (z) −

(
2

1

)
D−1
P (z) +

(
2

2

)
D−2
P (z)

)
+
α(α+ 1)(α+ 2)

3!

((
3

0

)
D 0
P (z) −

(
3

1

)
D−1
P (z) +

(
3

2

)
D−2
P (z) −

(
3

3

)
D−3
P (z)

)
+
α(α+ 1)(α+ 2)(α+ 3)

4!

((
4

0

)
D 0
P (z) −

(
4

1

)
D−1
P (z) +

(
4

2

)
D−2
P (z) −

(
4

3

)
D−3
P (z) +

(
4

4

)
D−4
P (z)

)
+ α(α+ 1)(α+ 2)(α+ 3)(α+ 4)(α− 22) ·Discriminantz(P (z)). (3.9)
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Equation (3.9) can be written more succinctly as

D α
P (z) =

2d−4∑
k=0

 k∏
j=1

α+ j − 1

j

 k∑
j=0

(
k

j

)
(−1)jD−jP (z)

+Discriminantz(P (z))(α−22)

2d−4∏
j=0

(α+j).

(3.10)
Note that (3.10) is identical to equation (3.7) for cubic polynomials, i.e. d = 3,

if the 22 is replaced by 9. If P is a quintic polynomial, i.e. d = 5, then equation
(3.10) holds if the 22 is replaced by 41. For sextic P , the 22 should be replaced by
66. For general d ≥ 2, this pattern indicates that

D α
P (z) =

2d−4∑
k=0

 k∑
j=0

(
k

j

)
(−1)jD−jP (z)

 k∏
j=1

α+ j − 1

j


+ Discriminantz(P (z))(α− 3d2 + 8d− 6)

2d−4∏
j=0

(α+ j), (3.11)

where the sequence of numbers given by 3d2 − 8d + 6, d = 1, 2, 3, . . . corresponds
to the first spoke of a hexagonal spiral; see sequence A056105 in the OEIS. By
changing the upper limit of summation in (3.11) from 2d − 4 to 2d − 2, equation
(3.11) can be written as

D α
P (z) =

2d−2∑
k=0

 k∏
j=1

α+ j − 1

j

 k∑
j=0

(
k

j

)
(−1)jD−jP (z)

 . (3.12)

Now let E be the forward shift operator that changes D−jP (z) to D−j−1
P (z) , and let

∆ = E − 1 be the forward difference. Using this notation, and the fact that the
inner sum in (3.12) is 0 if k > 2d− 2, it follows from (3.12) that

D α
P (z) =

∞∑
k=0

 k∏
j=1

α+ j − 1

j

 k∑
j=0

(
k

j

)
(−1)jD−jP (z)


=

∞∑
k=0

 k∏
j=1

α+ j − 1

j

 (−∆)k D 0
P (z)

 = (∆ + 1)−αD 0
P (z). (3.13)

The last equality in (3.13) follows when (∆ + 1)−α is interpreted as a power series
acting on the vector space of polynomials in one variable. Furthermore, by applying
the inverse Euler transform to the first series in (3.13) (see [Ko]), this yields the
following result:

Proposition 6. Let P (z) be a polynomial of degree d ≥ 2 and let D α
P (z) :=

Discriminantu(αP (u) + (z − u)P ′(u)). Then

D α
P (z) = E−αD 0

P (z), (3.14)

where E−αD 0
P (z) denotes the application of the forward shift operators in the Taylor

series for E−α at E = 1 to D 0
P (z).

Proof. Note that an Euler sum of E−αD 0
P (z) is the series after the first equality in

(3.13), that all series involved converge, and that, consequently, equations (3.12)
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and (3.14) are equivalent. Thus, to prove (3.14), it is sufficient to show that

2p−2∑
k=0

 k∏
j=1

λ+ j − 1

j

 k∑
j=0

(
k

j

)
(−1)j(−j)p

 =

{
0 if p < 2,

λp if p ≥ 2.
(3.15)

for any fixed numbers λ ∈ C and p ∈ N. (*** Some details about fibers here? ***)
The cases p = 0 and p = 1 in equation (3.15) follow easily from direct calculations.
When p ≥ 2, we see that

k∏
j=1

λ+ j − 1

j
=

(λ)k
k!

and
k∑
j=0

(
k

j

)
(−1)j(−j)p = (−1)p

k∑
j=0

(
k

j

)
(−1)jjp = (−1)k+p k!

