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Abstract. In this note we introduce a family Σi, i = 0, . . . , n− 2 of discriminants in the space
Pn of polynomials of degree n in one variable and study some of their algebraic and topological
properties following [Ar]-[Va] and [GKZ]. The discriminant Σi consists of all polynomials p such

that some nontrivial linear combination α0p+α1p′+ · · ·+αip
(i) has a zero of multiplicity greater

or equal i+2. In particular, using the inversion of differential operators with constant coefficients
(which induces the nonlinear involution on Pn) we obtain the algebraic isomorphism of Σi and

Σn−2−i for all i.

§0. Introduction

It is well known that every solution to a finite nonperiodic Toda lattice

ȧi = ai(bi+1 − bi) , ḃi = ai − ai−1

(i = 0, ..., i ; ai, bi ∈ R ; a0a1...an−1 6= 0 ; a−1 = an = 0) ,

can be presented as

ai(x) =
∆y

i−1(x)∆
y
i+1(x)

(∆y
i (x))2

, bi(x) =
d

dx
ln

(
∆y

i (x)

∆y
i−1(x)

)
,

where ∆y
i (x) is the ith principal minor of the Hankel matrix

Hy(x) =




y(x) . . . y(n)(x)
y′(x) . . . y(n)(x)

...
. . .

...
y(n)(x) . . . y(2n)(x)


 ,
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2 A. L. GORODENTSEV AND B. Z. SHAPIRO

and y(x) is some solution to the linear ordinary differential equation with constant coefficients
of order n + 1 determined by the Toda lattice, see e.g. [BGS]. Therefore singularities of
solutions correspond to the zeros of the determinants of ∆y

i (x). They are also intrinsically
related with Schubert calculus, see [Fl],[GS].

The subset of solutions for which the ith principal minor ∆y
i (x) has a multiple zero for some

x is a hypersurface in the space of all solutions. The union of these hypersurfaces separates
the space of (real) solutions into domains of solutions with different qualitative behavior.

A similar situation occurs both in the theory of linear Hamiltonian systems and linear
ordinary differential equations with one essential difference that instead of the space of solu-
tions one has to consider the space of fundamental systems. Vanishing of principal minors is
related, for example, to the index of the trajectory of a Lagrange subspace. Again the space
of fundamental solutions contains certain discriminants formed by all fundamental solutions
for which at least one of principal minors vanishes with multiplicity ≥ 2. The study of the
stratification of the space of (fundamental) solutions coming from the union of these dis-
criminants is an important open problem even for linear Hamiltonian systems and ordinary
differential equations with constant coefficients.

The present paper is an attempt to study some properties of the above discriminants in
the space of polynomials, i.e. in the space of solutions to the simplest equation x(n+1) = 0.
The paper is organized as follows. §1 contains some general information on induced and
associated discriminants. In §2 we present the corresponding Sylvester formula for associated
discriminants. §3 contains various algebro-topological information, i.e. duality induced by a
special nonlinear involution of the space of monic polynomials, resolution of singularities and
a natural stratification. Finally, in §4 we calculate the cohomology with compact supports
for a specific example.

Acnowledgements. The authors are sincerely grateful to M. Gekhtman and M. Shapiro
who attracted our attention to the singularities of solutions of nonperiodic Toda lattices
and mentioned the reference [HMP]. The authors want to acknowledge the hospitality, nice
research atmosphere and financial support provided by the Deparment of Mathematics of the
University of Stockholm during the beginning and by the Max-Planck Institute during the
final stage of this project.

§1. Induced discriminants Σ̃i and generalized multiple zeros.

1.1. Notations. Given a function y(x) and a positive integer i let us consider ∆y
i (x) the

determinant of the ith principal subminor of the above matrix Hy(x). Zeros of ∆y
i (x) are

called (i− 1)-generalized roots of y. (We shift the index for the sake of convenience.)

Consider now a family F(x, λ1, . . . , λk) of functions in one variable x. The ith induced

discriminant of the family F is the set Σ̃i(F) of values of parameters λ1, . . . , λk for which
∆F

i+1 (considered as a function in x only) has a multiple zero.

The ith associated discriminant of the family F is the set Σi(F) of values of parameters
λ1, . . . , λk for which ∆i satisfies the following condition. There exists a nontrivial linear
combination α0F +α1F ′ + · · ·+αiF (i) which has a zero of multiplicity i+2 at some point x.

The relation between the induced discriminants and the associated discriminants is de-
scribed by the following proposition.

1.2. Proposition. The ith induced discriminant Σ̃i(F), i ≥ 1 of the family F coincides

with the union of two associated discriminants Σi−1(F) ∪ Σi(F) while Σ̃0(F) = Σ0(F).
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Proof. First of all, Σ̃0 = Σ0 by definition. The proof of the fact Σ̃i(F) = Σi−1(F)∪Σi(F)
for all i > 1 is based on manipulations with the subminors in the following Hankel matrix of
the family F(x, λ1, . . . λk)

HF (x, λ1, . . . , λn) =




F , F ′, . . . , F (i+2)

F ′, F ′′, . . . , F (i+2)

...
...

. . .
...

F (i+2), F (i+3), . . . , F (2i+4)


 ,

where F (j) denotes the jth derivative of F w.r.t. x. Let us denote by H
l1,...,lp
m1,...,mq the subma-

trix in HF formed by the rows with numbers l1, . . . , lp and the columns with the numbers

m1, . . . ,mq. By detl1,...,lp
m1,...,mq

we denote the determinant of H
l1,...,lp
m1,...,mq .

Σ̃i consists of all φ ∈ F such that the determinant ∆φ
i+1(x) = det1,...,i+1

1,...,i+1 has a multiple

zero as a function in x, i.e. there exists x such that ∆F
i+1 = (∆F

i+1)′ = 0. Differentiating

∆F
i+1 w.r.t. x one gets that (∆F )′ = det1,...,i+1

1,...,i,i+2. Thus φ ∈ Σ̃i(F) if and only if there exists

x such that det1,...,i+1
1,...,i+1 = det1,...,i+1

1,...,i,i+2 = 0.

At the same time φ ∈ Σi−1(F) if ∃x such that the submatrix H1,...,i+1
1,...,i has the rank < i

and φ ∈ Σi(F) if ∃x such that the submatrix H1,...,i+2
1,...,i+1 or equivalently H1,...,i+1

1,...,i+2 has the rank
< i+ 1.

Obviously, the union Σi−1(F) ∪ Σi(F) is contained in Σ̃i(F). Indeed, if ∃x such that

H1,...,i+1
1,...,i has the rank < i then for the same x one gets det1,...,i+1

1,...,i+1 = det1,...,i+1
1,...,i,i+2 = 0.

Analogously, if ∃x such that the rank of H1,...,i+1
1,...,i+2 is less than i+1 then all its (i+1)× (i+1)-

determinants vanish and, in particular, det1,...,i+1
1,...,i+1 = det1,...,i+1

1,...,i,i+2 = 0.

Let us prove the opposite inclusion. Given φ and x such that det1,...,i+1
1,...,i+1 = det1,...,i+1

1,...,i,i+2 = 0

we get two cases. If for this φ and x the submatrix H1,...,i+1
1,...,i has the rank < i then φ belongs

to Σi−2(F) by definition. At the same time if the rank of H1,...,i+1
1,...,i equals i then the system

det1,...,i+1
1,...,i+1 = det1,...,i+1

1,...,i,i+2 = 0 is exactly equivalent to rk H1,...,i+1
1,...,i+2 < i+ 1.

�

1.3. Generalized discriminants and generalized roots for polynomials. In what
follows we will study the generalized discriminants only for the families of polynomials over
the field C. Let Pn denote the set of all monic polynomials of degree n

p(x) = xn + λ1x
n−1 + · · · + λn, λi ∈ C .

