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THE MIXED HODGE STRUCTURE 
OF THE COMPLEMENT TO AN ARBITRARY ARRANGEMENT 

OF AFFINE COMPLEX HYPERPLANES IS PURE 

B. Z. SHAPIRO 

(Communicated by Frederick R. Cohen) 

ABSTRACT. Consider an affine algebraic variety X4 = Cn \ Uk=0 L, , where Li 
are affine complex hyperplanes. We show that the mixed Hodge structure of 
X4 is similar to that of the complex torus C* x *- * x C*, i.e., any element in 
H* (X#, C) has the Hodge type (i, i) . This is another example of the similarity 
of the properties of complements to arrangements and affine toric varieties. 

All cohomology below will have complex coefficients. 

Theorem. For the complement X/(-v) to an arbitrary arrangement of affine 
complex hyperplanes any element of Hi(X4') has the Hodge type (i, i). 

Before the beginning of the proof we want to give some examples and make 
some remarks. 

Example 1. Any 1-dimensional complement X/(-v) to an arrangement is a 
complex line punctured at several points (PI, . . ., Pk) . In this case H1 (k') 
consists of classes of weight 2 represented by linear combinations of the form 

dz d . I dz They have the Hodge type (1, 1), see [Du]. Recall that any 
smooth noncompact curve of positive genus does not have pure structure in 
H1. 

Example 2. For any k < n the complement ' = Cn \ Uik= Li coincides with 
(C* x ... x C*) x (C x ... x C) . Therefore since both C* and C have the pure 
Hodge structure, X' also has the pure structure of the above type. 

Example 3. An arrangement v is called generic if any subset of its hyper- 
planes intersects transversally. Consider the intersection X/ n B where B is an 
arbitrary sufficiently small ball in Cn and the map i*: H* (,' n B) -* H* (,f) 
induced by inclusion. It is known (see, e.g., [B]) that i* is always injective and 
that H* (X) is the direct sum of such images of localizations taken for different 
balls Bi . Since the intersection Xl n B can be considered as an arrangement of 
Example 2, therefore, H* (.A) for any generic arrangement has the pure Hodge 
structure. 
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Usually degeneracy breaks down the purity of mixed Hodge structure as it 
happens in the case of smooth projective varieties. So the formulated theorem 
shows the very specific propeties of hyperplane arrangements with respect to 
degeneracy. Although H*(.) is always generated by the cocycles dli/li (see 
[B]) where 1i are the linear polynomials defining the hyperplanes Li, it is not 
that obvious why these cocycles have the Hodge type (1, 1) for an arbitrary 
complement X, as it happens in case of generic arrangement. In order to 
show this the author uses a short inductive argument standard in the theory of 
arrangements. 

We will need several definitions. 
Let (V, V', s") be a triple of arrangements of complex affine hyperplanes 

in Cn , i.e., a = Uik Li, _?' - Uk_ Li, and s_" = Lon is the induced ar- 
rangement in Lo - Cn-. Denote their complements as X = X(_v), ' = 

, and " = J((V"), respectively. Obviously, XZ is embedded in '4. 
Consider the long exact sequence of the pair (X', /"') 

(1) .. +Hk ("t'')-3 Hk (.e)-- Hk+l( ' w ) , Hk+ 
Iw 

which is the long exact sequence of mixed Hodge structures (see [D]). In the 
case of arrangements of complex hyperplanes, this long exact sequence splits 
into short exact pieces (see [0]) 

(2) O ' HkQ') ,HHk(l) ,- Hk+l( I, X) _*0. 

The last term Hk+l( QA, X) is isomorphic by excision to Hk+1(E, Eo) 
where E is the tubular neighborhood of X4" in /4' and Eo = E \ X"'. Since 
(E, Eo) is biholomorphically equivalent to X4" x (C, C*) by the Thom iso- 
morphism, we get Hk+I (E, Eo) = Hkl (X'') . Therefore (2) can be rewritten 
in the form 

(3) 0 -* Hk(.#') - Hk (.,) -* Hkl-(XIi) 0. 

Proof. We will use induction on the number of hyperplanes and the dimension 
n of the space Cn 

Base of induction. Hi(C*) and Hi(Cn \ Lo) = Hi(C* x Cn-' ) has the Hodge 
type (i, i) because the only nontrivial element in H1 is represented by the 
form dz/z (see examples above). Let us now assume that we have proved the 
theorem for all arrangements in Cn-I and all arrangements in Cn with < k - 1 
hyperplanes. Consider now an arrangement v = Uk Li in Cn and choose the 

triple _, = Uk=1 Li, and X"- Lo n v . Then in the exact sequence of 
mixed Hodge structures (2) Hk(J'I) has the Hodge type (k, k) by induction 
hypothesis. So it remains to show that Hk(J(, X) has the Hodge type (k, k) . 
Consider the isomorphism of the mixed Hodge structures 

(4) Hk+l (lI, ,6l) = Hk+l (.// x (C, C*)) -Hk-lI (i) X H2(C, C*)- 

The first term in the right-hand part is of the type (k - 1, k - 1) by assumption 
while H2 (C, C*) is of the type (1, 1) (this can be seen easily from the sequence 
of the pair (C, C*)). Therefore since the Hodge types add under the action of 
tensor product, Hk+l (.', ,A) is of the type (k, k). o 
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Remark 1. Hopefully the purity of the mixed Hodge structure for an arbitrary 
arrangement can have some interesting corollaries in the theory of the moduli 
spaces of arrangements. 

Remark 2. Purity fails for the complements of arrangements of complex affine 
subspaces of codimension greater than 1. 

The following qustions seem to be very important in the study of the moduli 
spaces of arrangements. 

Question 1. Calculate 7ri (G) and its action (the monodromy representation) on 
the cohomology HCQ4I() with compact supports where G denotes the space of 
all generic arrangements. Probably this group coincides with the higher braid 
group introduced in [MSh]. 

Question 2. Find the system of equations for the Gauss-Manin connection in 
the space G. 
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