{p
k

}
,

where (λ)k = Γ(λ+k)
Γ(λ) is the Pochhammer symbol and

{
p
k

}
is a Stirling number of

the second kind. Consequently, since
{
p
k

}
= 0 for all k > p, the left-hand side of

equation (3.15) can be written as

(−1)p
2p−2∑
k=0

(−1)k
{p
k

}
(λ)k = (−1)p

p∑
k=0

(−1)k
{p
k

}
(λ)k = (−1)p(−λ)p = λp.

�

Remark 5. Note that we can write E−α as
∑∞
k=0

(−α
k

)
(E− 1)k or

∑∞
k=0

(−α
k

)
∆k.

Remark 6. Note that D 0
P (z) = (P ′(z))2 · Discriminantz(P

′(z)), but no similarly

“simple forms” of D−kP (z) are currently known for k = 1, 2, 3, . . .

By evaluating the inner sum in equation (3.12) for k = 2d − 2 and making
use of the forward difference and forward shift operators, we obtain the following
conjecture.

Conjecture 2. Let P (z) be a polynomial of degree d ≥ 2. Then

Discriminantz(P (z)) =
1

(2d− 2)!

2d−2∑
j=0

(
2d− 2

j

)
(−1)jD−jP (z) =

(E − 1)2d−2

(2d− 2)!
D 0
P (z),

(3.16)
and

Discriminantz(P (z)) =
1

−3(d− 1)2 (2d− 3)!

2d−3∑
j=0

(
2d− 3

j

)
(−1)jD−jP (z). (3.17)

Remark 7. By averaging the sums in (3.16) and (3.17), we get

Discriminantz(P (z)) =

1

12(d− 1)2 (2d− 3)!

2d−2∑
j=0

(
3(d− 1)

(
2d− 2

j

)
− 2

(
2d− 3

j

))
(−1)jD−jP (z). (3.18)

Remark 8. It follows from (3.16) and (3.17) that

D−(2d−2)
P (z) =

2d−3∑
j=0

(
2

3− 3d

(
2d− 3

j

)
−
(

2d− 2

j

))
(−1)jD−jP (z). (3.19)
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4. Final Remarks and open problems

1. Practically all the results of the present paper can be generalised to the case
when f is a rational function instead of a polynomial which we plan to do in the
future. However poles of a rational function restrict the possibility of deformation
of the integration contour used in § 5. This leads to a more delicate situation which
requires special analysis.

2. The set-up of the present paper can be randomised and generalized as fol-
lows. Let ξ be a probability measure compactly supported in C. Denote by
Pn =

∏n
i=1(x− ξi) a random polynomial of degree n whose roots are i.i.d. random

variables sampled on ξ. Given a sequence A = {αn} of non-negative integers, set

Qn = P
(αn)
n and denote by µn the root-counting measure of Qn. Results from the

recent papers [PeRi, Ka] motivate the following guess.

Conjecture 3. In the above notation, the following two statements hold:

(i) if αn
n → 0, then the sequence {µn} converges in probability to ξ;

(ii) if αn
n → α, 0 < α < 1, then the sequence {µn} converges in probability to a

measure ξα whose support is contained in the convex hull of the support of ξ;

What we have done in the present paper can be interpreted in the above terms
as follows. We start with a uniform discrete measure ξ supported on the d zeros
of P (z). Then we sample this measure evenly and deterministically nd times, by
forming the series of polynomials Pn(z) := Pn(z) and, finally, we differentiate Pn(z)
[nα] times. This produces a sequence of polynomials {Qn(z)} and the associated
sequence of probability measures {µn}. The proportion between the number of
derivations and the number of sampled points is

A :=
α

d
n+O(1).

5. Appendix 1. Necessary results from [BoHaSh]

In what follows, we will always assume that a polynomial P (z) under consider-
ation satisfies the condition d := degP ≥ 2. The remaining case d = 1 is trivial.