From now we will omit the indication of the family if F = Pn.
For Pn only the first n determinants ∆m, m = 1, . . . , n are functions depending on pa-

rameters λ1, . . . , λn and ∆n+1 = (n+1)!n+1. Thus the only nontrivial induced discriminants

of Pn are Σ̃0, . . . , Σ̃n−1.
Let us denote by Σi the standard associated discriminant Σi(Pn). Σ0 is the usual dis-

criminant (also called the swallowtail), i.e. the set of polynomials with multiple zeros and

the 0-generalized multiple roots are the usual multiple roots. One has Σ̃0 = Σ0, Σ̃n−1 =

Σn−2, Σ̃i = Σi−1 ∩ Σi for i = 1, . . . , (n− 2).
In the last part of this section we show that any polynomial has a finite number of i-

generalized roots counted with multiplicities and therefore a finite number of pairwise different
multiple roots. This result can be also interpreted as the estimation of the complexity of the
selfintersection of the discriminant Σi.
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1.3.1. Proposition. The number of i-generalized roots (counted with multiplicities) of any
polynomial p of degree n is equal to (i+ 1)(n− i). Thus the number of multiple i-generalized

roots of any polynomial of degree n does not exceed (i+1)(n−i)
2 .

Proof. One can easily see that for any p(x) ∈ Pn the degree of ∆i+1(p) as a function of x
is equal to (i+1)(n− i). Let us now consider in the space P(i+1)(n−i) the following 2 subsets,
namely, the n-dimensional image ∆i+1(Pn) and the usual discriminant Σ0 consisting of all
polynomials with multiple zeros. It is not hard to show that ∆i+1(Pn) 6⊂ Σ0. Thus a typical
polynomial in ∆i+1(Pn) has exactly (i+ 1)(n− i) pairwise different i-generalized zeros. The
estimation of the number of pairwise different multiple roots follows.
�

1.3.2. Remark. To calculate the exact value of the maximal number of pairwise different
multiple i-generalized roots for polynomials of degree n is apparently a very nontrivial problem
for all i > 0. (For i = 0 the obvious answer is [n

2 ]).
The authors have made some calculations for i = 1 and small n. Recall that in this case

the upper bound for the maximal number ♯max(i, n) of multiple 1-generalized roots equals
n− 1.

For i = 1 and n = 2, 3, 4, 5, 6 the number ♯max(i, n) equals 1, 1, 3, 4, 4 resp. For the
interesting cases n = 4 and n = 5 the corresponding polynomials p with the maximal number
of pairwise different 1-generalized roots are of the form x4 + ax and x5 + ax resp.

§2. Sylvester formula for Σi

2.1. Projective closure Σ̂i of Σi. In order to write an explicit equation for the hypersurface
Σi let us consider a more general homogeneous problem. Let P1 = P(U) be the projective
line obtained by projectivization of a 2-dimensional vector space U with a base {eo, e1} and
let {t0, t1} be the dual base of U∗. We denote by Vn the space of all homogeneous forms of
degree n in (t0 : t1):

Vn = { p(t) =
n∑

ν=0

λνt
ν
0t

n−ν
1 | λν ∈ C } .

Let us consider the linear operator D : Vn → Vn sending an element p to t0
∂p
∂t1

and denote

by Di ⊂ EndC(Vn) the subspace of all operators of the form

Ψ(D) = ψ0 + ψ1D + · · · + ψiD
i, ψj ∈ C .

2.1.1. Lemma. Projective closure Σ̂i ⊂ Pn = P(Vn) of the surface Σi consists of all forms
p such that Ψp has a zero of multiplicity ≥ (i+ 2) at some point u ∈ P1 for some Ψ ∈ P(Di).

Proof. The standard affine chart {t0 = 1} on P1 = P(U) is an affine line A1 with the
coordinate x = t1/t0 and the standard affine chart {λ0 = 1} on Pn = P(Vn) coincides with

the affine space Pn of all monic polynomials of order n. The operator D = d
dx

on this space

is induced by the operator D = t0
∂
∂t1

on the space Vn. It remains to note that for any p ∈ Pn

and any nontrivial i-tuple α0, α1, . . . , αi the polynomial α0p+α1p
′ + · · ·+αip

(i) has no zeros
of multiplisity ≥ (i+ 2) at infinity, because its degree is greater or equal n− i. Therefore the

affine restriction of the hypersurface Σ̂i coincides with our original discriminant Σi.
�
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2.2. Derivation of determinantal formula. In order to write an explicit homogeneous

equation defining the hypersurface Σ̂i, consider the product

Pi × P1 = P(Di) × P(U)

and denote by S(d1, d2) the space of bihomogeneous forms of bidegree (d1, d2) on this product.
In other words, S(d1, d2) is the space of forms

F (Ψ, t) = F (ψ0, . . . , ψi; t0, t1)

on two groups of variables Ψ = (ψ0, . . . , ψi) and t = (t0, t1), which are homogeneous of degree
d1 in Ψ and homogeneous of degree d2 in t. We associate to each p ∈ Vn the collection of
(i+ 2) forms F 0

p , F
1
p , . . . , F

i+1
p ∈ S(1, n− i− 1) defined by

Fα
p (Ψ, t) =

(
∂

∂t0

)α (
∂

∂t1

)i+1−α

Ψp(t) , α = 0, 1, . . . , (i+ 1) .

2.2.1. Lemma. A form Ψp has a zero of multiplicity ≥ (i+ 2) at a point t ∈ P1 if and only
if all (i+ 2) forms F ν

p vanish at the pair (Ψ, t) ∈ Pi × P1.

Proof. This follows immediately from Taylors formula for Ψp.
�

2.2.2. Resultant hypersurface. It is shown in [GKZ] (ch. 13, §2) that all collections of
(i + 2) forms on Pi × P1, which have a common zero form an irreducible hypersurface in
the projective space of all collections of (i + 2) forms on Pi × P1 of the same bidegree. An
irreducible equation of this hypersurface is called the resultant of (i + 2) forms of a given
bidegree.

In our case the condition that i + 2 forms F 0
p , . . . F

i+1
p have a common zero is equivalent

(see [GKZ], p.439) to the fact that the ideal (F 0
p , . . . F

i+1
p ) generated by these forms does not

contain the subspace S(2, 2n− 2i− 3). More precisely, if we consider the linear operator

∂p : S(1, n− i− 2) ⊕ · · · ⊕ S(1, n− i− 2)︸ ︷︷ ︸
i+2

−→ S(2, 2n− 2i− 3)

induced by multiplication by our forms F 0
p , . . . F

i+1
p , i. e.

∂p : (G0, G1, . . . , Gi+1) 7→
i+1∑

α=0

GαF
α
p ,

then the forms F ν
p have a common zero on Pi×P1 if and only if this operator is not epimorphic.

Since both spaces S(1, n− i− 2)⊕i+2 and S(2, 2n− 2i− 3) have the same dimension equal to
(i + 1)(i + 2)(n − i − 1) the last condition takes the form det (∂p) = 0 as soon as we choose
some bases in both spaces. So, we get

2.2.3. Proposition. The projective closure Σ̂i ⊂ Pn = P(Vn) of the discriminant Σi ⊂ Pn

is an irreducible hypersurface of degree (i+ 1)(i+ 2)(n− i− 1).

Proof. As we have seen above, the condition that for given p ∈ Vn there exists a nontrivial
operator Ψ ∈ P(Di) such that Ψp has a root of multiplicity ≥ i + 2 at some point on P1 is
equivalent to the determinantal condition det (∂p) = 0, where ∂p is the square matrix of the
size (i+ 1)(i+ 2)(n− i− 1) the entries of which are equal to some coefficients of p multiplied
by appropriate constants.
�
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2.3. Some examples of Sylvester formula. In order to write down the matrix ∂p, let us
fix the standard monomial bases in all spaces. Namely, in the space

S(1, n− i− 2) ⊕ · · · ⊕ S(1, n− i− 2)︸ ︷︷ ︸
i+2

we fix the basis {ψ(α)
β tγ0 t

n−i−2−γ
1 }, where α = 0, . . . , i+ 1 enumerates the direct summands,

γ = 0, . . . , n− i− 2 indicates the power of t, and β = 0, . . . , i enumerates the basic vectors of
D∗

i giving the coefficients of Ψ =
∑
ψβD

β .

