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Abstract. A linear differential operator T = Q(z) d
dz

+P (z) with polynomial

coefficients defines a continuous family of Hutchinson operators when acting on

the space of positive powers of linear forms has a unique minimal Hutchinson-
invariant set in the complex plane. Using a geometric interpretation of the

boundary of this minimal set in terms of envelops of certain families of rays,
we subdivide its boundary points into local arcs (portions of integral curves

of the vector field
Q(z)
P (z)

∂z), global arcs, and finitely many singular points of

different types which we classify.

The latter decomposition of the boundary of the minimal set appears to be

largely determined by its intersection with the plane algebraic curve formed

by the inflection points of trajectories of the rational vector field
Q(z)
P (z)

∂z . We

provide an upper bound of the number of the above local arcs in terms of
degP and degQ. As an application of our classification, we deduce new global

geometric properties of minimal Hutchinson-invariant sets.
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1. Introduction

Given a linear differential operator

T = Q(z)
d

dz
+ P (z) (1.1)

where P,Q are polynomials that are not identically vanishing, we say that a closed
subset S ⊂ C is continuously Hutchinson invariant for T (TCH -invariant set for
short) if for any u ∈ S and any arbitrary non-negative number t, the image T (f)
of the function f(z) = (z − u)t either has all roots in S or vanishes identically. In
[AHN+22], we have initiated the study of general topological properties of TCH -
invariants sets. In particular, the following results have been obtained:

• provided that either P or Q is not a constant polynomial, there is a unique
minimal continuously Hutchinson invariant set MT

CH for a given operator
T (in what follows we will always assume that this condition is satisfied);

• the only TCH -invariant set is the whole C unless |degQ− degP | ≤ 1;
• a complete characterization of operators T for which MT

CH has an empty
interior has been obtained (see Section 2.1 for details).

In this paper, we will focus on operators whose minimal set MT
CH has a nonempty

interior.

Definition 1.1. For an operator T given by (1.1) with P and Q not vanishing
identically, at each point z such that PQ(z) ̸= 0, we define the associated ray r(z)

as the half-line {z + tQ(z)
P (z) | t ∈ R+}.

Remarkably, TCH -invariant sets (and, in particular, the minimal one) can be
characterized in terms of associated rays.

Theorem 1.2 (Theorem 3.18 in [AHN+22]). A closed subset S ⊆ C is TCH-
invariant if and only if it satisfies the following two conditions:

(1) S contains the roots of the polynomials P and Q;
(2) for any point z /∈ S, the associated ray r(z) is disjoint from S.

1.1. Main results. In the present paper, using Theorem 1.2, we provide a qualita-
tive description of the boundary of minimal continuously Hutchinson invariant sets,
including an exhaustive typology of its singular points. Our classification mainly
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depends on the intersection of the boundary ∂MT
CH with the curve of inflections

IR of the field R(z)∂z = Q(z)
P (z)∂z.

Definition 1.3. The curve of inflections IR of the vector field R(z)∂z is defined
as the closure of the set of points satisfying Im(R′) = 0, see [AHN+22]. It is a real
plane algebraic curve of degree at most d = 3degP + degQ− 1.

The curve of inflections splits the complex plane into inflection domains where
the sign of Im(R′) remains the same.

Points of ∂MT
CH outside its intersection with IR are classified with the help of

two correspondences Γ and ∆ sending the boundary ∂MT
CH to itself and defined as

follows:
For a given point z of the boundary ∂MT

CH , Γ(z) is essentially the intersection
of MT

CH with the integral curve of the rational field R(z)∂z starting at z, where
R(z) = Q(z)/P (z). In contrast, ∆ is the intersection of ∂MT

CH with the associated
ray r(z) (see Definition 4.1 for details). Qualitatively, the boundary ∂MT

CH is made
of two kinds of arcs:

• local arcs which are integral curves of the field R(z)∂z (i.e. ∆(z) = ∅ and
Γ(z) ̸= ∅);

• global arcs at each point z of which the associated ray r(z) is tangent to
∂MT

CH elsewhere (i.e. Γ(z) = ∅ and ∆(z) ̸= ∅).
Local arcs are locally strictly convex real-analytic arcs (see Proposition 4.11). In

contrast, global arcs (formed by points of global type) can fail to be C1.
Local arcs inherit an obvious orientation from the vector field R(z)∂z. Global

arcs also have canonical orientation, but its definition requires some work (see
Section 4.4.2).