For any polynomial P and its Rodrigues’ descendant Rm,n,P (z), denote by
µm,n,P the root-counting measure of Rm,n,P (z) and by

Cm,n,P (z) :=
R′m,n,P (z)

(dn−m) · Rm,n,P (z)

its Cauchy transform. Notice that dn − m = degRm,n,P . (For the used basic
definitions from potential theory consult § 6 and [Ra].)

Theorem 7. For any polynomial P and a given positive number α < d, there exists
a weak limit

µα,P = lim
n→∞

µ[αn],n,P .

Moreover, its Cauchy transform Cα,P defined as the pointwise limit

C := Cα,P (z) := lim
n→∞

C[αn],n,P (z)

exists almost everywhere (a.e.) in C and satisfies the algebraic equation:
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d∑
k=0

αk−1 (α− k)(d− α)d−k

k!
P (k)Cd−k = 0. (5.1)

Corollary 2. The scaled Cauchy transform W defined by

W :=Wα,P :=
d− α
α
Cα,P (5.2)

satisfies a simpler algebraic equation:

d∑
k=0

α− k
k!

P (k)Wd−k = 0. (5.3)

Corollary 3. Equations (5.1) and (5.3) define rational affine curves which are
irreducible if and only if all roots of P are simple. If P has roots of multiplicity
at least 2, then (5.3) admits a finite number of “trivial” factors of the form W =
(b− z)−1, where b is such a root. The remaining factor of (5.3) is irreducible and
can be written as

αW =
P ′
(
z +W−1

)
P (z +W−1)

=
d logP (z +W−1)

dz
. (5.4)

Remark 9. Equation (5.4) implies the following relation satisfied by the original
Cauchy transform

(d− α)C =
d logP (z + α

d−αC
−1)

dz
. (5.5)

Remark 10. Observe that, for any 0 < α < d, the support Sα,P of µα,P is
contained in the convex hull of the zero locus of the polynomial P .

Corollary 4. For any polynomial P and 0 < α < d, the support Sα;P of µα;P

consists of finitely many compact semi-analytic curves and points. The measure
µα;P has point masses if and only if α < 1.

6. Appendix 2. Basics of logarithmic potential theory

For the convenience of our readers, let us briefly recall some notions and facts
used throughout the text. Let µ be a finite compactly supported complex measure
in the complex plane C. Define the logarithmic potential of µ as

Lµ(z) :=

∫
C

ln |z − ξ| dµ(ξ)

and the Cauchy transform of µ as

Cµ(z) :=

∫
C

dµ(ξ)

z − ξ
.

Standard facts about the logarithmic potential and the Cauchy transform in-
clude:

• Cµ and Lµ are locally integrable; in particular they define distributions on

C and therefore can be acted upon by ∂
∂z and ∂

∂z̄ .
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• Cµ is analytic in the complement in CP 1 ' C ∪ {∞} to the support of µ.
For example, if µ is supported on the unit circle (which is the most classical
case), then Cµ is analytic both inside the open unit disc and outside the
closed unit disc.
• the relations between µ, Cµ and Lµ are as follows:

Cµ = 2
∂Lµ
∂z

and µ =
1

π

∂Cµ
∂z̄

=
2

π

∂2Lµ
∂z∂z̄

=
1

2π

(
∂2Lµ
∂x2

+
∂2Lµ
∂y2

)
.

They should be understood as equalities of distributions.
• the Laurent series of Cµ in a neighborhood of ∞ is given by

Cµ(z) =
m0(µ)

z
+
m1(µ)

z2
+
m2(µ)

z3
+ . . . ,

where

mk(µ) =

∫
C
zk dµ(z), k = 0, 1, . . .

are the harmonic moments of measure µ.

Given a polynomial p, we associate to p its standard root-counting measure

µp =
1

deg p

∑
i

miδ(z − zi),

where the sum is taken over all distinct roots zi of p and mi is the multiplicity of
zi.

One can easily check that the Cauchy transform of µp is given by

Cµp =
1

deg p
· p
′

p
.

For more relevant information on the Cauchy transform we will probably recom-
mend a short and well-written treatise [Ga].

The above notions of a complex measure µ compactly supported in C, its log-
arithmic potential Lµ, and its Cauchy transform Cµ have natural extensions to
similar objects µ̄, L̄µ̄, C̄µ̄ defined on CP 1 ⊃ C and such that the main relations
between these objects are preserved. They are constructed as follows.