Similarly, in the space S(2, 2n − 2i − 3) we fix the basis {ψjψkt
l
0t

2n−2i−3−l
1 }. (Note that

ψjψk and ψkψj are two different notations for the same basic vectors; they are convenient
and we hope this will not lead to any confusion in the following formulas).

After some efforts one gets:

∂p(ψ
(α)
β tγ0 t

n−i−2−γ
1 ) =

∑

µ,ν

ζµν
αβγ · ψβψα+µt

γ+ν
0 t

2n−2i−3−(γ+ν)
1 ,

where the summation is taken over all µ, ν such that




0 ≤ ν ≤ n− i− 1

0 ≤ γ + ν ≤ 2n− 2i− 3

−(n− ν) ≤ µ ≤ ν

0 ≤ α+ µ ≤ i

.

The matrix elements ζµν
αβγ are given by

ζµν
αβγ = (ν + 1)(ν + 2) . . . (ν + α)︸ ︷︷ ︸

α

· (n− ν − i)(n− ν − i+ 1) . . . (n− ν + µ)︸ ︷︷ ︸
i+1+µ

·λν−µ ,

where the factors in both underbraced groups are consequently increasing positive integers.

2.3.1. Example. The usual discriminant corresponds to the case i = 0. In this case for a
given p = λ0t

n
1 + λ1t0t

n−1
1 + · · · + λnt

n
0 ∈ Vn we have to construct two forms

F 0
p =

∂p

∂t0
= λ1t

n−1
1 + 2λ2t0t

n−2
1 + · · · + nλnt

n−1
0

F 1
p =

∂p

∂t1
= nλ0t

n−1
1 + (n− 1)λ1t0t

n−2
1 + · · · + λn−1t

n−1
0

and consider the linear operator

∂p : Vn−2 ⊕ Vn−2 → V2n−3

sending (G0, G1) to G0F
0
p +G1F

1
p .

The above bases specialize to the standard monomial bases tα0 t
β
1 of the spaces in question

and the matrix of ∂p gives the classical Sylvester representation for the usual discriminant of
a homogeneous form p. For example, we get the well-known formula

det ∂p = det



λ1 2λ2 3λ3 0
0 λ1 2λ2 3λ3

3λ0 2λ1 λ2 0
0 3λ0 2λ1 λ2


 = 3(4λ3

1λ3 + 4λ0λ
3
2 + 27λ2

0λ
2
3 − λ2

1λ
2
2 − 18λ0λ1λ2λ3) .
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for n = 3 and

det ∂p = det




λ1 2λ2 3λ3 4λ4 0 0
0 λ1 2λ2 3λ3 4λ4 0
0 0 λ1 2λ2 3λ3 4λ4

4λ0 3λ1 2λ2 λ3 0 0
0 4λ0 3λ1 2λ2 λ3 0
0 0 4λ0 3λ1 2λ2 λ3




=

= 16(−λ2
1λ

2
2λ

2
3−256λ3

4λ
3
0 +4λ2

1λ
3
2λ4 +27λ2

0λ
4
3 +4λ3

1λ
3
3 +27λ4

1λ
2
4 +6λ2

1λ
2
3λ4λ0 +192λ1λ3λ

2
4λ

2
0−

18λ1λ
3
3λ0λ2 − 18λ3

1λ3λ4λ2 + 80λ1λ3λ4λ0λ
2
2 − 144λ4λ

2
0λ

2
3λ2 − 144λ2

1λ
2
4λ0λ2 + 128λ2

4λ
2
0λ

2
2 +

4λ3
2λ

2
3λ0 − 166λ4

2λ4λ0) for n = 4.

2.3.2. Example. In another extremal case i = n − 2 for a given p =
∑
λνt

ν
0t

n−ν
1 we have

to construct n bilinear forms

Fα(ψ, t) =
n−2∑

j=0

ψj(c
α
j0t0 + cαj1t1) , α = 0, 1, . . . , n− 1 .

Coefficient in parenthesis is equal to
(
∂
∂t0

)α (
∂
∂t1

)n−1−α

tj0

(
∂
∂t1

)j

p(t0, t1) and the con-

stants c∗∗∗ are given by

cαj0 =

{
(α+ 1)!(n+ j − α− 1)!λα+1−j , for − 1 ≤ α− j ≤ n− 1

0, otherwise

and

cνi1 =

{
(α)!(n+ i− α)!λα−i, for 0 ≤ α− i ≤ n

0, otherwise
.

The operator of multiplication by these forms

∂p : S(1, 0) ⊕ · · · ⊕ S(1, 0)︸ ︷︷ ︸
n

→ S(2, 1)

is represented by a square matrix of the size n(n − 1) and acts on the vectors of the above
basis by the rule

∂p(ψ
(α)
k ) =

n−2∑

i=0

ψkψj(c
α
j0t0 + cαj1t1) =

∑

j,l

ξα
jklψjψktl ,

where

ξα
jkl =





(α+ 1)!(n+ j − α− 1)!λα−j+1 for l = 0; −1 ≤ α− j ≤ n− 1

(α)!(n+ j − α)!λα−j for l = 1; 0 ≤ α− j ≤ n

0, otherwise

and ν = 0, . . . , n− 1; j, k = 0, 1, . . . n− 2; l = 0, 1.

If we order ψ
(α)
k as

ψ0
0 , . . . , ψ

0
n−1 , ψ

1
0 , . . . , ψ

1
n−2, . . . , . . . , ψ

n−1
0 , . . . , ψn−1

n−2 ,
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take ψjψktl only with j ≤ k, and order them lexicographically, then, for example, for n = 3
we get

∂p =




2!λ1 3!λ0 0 3!λ0 0 0
0 2λ1 3!λ0 0 3!λ0 0

2λ2 4λ1 0 2λ1 3!λ0 0
0 2λ2 4λ1 0 2λ1 3!λ0

3!λ3 3!λ2 0 2λ2 4λ1 0
0 3!λ3 3!λ2 0 2λ2 4λ1



,

det ∂p = 512(72λ4
1λ0λ2−189λ2

0λ
2
2λ

2
1−108λ2

0λ
3
1λ3−729λ4

0λ
2
3 +108λ3

0λ
3
2−8λ6

1 +486λ3
0λ2λ1λ3) .

For n = 4 the operator ∂p has the matrix

∂p =




6λ1 24λ0 0 0 0 0 24λ0 0 0 0 0 0
0 6λ1 0 24λ0 0 0 0 24λ0 0 0 0 0
0 0 6λ1 0 24λ0 0 0 0 24λ0 0 0 0

4λ2 12λ1 48λ0 0 0 0 6λ1 24λ0 0 0 0 0
0 4λ2 0 12λ1 48λ0 0 0 6λ1 0 24λ0 0 0
0 0 4λ2 0 12λ1 24λ0 0 0 6λ1 0 24λ0 0

6λ3 12λ2 36λ1 0 0 0 4λ2 12λ1 48λ0 0 0 0
0 6λ3 0 12λ2 36λ1 0 0 4λ2 0 12λ1 48λ0 0
0 0 6λ3 0 12λ2 36λ1 0 0 4λ2 0 12λ1 48λ0

24λ4 24λ3 48λ2 0 0 0 6λ3 12λ2 36λ1 0 0 0
0 24λ4 0 24λ3 48λ2 0 0 6λ3 0 12λ2 36λ1 0
0 0 24λ4 0 24λ3 48λ2 0 0 6λ3 0 12λ2 36λ1




and zero set of its determinant consists of all polynomials

p = λ0t
4
1 + λ1t

3
1t0 + λ2t

2
1t

2
0 + λ3t1t

3
0 + λ4t

4
0

such that there exists a nontrivial linear combination α0p+α1p
′ +α2p

′′, which has a zero of
multiplicity 4.