Local and global arcs connect special singular points of ∂MT
CH which in most

of the cases belong to the curve of inflections. The latter decomposes into three
loci (singular, tangent and transverse), each determining its own variety of singular
points.

Definition 1.4. The curve of inflections IR of the field R(z)∂z decomposes into:

• the singular locus SR formed by the points where several branches of IR
intersect;

• the tangency locus TR formed by the nonsingular points where the field
R(z)∂z is tangent to IR;

• transverse locus I∗R formed by the nonsingular points of IR where the field
R(z)∂z is transverse to IR.

The singular and the tangency loci are given by algebraic conditions. Therefore
their intersection with ∂MT

CH is controlled in terms of degP and degQ. On the
contrary, many points of the boundary can belong to the transverse locus I∗R. We

refine the definition of the correspondence ∆ according to the value of R(z)
u−z (which,

by definition, is a positive number).

Definition 1.5. For any z ∈ IR \Z(PQ), we have ∆(z) = ∆−(z)∪∆0(z)∪∆+(z)
where u ∈ ∆(z) belongs to:

• ∆−(z) if R′(z) ≤ −R(z)
u−z ;

• ∆0(z) if R′(z) = −R(z)
u−z ;

• ∆+(z) if R′(z) ≥ −R(z)
u−z .

In particular, if R′(z) > 0, then ∆−(z) = ∅.

The main result of the present paper is a classification of boundary points of
minimal continuously Hutchinson sets.
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Theorem 1.6. For any linear differential operator T given by (1.1), any point
z of the boundary ∂MT

CH of its minimal TCH-invariant set belongs to one of the
following types:

• roots of polynomials P and Q (at most degP + degQ of them);
• singular points of the curve of inflections (at most 2d of them);
• tangency points between the curve of inflections and the field R(z)∂z:

– straight segments, half-lines and lines (contained in at most degP +
degQ+ 1 lines);

– at most 2d2 isolated points;
• points of the transverse locus I∗R belonging to one of the four subclasses:

– bouncing type: ∆+ ̸= ∅ and Γ ∪∆− ̸= ∅;
– switch type: ∆+(z) ̸= ∅ and Γ ∪∆−(z) = ∅;
– C1-inflection type: ∆+ = ∅, ∆− ̸= ∅ and Γ = ∅;
– C2-inflection type: ∆+ = ∅ and either ∆− = ∅ or Γ ̸= ∅.

• points not on the curve of inflections belonging to one of the three subclasses:
– local type: Γ(z) ̸= ∅ and ∆(z) = ∅;
– global type: Γ(z) = ∅ and ∆(z) ̸= ∅;
– extruding type: Γ(z) ̸= ∅ and ∆(z) ̸= ∅.

Here, d = 3degP + degQ− 1.

There can be many singular points of bouncing, extruding, C1-inflection, C2-
inflection and switch types (we do not have a polynomial bound of their number in
terms of degP and degQ). An extensive description of their geometric features is
given below:

• at points of extruding type, the boundary of ∂MT
CH is not convex and it

switches from a global to a local arc (see Section 4.5 and Figure ???);
• at points of bouncing type, ∂MT

CH hits the curve of inflections, but does not
cross it. In a neighborhood of such a point, the boundary ∂MT

CH remains in
the closure of the same inflection domain (see Section 5.2 and Figure ???);

• at points of switch type, ∂MT
CH is strictly convex, crosses the curve of inflec-

tions and the boundary switches from a local to a global arc (see Section 5.5
and Figure ???);

• at points of C1-inflection type, ∂MT
CH crosses the curve of inflections and it

switches from a global to another global arc having the opposite orientation.
At such a point the curvature of ∂MT

CH is discontinuous (see Section 5.4
and Figure ???);

• at points of C2-inflection type, ∂MT
CH crosses the curve of inflections and

the boundary switches from a global arc to a local arc. Besides, the curva-
ture of ∂MT

CH is continuous at such a point (see Section 5.3 and Figure ???).