(i) For a finite complex measure µ compactly supported in C, we introduce the
signed measure µ̄ of total mass 0 defined on CP 1 by adding to µ the point measure
−m · δ(∞) placed at ∞, where m =

∫
C dµ. (It is natural to think of µ̄ as an exact

2-current on CP 1.)
(ii) The logarithmic potential Lµ is defined as a function on C ⊂ CP 1 with a

logarithmic singularity at ∞. In terms of a local coordinate w = 1/z at ∞ the
logarithmic potential is L1

loc near ∞, and this implies that we may talk about its
derivatives. In the following when we think of Lµ as an object on CP 1 we denote
it by L̄µ̄.

Recall that on any complex manifold the exterior differential d (acting on cur-
rents) is standardly decomposed as d = d′ + d′′, where d′ is the holomorphic part
and d′′ is the anti-holomorphic part. For a function f on a Riemann surface with
a local coordinate z, we get

d′f =
∂f

∂z
dz and d′′f =

∂f

∂z̄
dz̄.
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The above quantities µ̄ and L̄µ̄ satisfy the relation

µ̄ dx ∧ dy =
i

π
d′d′′L̄µ̄.

More explicitly, we have that

µ̄ dx ∧ dy =
1

2π

(
∂2L̄µ̄
∂x2

+
∂2L̄µ̄
∂y2

)
dx ∧ dy =

2

π

∂2L̄µ̄
∂z∂z̄

dx ∧ dy =
i

π

∂2L̄µ̄
∂z∂z̄

dz ∧ dz̄,

where
∂2L̄µ̄
∂z∂z̄ is understood as a distribution on CP 1.

(iii) Finally, the Cauchy transform C̄µ̄ should be understood as an 1-current given
by the relation

C̄µ̄ = 2 d′L̄µ̄ = 2
∂L̄µ̄
∂z

dz.

Then

µ̄ dx ∧ dy =
i

π
d′ d′′L̄µ̄ = − i

2π
d′′C̄µ̄ =

i

2π

∂C̄µ̄
∂z̄

dz ∧ dz̄.

References

[AbSt] M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with formulas,

graphs, and mathematical tables. National Bureau of Standards Applied Mathematics Series,
55, Washington, D.C. 1964 xiv+1046 pp.

[Al] S. Altmann, Olinde Rodrigues, mathematician and social reformer. Gazeta de matemática,
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[BoHaSh] R. Bøgvad, Ch. Hägg, B. Shapiro, Rodrigues’ descendants of a polynomial and Boutroux

curves, arXiv:2107.05710, submitted.
[FlSe] P. Flajolet, R. Sedgewick, Mellin transforms and asymptotics: Finite differences and

Rice’s integrals. Theoretical Computer Science 144 (1995) 101–124.

[Ga] J. B. Garnett, Analytic capacity and measure, LNM 297, Springer-Verlag, 1972, 138 pp.
[GKZ] Gelfand, Kapranov, Zelevinsky, Chapter 12.

[Ho] J. M. Horner, Generalized Rodrigues formula solutions for certain linear differential equa-
tions. Tr. AMS (1965) 31–42.

[Ka] Z. Kabluchko, Critical points of random polynomials with independently identically dis-
tributed roots. Proc. AMS, Volume 143, Number 2, February (2015) 695–702.

[Ko] J. Korevaar, Tauberian Theory: A Century of Developments. Springer, ISBN 3-540-21058-
X.

[Ma] M. Marden, Geometry of polynomials, Math. Surveys, n. 3, AMS, 1966.
[PeRi] R. Pemantle, I. Rivin, The distribution of zeros of the derivative of a random polynomial.

In I. Kotsireas and E. V. Zima, editors, Springer, New York, 2013. Preprint available at
http://arxiv.org/abs/1109.5975

[Ra] T. Ransford, Potential theory in the complex plane. Cambridge University Press, 1995, 232

pp.



SHADOWS OF POLYNOMIALS AND GAUSS-LUCAS THEOREM 15

Department of Mathematics, Stockholm University, SE-106 91 Stockholm, Sweden

Email address: hagg@math.su.se

Department of Mathematics, Stockholm University, SE-106 91 Stockholm, Sweden
Email address: shapiro@math.su.se