2.3.1. Example. In the simplest nonextremal case Σ1 ⊂ P4 we get the following explicit

expression for ∂p (where the coordinates of ∂p(ψ
(α)
β tγ0 t

1−γ
1 ) will be written in rows to save

space):

∂p =




12λ0 6λ1 2λ2 0 0 24λ0 6λ1 0 0 0 0 0
0 12λ0 6λ1 2λ2 0 0 24λ0 6λ1 0 0 0 0
0 0 0 0 12λ0 6λ1 2λ2 0 0 24λ0 6λ1 0
0 0 0 0 0 12λ0 6λ1 2λ2 0 0 24λ0 6λ1

3λ1 4λ2 3λ3 0 12λ0 12λ1 6λ2 0 0 0 0 0
0 3λ1 4λ2 3λ3 0 12λ0 12λ1 6λ2 0 0 0 0
0 0 0 0 3λ1 4λ2 3λ3 0 12λ0 12λ1 6λ2 0
0 0 0 0 0 3λ1 4λ2 3λ3 0 12λ0 12λ1 6λ2

2λ2 6λ3 12λ4 0 6λ1 12λ2 12λ3 0 0 0 0 0
0 2λ2 6λ3 12λ4 0 6λ1 12λ2 12λ3 0 0 0 0
0 0 0 0 2λ2 6λ3 12λ4 0 6λ1 12λ2 12λ3 0
0 0 0 0 0 2λ2 6λ3 12λ4 0 6λ1 12λ2 12λ3



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The zero set of the determinant det ∂p consists of all polynomials

p = λ0t
4
1 + λ1t

3
1t0 + λ2t

2
1t

2
0 + λ3t1t

3
0 + λ4t

4
0

such that there exists a nontrivial linear combination α0p+ α1p
′, which has a zero of multi-

plicity ≥ 3.

§3. Affine geometric and topological properties of Σi

3.1. Differential operators. Our studying of the affine geometry of the hypersurface
Σi ⊂ Pn is based on the (non-canonical) affine isomorphism between the spaces of monic
polynomials and invertible linear differential operators with constant coeffitients.

3.1.1. Notation. Consider the vector space Vn ⊂ C[x] of all polynomials of degree ≤ n
and denote by An ⊂ EndC(Vn) the subalgebra of all linear endomorphisms commuting with
all translations p(x) 7→ p(x − a). It is well known (see [Bo]) that An coincides with the
truncated polynomial ring C[D]/Dn+1, where D = d/d x. As in the previous section, we
denote by Di ⊂ An the subspace formed by differential operators of order less or equal i and
by P(Di) — the projectivization of Di.

Let Un ⊂ An be the multiplicative subgroup of all unipotent operators, i.e.

Un = {1 + λ1D + · · · + λnD
n mod(Dn+1) | λk ∈ C} .

Note that all unipotent operators are invertible. For a subset M ⊂ Un we will denote by
M−1 = {m−1 | m ∈M } the set of all inverse operators.

3.1.2. Affine identification of Pn with Un. Let us define the affine isomorphism

ι : Un −→ Pn

by taking a polynomial p ∈ Pn to the unique differential operator Ψp ∈ Un such that p =
Ψp(x

n). In the rest of paper we will usually identify both spaces by this isomorphism.
Almost all our geometric constructions will be done in the space Un. First of all, in the

proposition 3.2. below we describe the ith associated discriminant Σi in terms of Un. In what
follows we will denote this hypersurface in Un by Σi as well and will freely use both versions
Σi ⊂ Pn and Σi ⊂ Un without special indication.

3.2. Proposition. The above isomorphism ι between Un and Pn identifies Σi with the
hypersurface in Un consisting of all operators Ψ for which there exists a triple

(Ξ,Θ, a) ∈ P(Di) × P(Dn−i−2) × C

such that ΞΨ = Θexp (−aD).

Proof. By definition, Σi consists of polynomials p ∈ Pn for which there exists a nontrivial
i-tuple α0, α1, . . . , αi such that α0p+α1p

′ + · · ·+αip
(i) has a zero of multiplicity at least i+2

at some point a ∈ C, i. e. α0p+α1p
′+ · · ·+αip

(i) = (x−a)i+2q(x), where deg(q) ≤ (n−i−2).
In terms of differential operators this means that there exists a pair of operators Ξ ∈ P(Di),
Θ ∈ P(Dn−i−2) and a point a ∈ C such that Ξ(p) = Θ(x− a)n.

Furthermore, the 1-parameter family (x − a)n can be presented as the orbit of the poly-
nomial xn under the action of the 1-parameter subgroup exp (−aD) ⊂ Un, where exp (aD) =∑

(aD)j/j! ∈ Un. Therefore the condition p ∈ Σi is equivalent to the existence of a triple

(Ξ,Θ, a) ∈ P(Di) × P(Dn−i−2) × C

such that p satisfies Ξ(p) = Θexp (−aD)(xn). The isomorphism ι : Un → Pn identifies p with
the unique Ψp such that p = Ψp(x

n). Thus p ∈ Σi if and only if ΞΨp = Θexp (−aD).
�
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3.2.1. Corollary. The involution inv : Ψ → Ψ−1 of Un induces the biregular isomorphism
between the affine algebraic hypersurfaces Σi and Σn−2−i for all i = 0, . . . , n− 2.

Proof. We have to show that the involution inv : Un → Un which sends each operator
Ψ ∈ Un onto its inverse Ψ−1 maps Σi isomorphically onto Σn−i−2. Indeed, Ψ belongs to Σi

if and only if there exists at least one triple

Ξ ∈ P(Di) , Θ ∈ P(Dn−i−2) , a ∈ C such that ΞΨ = Θexp (−aD) .

The last identity is equivalent to Ξ exp (aD) = ΘΨ−1, which exactly means that Ψ−1 belongs
to Σn−i−2.
�

3.2.2. Remark. The involution inv acts on the 1-parameter subgroup exp (aD) ⊂ Un by the
change of the sign of a. So, under the above isomorphism between Σi and Σn−2−i polynomials
with a multiple generalized zero at a point a ∈ C are transformed into polynomials with a
multiple generalized zero at the opposite point −a.
3.2.3. Remark. Since the projective hypersurfaces Σ̂i and Σ̂n−i−2 (considered in the previ-
ous paragraph) have different degrees, the isomorphisms between Σi and Σn−i−2 can not be
extended to the regular isomorphisms of their projective closures and gives only a birational
equivalence.

3.3. Subdivision of Σi by Σi,j. One can easily extend the above results to more general
loci Σi,j ⊂ Pn.

By the definition, Σi,j ⊂ Pn is the set of all polynomials p ∈ Pn such that some nontrivial

linear combination α0p+ α1p
′ + · · ·+ αip

(i) has a zero of multiplicity greater or equal j + 2.
Fixing a ∈ C one gets Σi,j(a) ⊂ Σi,j consisting of all p ∈ Σi,j with a multiple i-generalized
zero at a. We will denote by Σi,j(a) the fiber of Σi,j at the point a ∈ C.

The locus Σi,i coincides with our original discriminant hypersurface Σi. In the general
case, the codimension of Σi,j and Σi,j(a) in Pn is equal to j− i+1 and j− i+2 respectively.
We have a natural stratification

Σi = Σi,i ⊃ Σi,i+1 ⊃ · · · ⊃ Σi,n−3 ⊃ Σi,n−2 ⊃ ø .

Obviously, Σij ⊂
j⋂

ν=i

Σν = Σi ∩ Σj .