Our second main result is an upper bound on the number of points of C1-
inflection, C2-inflection and switch type in terms of d = 3degP + degQ− 1.

Theorem 1.7. ??? For any operator T given by (1.1), ∂MT
CH ∩ (IR)

c contains at

most AeBd2

local arcs (maximal open arcs of ∂MT
CH coinciding with integral curves

of field R(z)∂z). They are real-analytic and locally strictly convex. (A and B are
explicitly given below.) ???

In the last section of the paper, we deduce many results about the global geom-
etry of minimal sets from the classification of boundary points. In several cases, an
exact description can be given in terms of local and global arcs. In particular, we
can prove that in generic case, the minimal TCH -invariant set is connected in C.
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Theorem 1.8. For any linear differential operator T given by (1.1), the minimal
continuously Hutchinson invariant set MT

CH is a connected subset of C with the
possible exception of the case when R(z) is of the form λ+ µ

z + o(z−1) with λ ∈ C∗

and µ/λ ∈ R.
In this later case, (unless both P and Q are constants and then there is no

reasonable notion of a minimal set), MT
CH is formed by at most 1

2 degP + 1
2 degQ

connected components.

1.2. Organization of the paper.

• In Section 2, we provide the basic background information on Hutchinson
invariant sets developed in [AHN+22], including the results about their
asymptotic geometry.

• In Section 3, we describe the local geometry around singular points of the
vector field R(z)∂z in terms of their local degree and principal value. We
also describe the main properties of the curve of inflections defined by the
equation Im(R′) = 0 and we also introduce the notion of horns.

• In Section 4, we describe boundary points in the complement to the curve
of inflections, introducing Γ− and ∆− correspondences.

• In Section 5, we classify boundary points in the generic locus of the curve
of inflections, proving Theorems 1.6 and 1.7 (in Sections 5.6 and 5.8 respec-
tively).

• In Section 6, we apply the latter results to get precise descriptions of min-
imal sets in several cases. Theorem 1.8 is proven in Section 6.5.
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2. Preliminary results and basic properties of MT
CH

The following notation will be important throughout this text.

Notation 2.1. Given an operator T as in (1.1), we define p∞, q∞ ∈ C∗, and
p, q ∈ N so that

P (z) = p∞zp + o(zp);

Q(z) = q∞zq + o(zq).

Furthermore, we set λ = q∞
p∞

∈ C∗ and ϕ∞ = arg(λ).

Similarly, for any point α ∈ C, we have R(z) = rα(z−α)mα + o(|z−α|mα) with
rα ̸= 0 and mα ∈ Z. We denote by ϕα the argument of rα.

Remark 2.2. Observe that frequently used affine changes of the variable z are
applied to the vector field R(z)∂z and not to the rational function R(z) itself.
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2.1. Regularity of the minimal set. For an operator T as in (1.1), its minimal
set MT

CH can be of three possible types:

• regular if MT
CH coincides with the closure of its interior;

• fully irregular if MT
CH has empty interior;

• partially irregular if MT
CH has nonempty interior but is not regular.

Actually, irregularity is related to specific reality conditions. The characteriza-
tion of operators for which MT

CH is fully irregular is contained in Theorem 1.15 of
[AHN+22].

Theorem 2.3. For an operator T as in (1.1), the minimal set MT
CH is fully irreg-

ular in the following cases:

• R(z) = λ for some λ ∈ C∗;
• R(z) = λ(z − α) for some λ /∈ R<0, α ∈ C and degQ = 1;
• R(z) = λ(z − α) for some λ ∈ R>0, α ∈ C and degQ ≥ 2;
• operators satisfying the following conditions (up to an affine change of vari-
able):

– R(z) is real on R;
– roots of P and Q are real, simple and interlacing (i.e. the roots of P

and Q alternate along the real axis);
– |degQ− degP | ≤ 1;
– if degQ− degP = 1, then λ ∈ R>0.

In any other case, MT
CH has a nonempty interior.

In this paper, we will always assume that MT
CH has a nonempty interior.