Exactly same way as in prop. 3.2. we get

3.3.1. Proposition. The stratum Σi,j is isomorphic to the set of all operators Ψ for which
there exists a triple

(Ξ,Θ, a) ∈ P(Di) × P(Dn−j−2) × C

such that ΞΨ = Θexp (−aD).

�

3.3.2. Corollary. The involution inv : Ψ → Ψ−1 of the affine space Un induces the biregular
algebraic isomorphisms between Σi,j and Σn−2−j,n−2−i for all 0 ≤ i ≤ j ≤ n− 2 and between
Σi,j(a) and Σn−j−2,n−i−2(−a) for all i+ j + 1 ≥ n.

�
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3.4. Desingularization of Σi,j. Now we describe a natural resolution of singularities of
Σi,j , which follows from prop. 3.3.1. Let

Hi,j ⊂ P(Di) × Un × C

be the subvariety of triples (Ξ,Ψ, a) such that ΞΨ = Θexp (−aD) for at least one Θ ∈
P(Dn−i−2).

We denote by Hi,j(a) the fiber of Hi,j over the point −a ∈ C (i. e. the set of all the triples
(Ξ,Ψ,−a) with the same a). Note that any Hi,j(a) can be naturally algebraically identified
with Hi,j(0):

(Ξ,Ψ,−a) ∈ Hi,j(a) ⇐⇒ (Ξ,Ψexp(aD), 0) ∈ Hi,j(0) .

Hence, Hi,j = C ×Hi,j(0).
We fix the notation

π : Hi,j → Σij ∈ Un

for the natural projection of Hi,j onto the second factor in P(Di) × Un × C.

3.4.1. Proposition. Hi,j(0) is a smooth complete intersection of quadrics and thus the
restriction

π|Hi,j(0) : Hi,j(0) → Σij(0)

gives a resolution of singularities of Σi,j(a). Moreover, this resolution is semismall, i. e. it
satisfies the condition:

codim {p ∈ Σi,j(a) : dimπ−1
i (p) ≥ l} = 2l for all l .

Proof. A pair (Ξ,Ψ) =
(
α0 + α1D + ... + αiD , 1 + ψ1D + ... + ψnD

n
)

presents a point

(Ξ,Ψ) ∈ Hi,j(0) if and only if the coefficients of degrees n− j − 1, ..., n in the expansion of

(α0 + α1D + ...+ αiD)(1 + ψ1D + ...+ ψnD
n) ∈ An

vanish. Thus Hi,j(0) is defined in P(Di) × Un by the system of j + 2 quadratic equations in
variables (α0, . . . , αi, ψ1, . . . ψn). In the case i+ j + 1 < n this system has the form





α0ψn + α1ψn−1 + · · · + αiψn−i = 0

α0ψn−1 + α1ψn−2 + · · · + αiψn−i−1 = 0

...

α0ψn−j−1 + α1ψn−i−3 + · · · + αiψn−i−j−1 = 0

.

The Jacobi matrix J of this system is the (j + 2) × (2i+ j + 3) matrix of the form




ψn ψn−1 . . . ψn−i 0 . . . 0 αi αi−1 . . . α0

ψn−1 ψn−2 . . . ψn−i−1

...
. . . αi αi−1 . . . α0 0

...
...

...
... 0

. . .
. . .

. . .
. . .

. . .
...

ψn−j−1 . . . . . . ψn−i−j−1 αi αi−1 . . . α0 0 . . . 0


 .
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Since (α0, α1, . . . , αi) 6= (0, 0, . . . , 0) the rank of J is always equal to j + 2. This means that
Hi,j(0) is a smooth complete intersection. The case i + j + 1 ≥ n is analogous. The Jacobi
matrix contains a unit submatrix and a complementary submatrix of maximal rank.

Let us now consider the map π : Hi,j(0) → Σi,j(0). The inverse image π−1(p) of any
polynomial p ∈ Σi,j(0) is a projective subspace. One has that dim(π−1(p)) equals to the
corank of the above linear system reduced by 1. One can easily show that for a generic
Ψ ∈ Σi,j(0) the corank of the system equals 1 and one gets that Hi,j(0) is a resolution of
singularities of Σi,j(0). Moreover, more detailed consideration of the linear system (or of
the space of Hankel matrices, see §4) show that the set {p ∈ Σi,j(a) : dimπ−1(p) ≥ l} has
codimension 2l in Σi,j(a)and a.
�

3.4.2. Corollary. π : Hi,j → Σij is a resolution of singularities of Σi,j.

3.4.3. Remark. In the case i+j+1 < n the set Hi,j(0) has a nonsingular projective closure

Ĥi,j(0) ⊂ P(Di) × PVn .

Ĥi,j(0) also is a smooth complete intersection of quadrics and one can calculate its cohomol-
ogy as well as that of Hi,j(0).

The existence of a semismall resolution also gives a hope that one can calculate the inter-
section homology of Σi,j(0). In the case i+ j+1 ≥ n the variety Ĥi,j(0) is singular at infinity
with a conic type of singularities.

3.5. Topology of the fiber Σi,j(0). Here we are going to clarify the topology of the zero
fiber Σi,j(0). Recall that in terms of the space Un of unipotent differential operators the
space Σi,j(0) consists of all operators Ψ ∈ Un such that

ΞΨ = Θ for some Ξ ∈ P(Di) , Θ ∈ P(Dn−j−2)

Consider the decreasing filtration

Σi,j(0) = Σ0
i,j(0) ⊃ Σ1

i,j(0) ⊃ · · · ⊃ Σi
i,j(0) ,

where Σl
i,j(0) consists of all Ψ ∈ Σi,j(0) such that any Ξ ∈ Di \ 0 with the property that

ΞΨ ∈ Dn−j−2 is divisible by Dl.
In terms of the prop. 3.4.1, the closed subset Σl

i,j(0) ⊂ Σi,j(0) consists of all Ψ such that

the projection of the fiber π−1(Ψ) ⊂ Hi,j ⊂ P(Di)×Un onto the first factor P(Di) is contained
in the subspace P(Dl · Di) ⊂ P(Di).

3.5.1 Lemma. The difference Σ0
i,j(0) \Σ1

i,j(0) is isomorphic to the space CoPr(i, n− i− 2)
of all pairs of coprime espolynomials

(
1 + α1D + · · · + αrD

r , 1 + ν1D + · · · + νsD
s
)

such that r ≤ i, s ≤ (n− j − 2).

Proof. We are going to verify that the complement

Σ0
i,j(0) \ Σ1

i,j(0) ⊂ Σi,j(0)
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consists of all Ψ(D) = A−1(D)B(D), where A ∈ Un ∩ Di, B ∈ Un ∩ Dn−j−2 are any two
coprime (in C[D]) polynomials, and that Ψ and (A,B) are uniquely determined by each
other.

If Ψ ∈ Σ0
i,j(0) \ Σ1

i,j(0) then there exists at least one pair

A′ = 1 + α1D + · · · + αiD
i , B′ = 1 + ν1D + · · · + νn−j−2D

n−j−2

such that ΨA′ = B′. If A′ and B′ are not coprime then A′ = HA, B′ = HB, where
H = 1 + h1D + · · · + hmD

m is their maximal common factor. Since H is invertible in Un,
one gets ΨA = B and Ψ = A−1B is represented in the required form.

On the other side, if A ∈ Un ∩ Di and B ∈ Un ∩ Dn−j−2 are coprime then the quotient
Ψ = A−1B, obviously, belongs to Σ0

i,j(0)Σ1
i,j(0) and it remains to show that this quotient in

Un determines A ∈ Un ∩ Di and B ∈ Un ∩ Dn−j−2 uniquely. Let us assume that for some

A1 ∈ Un ∩ Di, B1 ∈ Un ∩ Dn−j−2. We have A−1
1 B1 = A−1B in Un and after multiplying by

A1A in Un we get the identity A1B = AB1, which holds in the usual polynomial ring C[D].
Since A and B are coprime, therefore A1 is divisible by A. Thus A1 = A and hence B1 = B.
�

3.5.2. Lemma. The homomorphism of reduction modulo Dn−k+1:

resn,k : Un → Un−k ,

which sends A(D) mod (Dn+1) 7→ A(D) mod (Dn−k+1), maps the k-th complement

Σk
i,j(0) \ Σk+1

i,j (0) in Σi,j(0) ⊂ Un

epimorphically onto the 0-th complement

Σ0
i,j(0) \ Σ1

i,j(0) in Σi−k,j(0) ⊂ Un−k

and the corresponding restriction

Σk
i,j(0) \ Σk+1

i,j (0)
resn,k−−−−→ Σ0

i,j(0) \ Σ1
i,j(0)

is the trivial bundle with the fiber C
k.

Proof. If Ψ ∈ Σk
i,j(0) \ Σk+1

i,j (0) ⊂ Σi,j(0) ⊂ Un, then

DkAΨ = BDk in Un

for some A ∈ Un ∩ Di−k, B ∈ Un ∩ Dn−j−2. Hence, in Un−k we have AΨ̃ = B, where

Ψ̃ = resn,kΨ and

resn,k

(
Σk

i,j(0) \ Σk+1
i,j (0)

)
⊂ Σ0

i,j(0) \ Σ1
i,j(0).

To finish the proof, we describe the complete pullback res−1
n,k

(
Σ0

i,j(0) \ Σ1
i,j(0)

)
. Let Ψ̃ ∈

Σ0
i,j(0) \ Σ1

i,j(0) inside Σi−k,j(0) ⊂ Un−k. As we have seen above, AΨ̃ = B in Un−k for some
A ∈ Un−k ∩ Di−k, B ∈ Un−k ∩ Dn−j−2. If we consider these A,B as elements of Un, then
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for any Ψ ∈ Un such that resn,kΨ = Ψ̃ we get DkΨA = DkB in Un. Thus, Ψ belongs to
Σk

i,j(0) ∈ Un and

res−1
n,k

(
Σ0

i,j(0) \ Σ1
i,j(0)

)
⊂ Σk

i,j(0) ⊂ Σi ⊂ Un.

It remains to prove that the left side locus lies inside Σk
i,j(0) \ Σk+1

i,j (0). But if above Ψ has

the property Ψ ∈ Σk+1
i,j (0) then we get the relation

Dk+1ΨA1 = Dk+1B in Un.

After the reduction modulo Dn−k+1 it takes the form Ψ̃DA1 = DB1, which contradicts to
the condition Ψ̃ /∈ Σ1

i,j(0).
�

3.5.3. Topology of CoPr(r, s). The space CoPr(r, s) can be also interpreted as the space
of all pairs of monic polynomials of degree r and s with no common roots possibly except
for the origin. (The possible multiplicity of a common zero at the origin can vary from 0 to
min(r, s).) Note that the cohomology of the space of all pairs of coprime monic polynomials
of some given degrees is known, see e.g. [Se] but is not of any immediate help for the space
CoPr(r, s). It would be very interesting to calculate the cohomology of the space CoPr(r, s)
and to compare it with that of the usual space of rational functions and the braid space, see
e.g. [Va]. But, unfortunately, the complete information about the cohomology of Σi,j(0) is
unavailable at the present moment. This makes it impossible to calculate the cohomology
even for the case of stable strata which have the simplest form among Σi,j , (see no 3.7 below).

Conjecture. The Leray spectral sequence of the above filtrations with Z-coefficients col-
lapses at the E2-term.

3.6. Rationality of Σi,j. In this subsection we will prove the rationality of Σi,j using the
filtration of the fiber Σi,j(0) considered in the previous section.

3.6.1. Lemma. Σi,j(0) is a rational variety.

Proof. In fact, a birational equivalence between Σi,j(0) and P(Di) × P(Dn−j−2) is given
in the proof of Lemma 3.5.1. Namely, Σi,j(0) contains a Zariski open subset of all pairs of
coprime polynomials

(
1 + α1D + · · · + αiD

i , 1 + µ1D + · · · + µn−j−2D
n−j−2

)
,

which have the degrees exactly equal to i and (n− j − 2).
�

The following proposition implies the rationality of Σi,j .

3.6.2. Proposition. There exists a Zariski open subset in the space P(Di)×P(Dn−j−2)×C

isomorphic to a Zariski open subset in Σi,j and therefore Σi,j is rational.

Proof. As above we have a family of codimension 1 subvarieties Σi,j(a), a ∈ C in Σi,j such
that for all a1 6= a2 Σi,j(a1) and Σi,j(a2) are isomorphic. By propositon 3.6.1 every Σi,j(a)
is a rational variety. Since group of affine transformations x → cx+ d acts bitransitively on
C, to prove rationality of Σi,j it suffices to show that codimC (Σi,j(0)) ∩ Σi,j(1)) in Σi,j(0)
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is at least 2. This will imply that for a Zariski open subset in Σi,j there exists exactly one
triple (Ξ,Θ, a) ∈ P(Di) × P(Dn−j−2) × C such that ΞΨp = ΘeaD.

Indeed, consider Ω =
⋃

a2∈C\a1

(Σi,j(a1)∩Σi,j(a2)). If codim C(Σi,j(0))∩Σi,j(1)) in Σi,j(0)

is at least 2 then Ω has codimension at least 1 in Σi,j(a) and its complement is a Zariski open
subset. Varying a1 and taking the union of the complements we get a Zariski open subset in
the whole Σi,j for which there exists only one triple (Ξ,Θ, a) such that ΞΨp = ΘeaD. The
following lemma accomplishes the proof.
�

3.6.3. Lemma. For any pair (a1 6= a2) the intersection Σi,j(a1)∩Σi,j(a2) has codimension
2 in Σi,j.

Proof. As was mentioned before codim(Σi,j(a1) ∩ Σi,j(a2)) does not depend on particular

choice of (a1, a2). Now let Σ̂i,j(a) ⊂ P̂n be the projective closure of Σi,j(a) ⊂ Pn and let

Σ̂i,j ⊂ P̂n be the projective closure of Σi,j . One can easily see that the fiber at infinity

Σ̂i,j(∞) = Σ̂i,j \ Σi,j is a projective subspace of dimension n− 2 − j + i.
Take the correspodence Cor in the space of Σi,j × C consisting of all pairs (Ψ, α) where

Ψ ∈ Σi,j and α is a generalized zero of Ψ and consider its closure Ĉor ⊂ Σ̂i,j × P1. The

inverse image of any point a ∈ P1 is Σ̂i,j(a). It suffices to show that codim(Σ̂i,j(∞)∩Σi,j(a2))
in Σi,j equals 2 since the codimension of intersection of any two fibers gives the upper bound
for the codimension of intersection of two generic fibers.

Notice that Σ̂i,j(a) ∩ P̂ l ⊂ P̂n is isomorphic to Σ̂i,j(a) ⊂ P̂ l where P̂ l is the projectivized

space of polynomials of degree at most l in t0 : t1. Since the special fiber Σ̂i,j(∞) is isomorphic

to P̂n−j+i−2 one gets that Σ̂i,j(∞)∩Σ̂i,j(a2) ⊂ P̂n is isomorphic to Σ̂i,j(a2) ⊂ P̂n−j+i−2. The

latter space, obviously, has codimension 1 in Σ̂i,j(∞). Thus the former space has codimension

2 in Σ̂i,j .
�

3.6.4. Lemma. For a generic k-tuple (a1 6= a2 6= · · · 6= ak), k ≤ n
j−i+2 the intersection

Σi,j(a1) ∩ Σi,j(a2) ∩ · · · ∩ Σi,j(ak) has codimension k in Σi,j.