Remark 2.4. If degP +degQ ≤ 1, then MT
CH is either totally irregular or coincides

with C (see Theorem 1.15 of [AHN+22]). Therefore, our operators will always
satisfy degP + degQ ≥ 2.

Referring to the closure of the interior of MT
CH as the regular locus and its

complement in MT
CH as the irregular locus, we observe that the latter is contained

in very specific lines of the plane.

Definition 2.5. For a given rational function R(z), a line Λ is called R-invariant
if for any z ∈ Λ such that R(z) is defined, we have z +R(z) ∈ Λ.

In particular, up to an affine change of variable, we can assume Λ = R and thus
R(z) is a real rational function. Besides, a R-invariant line is automatically an
irreducible component of the curve of inflections IR.

Definition 2.6. For an operator T whose minimal set MT
CH is not fully irregu-

lar, a tail is a semi-open straight segment [α, β[ in MT
CH satisfying the following

conditions:

• the segment ]α, β] belongs to an R-invariant line;

• for any z ∈]α, β], β−α
R(z) ∈ R>0;

• for any z ∈]α, β], z is disjoint from the regular locus of MT
CH ;

• α belongs to the regular locus of MT
CH ;

• β ∈ Z(PQ);
• β is a root of the same multiplicity for both P and Q.

In particular, every tail belongs to a R-invariant line.

The following fact has been proven in Corollary 7.8 of [AHN+22].

Theorem 2.7. For an operator T whose minimal set MT
CH is not fully irregular,

the irregular locus of MT
CH is a (possibly empty) finite union of tails.

In particular, if P and Q have no common roots, then the minimal set of the
corresponding operator is either regular or fully irregular.
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2.2. Extended complex plane. Following Theorem 1.2, TCH -invariant sets are
characterized by the position of the associated rays starting in their complements.
Let us introduce a certain compactification1 of C which comes very handy in our
considerations. We baptise it the extended complex plane C ∪ S1 ⊃ C.

The extended complex plane C ∪ S1 is set-theoretically the disjoint union of C
and S1 endowed with the topology defined by the following basis of neighborhoods:

• for a point x ∈ C, we choose the usual open neighborhoods of x in C;
• for a direction θ ∈ S1, we choose open neighborhoods of the form I∪C(z, I)
where I is an open interval of S1 containing θ and C(z, I) is an open cone
with apex z ∈ C whose opening (i.e. the interval of directions) is I.

Definition 2.8. Given R(z) as above, let p ∈ C be a non-singular point of R(z).
We define σ(p) as the argument of R(p). We think of σ(p) as a point of the circle
at infinity.

One can easily see that S1 of the extended plane C ∪ S1 can be identified with
the above circle at infinity. The extended plane is compact and homeomorphic
to a closed disk. In particular, usual straight lines in C have compact closures in
C∪ S1. (Below we will make no distinction between a real line in C and its closure
in C ∪ S1). Open half-planes in C ∪ S1 are, by definition, connected components of
the complement to a line.

Given a TCH -invariant set S ⊂ C, we denote by S its closure in the extended
plane C ∪ S1.

The following result has been proved in Lemma 4.4 of [AHN+22].

Lemma 2.9. Given an TCH-invariant set S ⊂ C, let α : [0, 1] → C be such that:

• ∀t ∈ (0, 1), αt ∈ Sc;
• σ(α0) ̸= σ(α1);
• σ(α) is homotopic to the positive arc from σ(α0) to σ(α1) in the circle at
infinity via a homotopy H(t, x) : [0, 1]× [0, 1] such that H(0, x0) = σ(α(0)),
H(1, x0) = σ(α(1)) for all x0 ∈ [0, 1].

If X denotes the connected component containing the interval ]σ(α0), σ(α1)[ in the
complement of r(α0) ∪ α ∪ r(α1), then X ⊂ Sc.

2.3. Integral curves. Another result has been proved in Proposition A.2 of [AHN+22].

Proposition 2.10. Given a TCH-invariant set S ⊂ C and some point z0 ∈ S, if
there is a positively oriented integral curve γ : [0, ϵ[→ C of the vector field R(z)∂z
such that lim

t→ϵ
γ(t) = z0, then for any t ∈ [0, ϵ], γ(t) ∈ S.