Proof. We are going to iterate the above arguments using induction on the number of points
and dimension. Namely, assume that we have proved that the codimension is the expected
one for a Zariski open set in the the space of k − 1-tuples and for all m < n. For generic
a1, a2, . . . , ak one has

codim (Σi,j(a1) ∩ Σi,j(a2) ∩ · · · ∩ Σi,j(ak)) ≤ codim (Σ̂i,j(∞) ∩ Σi,j(a2) ∩ · · · ∩ Σi,j(ak)) .

But the later intersection is isomorphic to the intersection of k−1-tuple in the space P̃n−j+i−2

and thus has the expected codimension by the inductive assumption.
�

3.6.5. Remark. It is worth mentioning that not for all a1, a2, . . . ak, k > 2 the intersection
Σi,j(a1) ∩ Σi,j(a2) ∩ · · · ∩ Σi,j(ak) has the expected codimension. Namely, there exist poly-
nomials p ∈ Pn which have more than [n/2] i-generalized multiple zeros. This means that
the intersection of more that expected number of Σi(al) is still nonempty, see §1. It would
be very interesting to describe such ’Weierstrass’ k-tuples.
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3.7. Some special cases. A stratum Σi,j ⊂ Pn is called stable if j−i+2 > [n
2 ] and unstable

otherwise. The following proposition reduces the study of the topology of any stable Σi,j to
that of its Σi,j(0).

3.7.1. Proposition. Any stable stratum Σi,j ⊂ Un is isomorphic to Σi,j(0) × C.

Proof. One has to show that if j − i+ 2 > [n/2] then each p ∈ Σi,j belongs to the unique
Σi,j(a), i.e. that the intersection Σi,j(a1) ∩ Σi,j(a2), a1 6= a2 is empty. This can be proved
exactly along the same lines as lemma in 3.6.3. �

�

3.7.2. Remark. The stable stratum Σ̂0,[ n
2
]−1 ⊂ Pn is called the nullcone and is of a

fundamental importance in the representation theory of SL2(C). The following problem was
formulated to the authors by J.Weyman in April 95.

Question. Is it true that Σ̂0,[ n
2
]−1 is a set-theoretical complete intersection?

One can even speculate that set-theoretically one has Σ̂0,[ n
2
]−1 =

[ n
2
]−1⋂

i+0

Σ̂i.

§4. Example: cohomology of Σ1 ⊂ P4

4.1. Vassiliev’s resolution. A natural approach to the problem how to calculate the
cohomology of Σi ⊂ Pn with compact supports is to try to generalize the simplicial resolution
which was succesfully used by V.Vassiliev for the series of strata Σ0, see [Va] (recall that
Pn \ Σ0 is the usual braid space). Such a generalized Vassiliev’s resolving space for Σi

coincides with the set of all pairs {p, Sp}, where p ∈ Σi and Sp is the formal simplex spanned
by all pairwise different multiple i-generalized roots of p. There exists a natural geometric
realization of Σ̄i in C

N for some sufficiently big N .
By construction, this resolving space Σ̄i has a natural filtration

Σ̄i = Fm ⊃ Fm−1 ⊃ · · · ⊃ F1 ,

where Fi is the set of all pairs {p, Si
p}, p ∈ Σi, S

i
p denotes the (i− 1)-skeleton of Sp, and m is

the maximal possible number of multiple pairwise different i-generalized zeros. (We use the
convention that if dimSp ≤ i then Si

p = Sp.) Note that F1 is homeomorphic to Σi(0) × C.

One can easily see that the obvious projection Σ̄i → Σi is a homotopy equivalence extend-
able to their 1-point compactifications. Therefore, H∗

c (Σi) = H∗
c (Σ̄i).

We will apply this program to Σ1 ⊂ P4. In this case we have only the 3-term filtration

Σ̄1 = F3 ⊃ F2 ⊃ F1 ,

since the maximal number of multiple 1-generalized roots of a quartic polynomial equals 3,
see no1.3. The main result of this section is the following

4.2. Proposition. The cohomology with compact supports of Σ1 ⊂ P4 is equal

(
0, 0, 0, 0, 0,Z2 ⊕ Z2,Z

)
.

The proof of this proposition splits into a series of lemmas and will be finished in no4.6
below.
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4.3. Σi(0) and Hankel matrices. Recall that a matrix is called Hankel if it has the same
entry on each anti-diagonal. Let us denote by Hank(k, l) the set of all (k× l) Hankel matrices
with complex coefficients and we denote by Hankdeg(k, l) ⊂ Hank(k, l), k ≤ l the subset of
matrices of rank < k.

4.3.1. Lemma. If i+j+1 < n then Σi,j(a) is isomorphic to Hankdeg(i+1, j+2)×C
n−i−j−2.

If i+ j + 1 ≥ n then Σi,j(a) is isomorphic to Σn−j−2,n−i−2(−a).

Proof. Since Σi,j(a) is isomorphic to Σi,j(0) we consider only the last case. For Σi,j(0) the
statement follows directly from the definition.
�

Now we can describe the cohomology with compact supports of the first term of the
filtration F1 = Σ1(0) × C.

4.3.2. Lemma. The cohomology with compact supports of the variety Hankdeg(2, n) is equal
(0, 0,Zn, 0,Z).

Proof. The set Hankdeg(2, n) in question is the cone with the vertex at the origin 0 over
the rational normal scroll in C

n+1. The set Hankdeg(2, n)\0 has the structure of a C
∗-bundle

over this rational normal scroll CP
1. The first Chern class c1 of this bundle is equal to the

degree of the scroll and therefore c1 = n. Thus the usual cohomology of Hankdeg(2, n) \ 0 is
equal (Z, 0,Zn,Z). Since it is a manifold its cohomology with compact supports is dual to
the usual cohomology and is equal (0,Z,Zn, 0,Z). From the long exact sequence

H∗
c (Hankdeg(2, n)) → H∗

c (Hankdeg(2, n)) \ 0 → H∗
c (0)

one gets that H∗
c (Hankdeg(2, n)) = (0, 0,Zn, 0,Z).

�

4.3.3. Corollary. H∗
c (F1) = (0, 0, 0, 0,Z3, 0,Z).

Proof. F1 is homeomorphic to Hankdeg(2, 3) × C.
�

4.4. Cohomology of F2 \ F1. We are going to describe explicitly the set of all quartic
polynomials, which have exactly two 1-generalized roots at given points a and b in C. We
use here the technique and notation from no3.4 – no3.5.

4.4.1. Lemma. For any pair of distinct points (a, b) there exist exactly 4 polynomials in
Σ1 ⊂ P4 such that their 1-generalized multiple zeros are a and b.

Proof. As above, it suffices to consider the case a = 0, b = t. Denote by Σopen
1 (t) a Zariski

open subset in Σ1(t) consisting of all Ψ = A−1(D)B(D) exp(tD), where A(D) = 1 + αD,
B = 1 + βD, and α 6= β. For t = 0 the set Σopen

1 (t) is nothing more than the complement
Σ0

1(0) \ Σ1
1(0) considered in no3.5.

In the case Σ1 ⊂ A4 the intersection Σ1(0)∩Σ1(t) is, obviously, contained inside Σopen
1 (0)∩

Σopen
1 (t). Thus, Ψ = A−1

1 (D)B1(D) belongs to Σopen
1 (0) ∩ Σopen

1 (t) if and only if for some
unipotent linear differntial operators A2(D), B2(D) one gets

A−1
1 (D)B1(D) = etDA−1

2 (D)B2(D)

or, equivalently, A2(D)B1(D) = etDA1(D)B2(D).
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To determine A1, A2, B1.B2 we have to look at the intersection D2 ∩ exp(tD)D2. Direct
computation shows that this intersection is 1-dimensional subspace in D2 spanned by the
polynomial

1 + tD/2 + t2D2/12 = (1 + ̺tD)(1 + ¯̺tD) ,

where −̺, − ¯̺ are the complex conjugate roots of the quadratic polynomial x2 + x/2 + 1/12,

i. e. ̺ = (3 + i
√

3)/12, and we have

(1 + ̺tD)(1 + ¯̺tD) = exp(tD) · (1 − ̺tD)(1 − ¯̺tD) .