2.4. Root trails. For any point u ∈ C, the root trail tru of u is the closure of
the set of points z such that the associated ray r(z) contains u. Except for the
trivial cases described in Section 3 of [AHN+22], root trails are plane real-analytic
curves. By definition, the root trail of any point of MT

CH is also contained in MT
CH .

Furthermore, for any fixed u ∈ C, we defined a t-trace (corresponding to u) as any
continuous function γ(t) such that

Q(γ(t)) + (γ(t)− u)P (γ(t)) = 0

for all t ≥ 0. That is, any t-trace γ(t) is a concatenation of parts of tru such that
the resulting curve is continuous for any t ≥ 0.

1Notice that the most frequently used compactification of C is C̄ = CP 1.
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Lemma 2.11. Consider a linear differential operator T given by (1.1) and some
point u ∈ C. Assuming that R(z) is not of the form λ(z − u), then

(i) for any point u ∈ C and any point z0 /∈ Z(PQ) such that z0 ∈ tru and
R(z0) + (u − z0)R

′(z0) ̸= 0, the root trail tru has a unique branch passing through

z0 and its tangent slope is the argument of R2(z0)
R(z0)+(u−z0)R′(z0)

(mod π).

(ii) If R(z0) + (u − z0)R
′(z0) = 0 and m ≥ 2 is the smallest integer such that

R(m)(z0) ̸= 0, then tru has m intersecting branches at z. Their tangent slopes are:

θ0
m

+
kπ

m
,

where θ0 is the argument of R(z0)
R(m)(z0)

and k ∈ Z/mZ.

Before proving Lemma 2.11 we prove the next two Lemmas.

Lemma 2.12. If γ(t) is smooth planar curve, γ(0) = z0, and γ̇(t) = G(γ(t)) for
some function G holomorphic and non-vanishing at z0 then the sign of the curvature
of γ(t) at z0 coincides with the sign of ImG′(0).

Indeed, then γ̈(t) = G′(γ(t)) · γ̇(t). By definition, the sign of the curvature of

γ(t) at z0 coincides with the sign of Im γ̈(t)
γ̇(t) |t=0 = ImG′(0).

Lemma 2.13. Let F be a rational function holomorphic at z0 with F (z0) ∈ R and
let m = ordz0 F

′+1. Then the germ of IF = {ImF = 0} at z0 consists of m smooth
branches with tangent slopes θ0

m + kπ
m , k ∈ Z/mZ, where θ0 = − argF (m)(z0).

If m = 1 and γ(t) is a parameterization of IF such that F (γ(t)) ≡ F (z0)+ t then

the sign of the curvature of γ(t) coincides with the sign of − Im
[

F ′′(z0)
(F ′)2(z0)

]
.

Proof. Indeed, we have F (z) = a0 + am(z − z0)
m + ..., a0 ∈ R, so the branches of

IF are tangent to the m lines satisfying equation Im am(z − z0)
m = 0, which have

slopes as stated.
For the second claim, note that γ̇(t) = 1

F ′(γ(t)) , so the claim follows from

Lemma 2.12. □

Proof of Lemma 2.11. Note that by definition

tru =

{
z ∈ C s.t.

R(z)

u− z
∈ R+

}
⊂

{
Im

R(z)

u− z
= 0

}
,

and Lemma 2.11 follows from the Lemma 2.13 with F (z) = R(z)
u−z and the fact that

argR(z0) = arg(u− z0). □

Remark 2.14. The condition R(z0) + (u− z0)R
′(z0) = 0 means that the point u =

z0− R(z0)
R′(z0)

is obtained as the the first iteration of Newton’s method of approximating

roots of R(z) with the starting point z0.

When u is a point at infinity in the extended plane C ∪ S1, the root trail tru of
u is the closure of the points z where the argument of R(z) coincides with u.

Lemma 2.15. Consider a linear differential operator T given by (1.1) such that
R(z) is not constant. For any point u at infinity and any point z0 /∈ Z(PQ) such
that z0 ∈ tru, provided R′(z0) ̸= 0, the root trail tru has a unique branch passing

through z0 and its tangent slope is the argument of R(z0)
R′(z0)

(mod π).

If R′(z0) = 0 and m ≥ 2 is the smallest integer such that R(m)(z0) ̸= 0, then tru
has m intersecting branches at z. Their tangent slopes are:

θ0
m

+
kπ

m
,

where θ0 is the argument of R(z0)
R(m)(z0)

and k ∈ Z/mZ.
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Proof. In this case tru ⊂ {Im (R(z)/R(z0)) = 0} and the claim follows again from
Lemma 2.13 □

Remark 2.16. From Lemmas 2.11 and 2.15 it immediately follows that if a root
trail tru can have m ≥ 2 branches at some point z0, then z0 belongs to the curve
of inflections IR (because R(z0) and u− z0 are real colinear).

Besides, if m ≥ 3, then R(k)(z0) = 0 for 2 ≤ k ≤ m−1 and z0 is a singular point
of IR.

2.4.1. Concavity of root trails.

Proposition 2.17. Let u be a point of the extended plane C∪S1 and z0 be a point
of tru such that z0 /∈ Z(PQ) ∪ IR and z0 ̸= u. We denote by L the tangent line to
tru at z0. We define f(z, u) to be:

• (u−z0)R(z0)[R(z0)R
′′(z0)−2(R′(z0))

2]−2R2(z0)R
′(z0)

(R(z0)+(u−z0)R′(z0))2
if u ∈ C;

• R′′(z0)R(z0)
R′(z0)2

if u is a point at infinity.

Then the germ of tru at z0 belongs to
(i) the same half-plane bounded by L as the associated ray r(z0) if Im(f) and

Im(R′(z0)) have opposite signs.
(ii) They belong to distinct half-planes bounded by L if Im(f) and Im(R′(z0))

have the same sign.

Finally, tru has an inflection point at z0 if Im(f) = 0.

Alternative Proof of Proposition 2.17. I got something different, please check.
— Mitya

Proof. Let Fu(z) = R(z)
u−z for u ∈ C and Fu(z) = u−1R(z) for u ∈ S1 so that

tru = {ImFu(z) = 0}. Let c = F ′
u(z0). We have

L =
{
z0 + c−1R

}
= {z| Im (c(z − z0)) = 0} .

If γ(t) is a local parameterization of (tr)u at z0 such that Fu(γ(t)) = Fu(z0) + t
then γ̇(0) = c−1. Moreover, (tr)u ⊂ L+ = {Im c(z − z0) > 0} if the curvature of
γ(t) is positive and (tr)u ⊂ L− = {Im c(z − z0) < 0} otherwise.

The tangent ray r(z0) = {z0 + R(z0)R+} lies in L+ if ImR(z0)c > 0 and in L−
otherwise.

By Lemma 2.13 the sign of curvature of γ(t) is opposite to the sign of Im
[

F ′′
u (z0)

(F ′
u)

2(z0)

]
.

For u ∈ C we have c = F ′
u(z) =

R′(z0)(u−z0)+R(z0)
(u−z0)2

and

F ′′
u (z0) =

R′′(z0)(u− z0)
2 + 2R′(z0)(u− z0) + 2R(z0)

(u− z0)3
,

so we are interested in signs of

ImR(z0)c = ImR(z0)
R′(z0)(u− z0) +R(z0)

(u− z0)2
= ImR′(z0)

(recall that R(z0)
u−z0

> 0) and

Im
F ′′
u (z0)

(F ′
u)

2
(z0)

= Im

(
R′′(z0)(u− z0)

2 + 2R′(z0)(u− z0) + 2R(z0)
]
(u− z0)

(R′(z0)(u− z0) +R(z0))
2 . (2.1)

For u ∈ S1 we have c = u−1R′(z0) and we are interested in the signs of ImR′(z0)

and Im R′′(z0)R(z0)

(R′)2(z0)
.

□
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End of alternative proof. RECHECK.
— Mitya

Proof. By Lemma 2.11, the slope of L is the argument of R2(z0)
R(z0)+(u−z0)R′(z0)

(mod

π). Since Im(R′(z0)) ̸= 0, the associated ray r(z0) is transversal to L.
Firstly we consider the case where u is a point at infinity. We consider some

small η = R(z0)
R′(z0)

(x+ yi) with x, y ∈ R such that z0 + η belongs to the root trail of

u. We have R(z0+η)
R(z0)

∈ R. Unless R(z) is a linear function, we have

R(z0 + η) = R(z0) +R′(z0)η +
R′′(z0)

2
η2 + o(η2).