Thus Σ1(0) ∩ Σ1(t) consists of the following four operators:

(1 + ̺tD)(1 − ̺tD)−1 = 1 +
3 + i

√
3

6
tD +

1 + i
√

3

12
t2D2 +

i
√

3

36
t3D3 +

−1 + i
√

3

144
t4D4

(1 + ¯̺tD)(1 − ¯̺tD)−1 = 1 +
3 − i

√
3

6
tD +

1 − i
√

3

12
t2D2 − i

√
3

36
t3D3 +

−1 − i
√

3

144
t4D4

(1 + ̺tD)(1 − ¯̺tD)−1 = 1 +
1

2
tD +

3 − i
√

3

24
t2D2 +

1 − i
√

3

48
t3D3 − i

√
3

144
t4D4

(1 + ¯̺tD)(1 − ̺tD)−1 = 1 +
1

2
tD +

3 + i
√

3

24
t2D2 +

1 + i
√

3

48
t3D3 − i

√
3

144
t4D4

�

The previous formulas give also the exact description of how the fundamental group of
the space of all pairs (a, b), a 6= b, acts on the constructed quadruples of the polynomials.
Namely, the interchange of a and b via the standart Z-generator of this fundamental group
leads, obviously, to the invertion of above four differential operators and change of the sign of
t. This procedure preserves the first and the second of the above operators and interchanges
the last two of them. We get

4.4.2. Corollary. Four polynomials from Lemmma 4.4.1. are naturaly organized in two
pairs such that the replacement of (a, b) by (b, a) (via the standart generator of the fundamental
group of the space of all pairs (a, b) such that a 6= b) preserves both polynomials in one pair
and interchange polynomials in the other pair.

�

Now we can easily calculate the cohomology of F2 \ F1.

4.4.3. Lemma. The cohomology with compact supports of F2 \ F1 is

(0, 0, 0, 0,Z,Z ⊕ Z2 ⊕ Z2) .

Proof. Indeed, the set F2\F1 is a bundle over the set of all unordered distinct pairs of points
with the fiber consisting of 4 segments. The action of the generator of the fundamental group
of the base inverts the orientation of two of these segments and interchanges two others with
the inversion of orientation. Thus our fiber bundle consists of two copies of a 3-dimensional
cylinder over a Möbius band and a 3-dimensional cylinder over an annulus. Cohomology with
compact supports of a Möbius band and an annulus is equal to (0, 0,Z2) and (0,Z,Z) resp.
Thus, H∗

c (F2 \ F1) is equal to

(0, 0, 0, 0,Z,Z ⊕ Z2 ⊕ Z2) .

�

4.5. Cohomology of F3 \F2 are also calculated via the exact description of all polynomials
having three 1-generalized roots.
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Lemma. The intersection Σ1(a)∩Σ1(b)∩Σ1(c) for a pairwise different triple of points (a, b, c)
is nonempty if and only if there exist two constants d and e 6= 0 such that a− d, b− d, c− d
are 3 different roots of the equation x3 = e.

In this case Σ1(a) ∩ Σ1(b) ∩ Σ1(c) contains exactly one polynomial (x+ d)4 − 2ex.

Proof. By proposition 1.3.1 a polynomial p ∈ Σ1 ⊂ P4 has at most three 1-generalized
multiple zeros. Thus p belongs to at most some triple intersection Σ1(a)∩Σ1(b)∩Σ1(c). Now
let us determine the set of all p which have exactly 3 pairwise different multiple 1-generalized
zeros. This is equivalent to finding such p that ∆1(p) has 3 different double zeros which
are not multiple zeros of p itself. Using the action on the affine group we can assume that
p = x4 + λ1x

2 + λ2x+ λ3 which gives

∆1(p) = −4[x6 +
λ1

2
x4 − λ2x

3 + (
λ2

1

2
− 3λ3)x

2 +
λ1λ2

2
x− λ1λ3

2
+
λ2

2

4
].

∆1(p) has 3 zeros if and only if ∆1(p) = [(x + α)(x + β)(x − α − β)]2 for some α 6= β 6=
−α−β. (Omitted) consideration of the last condition implies that this is possible if and only
if p = x4 + λ2x. In this case ∆1(p) = −4(x3 − λ2

2 )2 with 3 pairwise different double zeros.
This implies that Σ1(a) ∩ Σ1(b) ∩ Σ1(c) is nonempty (and consists of exactly 1 polynomial
(x+ d)4 − 2ǫ) iff for some d the numbers a− d, b− d, c− d are roots of x3 = ǫ, ǫ 6= 0.
�

4.5.1. Corollary. The cohomology with compact supports of F3 \ F2 is equal

(0, 0, 0, 0, 0,Z,Z) .

Proof. Indeed, F3\F2 is a bundle over the set of all equilateral triangles on C with the fiber
consisting of the simplex formally spanned by triangle’s vertices. The base is homeomorphic
to C×R

+ × S1. The generator of S1 of the base acts trivially on the orientation of the fiber
since it induces the cyclic shift of vertices. Thus F3 \ F2 is homeomorphic to R

5 × S1.
�

4.6. End of the proof of Prop. 4.2. We accomplish the proof of proposition 4.2 by using
the Leray spectral sequence for the cohomology with compact supports for the whole Σ̄1.
Its E1- and E2- pages are given on Fig.1. (Potentially nontrivial differentials are shown by
arrows.)

4.6.1. Lemma.

a) The differential Z → Z in the 3rd row of E1 is multiplication by 3;
b) the differential Z → Z in the 4th row of E1 is an isomorphism.
c) the differential Z3 → Z3 on E2 is an isomorphism.

Proof. We consider the boundary map for the corresponding homology cycles. By lemma
4.4 the part F̃2 of F2 \F1 to which F3 \F2 is glued is a bundle over the braid space Br(2) with
the fiber consisting of 2 segments which can be interpreted as formal simplices spanned by the
ordered pairs of points. Under the action of π1 they change places with the inversion of their
orientations. The 4-dimensional relative homology cycle Θ1 pairing with the 4-dimensional
cohomology class in F2 \ F1 is obtained by taking fibers over all horizontal pairs of points in
Br(2). Analogously, the 5-dimensional relative homology class Θ2 in F3 \F2 pairing with the
5-dimensional generator in cohomology consists of all formal 2-simplices over all equilateral
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triangles with one horizontal side. One easily gets ∂(Θ2) = 3Θ1 and a) follows. At the same

time the boundary of the fundamental cycle in F3\F2 equals F̃2 and b) follows. More detailed
consideration of the boundary maps implies c).

�
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 Fig.1.  E -  and   E-   pages  of the Leray spectral sequence. 
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§6. Final remarks.

The above partial results on the algebraic and topological properties of the associated
discriminants show that their structure is substantially more complicated than that of the
classical discriminants.

Below we formulate a few (of many more) questions which seem natural in the context of
the associated discriminants.

1) Calculate the number of connected components to the union of the associated discrim-
inants in the space Pn with real coefficients and, more generally, for the space of solutions
to some linear homogeneous ordinary differential equation with constant coefficients. (This
question is the most interesting from the point of view of its application to Toda lattices.)

2) Calculate the usual and intersection (co)homology of Σi(0) or equivalently of the space
Hankdeg(i, i). (For the usual cohomology one can use the stratification described in 3.5.
For the intersection homology one can use the semismall desingularization. Many analogous
spaces of matrices were sucessfully studied before. Recently Prof. R. MacPherson has sug-
gested to the second author a recursive procedure applicable to determination of intersection
homology of the space of degenerate Hankel matrices.)

3) Calculate the maximal number of pairwise different multiple i-generalized zeros for
polynomials of degree n.
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