Therefore, the imaginary part of R(z0+η)
R(z0)

is equal to

y + Im(
R′′(z0)R(z0)

2(R′(z0)2
)x2) + o(x2).

Therefore, the root trail has an inflection point at z0 if

Im

(
R′′(z0)R(z0)

2(R′(z0)2

)
= 0.

Otherwise, the sign of the curvature depends on the sign of the imaginary part

of R′′(z0)R(z0)
R′(z0)2

.

In case when u ∈ C, it has been proven in [AHN+22] that (germs of) root trails
are trajectories of the time-dependent vector field

V (z, t)∂z = − R(z)

1 + tR′(z)
∂z.

For such a trajectory γt containing z0, we have γ′
t =

−R(γt)
1+tR′(γt)

. It follows that

γ′′
t =

−γ′
tR

′(γt)(1 + tR′(γt)) +R(γt)(R
′(γt) + tγ′

tR
′′(γt))

(1 + tR′(γt))2
.

Consequently, we have

γ′′
t

γ′
t

=
γ′
tR

′(γt)(1 + tR′(γt))−R(γt)(R
′(γt) + tγ′

tR
′′(γt))

R(γt)(1 + tR′(γt))
.

After simplification, we obtain

γ′′
t

γ′
t

= −2R′(γt) + tγ′
tR

′′(γt)

1 + tR′(γt)
=

tR(γt)R
′′(γt)− 2R′(γt)(1 + tR′(γt))

(1 + tR′(γt))2
.

Since γt = z0 and t = u−z0
R(z0)

, we obtain that

γ′′
t

γ′
t

=
(u− z0)R

2(z0)R
′′(z0)− 2R(z0)R

′(z0)(R(z0) + (u− z0)R
′(z0))

(R(z0) + (u− z0)R′(z0))2
.

After simplification, the expression reduces to:

γ′′
t

γ′
t

=
(u− z0)R(z0)[R(z0)R

′′(z0)− 2(R′(z0))
2]− 2R2(z0)R

′(z0)

(R(z0) + (u− z0)R′(z0))2
.

Just like in the case when u is a point at infinity, the sign of the curvature depends
on the sign of Im(γ′′

t /γ
′
t). The root trail has a point of inflection if the latter

quantity vanishes.

Let us orient the line L according to γ′
t. Since γ

′
t =

−R(γt)
1+tR′(γt)

, we deduce that the

associated ray r(z0) is pointing to the left of L if Im(R′(z0)) is negative. Similarly,
r(z0) is pointing to the right of L if Im(R′(z0)) is positive. The claim follows. □
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In the transverse locus I∗R of the curve of inflections, the concavity of root trails
with respect to the line containing the associated ray depends on the sign of some
geometrically meaningful real function.

Proposition 2.18. Consider a point z0 ∈ I∗R \Z(PQ) and some point u ∈ C∪S1.
Assume that R(z0) +R′(z0)(u− z0) ̸= 0 (or R′(z0) ̸= 0 if u is a point at infinity).
Let L be the line containing the associated ray r(z0).

The germ of tru at z0 and the positive germ γ+
z0 of the integral curve of the

field R(z)∂z starting at z0 belong to the same open half-plane bounded by L if
R′(z0) +R(z0)/(u− z0) is negative (R′(z0) < 0 if u is a point at infinity).

The germ of tru at z0 and γ+
z0 belong to opposite open half-planes bounded by L

if R′(z0) +R′(z0)/(u− z0) is positive (R′(z0) > 0 if u is a point at infinity).

Proof. Without loss of generality, we assume that z0 = 0 and R(z) = 1 +R′(0)z +
(a+ bi)z2+o(z2) with R′(0) ∈ R, a ∈ R and b ∈ R>0 (b ̸= 0 because z0 = 0 belongs
to the transverse locus of the curve of inflections). Necessarily u > 0. Since b > 0,
γ+
0 belongs to the upper half-plane.

By Lemma 2.15, tru has a unique branch at 0 tangent to R. Let Fu(z) =
R(z)
u−z0

for u ∈ r(z0) and Fu(z) = R(z) for u ∈ S1, so tru = {ImFu(z) = 0}. Choose
a parameterization γ(t) of this branch in such a way that Fu(γ(t)) = Fu(z0) + t.
Then

γ̇(0) =
1

F ′
u(0)

=
u− z0

R′(0) + R(0)
u−z0

or γ̇(0) =
1

R′(0)

for u ∈ C or u ∈ S1 being a point at infinity, respectively. Therefore γ̇(0) > 0 if
R′(0) +R(0)/(u− z0) > 0 (resp. R′(0) > 0) and γ̇(0) < 0 otherwise.

By (2.1) the sign of the curvature of γ(t) at 0 is opposite to the sign of ImR′′(0) =
Im b > 0, i.e. is negative. Thus γ(t) lies in the lower half-plane (i.e. not in the
same half-plane as γ+

0 ) if R′(0) + R(0)/(u− z0) > 0 is positive and in the same
half-plane as γ+

0 if R′(0) + R(0)/(u− z0) < 0 (R′(0) > 0 and R′(0) < 0 resp. for
u ∈ S1). Since R′(z0) ∈ R, the number R′(z0) + R(z0)/(u− z0) is invariant under
the maps z 7→ az + b and z 7→ z̄ used for normalization, and the claim follows. □

2.4.2. Root trails and connected components of the minimal set. When degQ −
degP = 0, root trails provide a bound on the number of connected components of
the minimal set (in all other cases, it is known that MT

CH is connected).

Proposition 2.19. Consider a linear differential operator T given by (1.1) and
satisfying degQ − degP = 0. Any connected component C of MT

CH satisfies the
following conditions:

• C contains at least one root of P ;
• C contains at least one root of Q;
• the sum of orders of zeros and poles of R(z) in C vanishes.

Proof. We assume that a connected component C of MT
CH is disjoint from Z(P ).

Note that degQ−degP = 0 implies that the union of the zeros of tQ(z)+P (z)(z−u)
for any u ∈ C, T > 0 and t ∈ [0, T ] is bounded.

Here I didn’t understand the argument. As I understand it is: Take any u ∈ MT
CH \ C. Its trail is a real

algebraic curve such that each its component intersects Z(P ) and therefore is disjoint from C
— Mitya

Hence, for any u ∈ MT
CH \ C, the root trail of u is disjoint from C. Since

MT
CH coincides with the TCH -extension of any point in MT

CH (see Lemma 2.2 of
[AHN+22]), it follows that C cannot belong to the minimal invariant set.

Suppose now that there is a component for which the sums of orders of the zeros
of Q does not equal the sums of orders of the zeros of P . Then there is a component
C such that the sums of the orders of the zeros of P , say d0 is strictly greater than
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the sums of the orders of the zeros of Q, say d1. Taking u ∈ C we have that for
all t, the zeros of tQ(z) + P (z)(z − u) belonging to C have total degree d0 + 1.
However, when sending t → 0, d1 of these zeros tend to the zeros of Q belonging
to C and at most one tend to ∞. This implies that at least d0 − d1 > 0 of the end
points of the root trail of u does not belong to C, a contradiction. □

We prove that the intersection of the interior (MT
CH)◦ of the minimal set with

any small enough neighborhood of a boundary point that is not a zero nor a pole
of R(z) is connected.

Lemma 2.20. For any linear differential operator T given by (1.1) we consider a
point α of the boundary ∂MT

CH that is neither a zero nor a pole of R(z). Then for
any open set U ⊂ C containing α, there is a neighborhood V of α contained in U
such that V ∩ (MT

CH)◦ is connected or empty.

Proof. Recall that the forward trajectories of −R(z)∂z for any point in MT
CH belong

to MT
CH (Proposition 2.10). Besides, we have R(z) = rα+o(z−α) for some rα ∈ C∗.

If α does not belong to the regular locus of MT
CH (the closure of its interior),

then V ∩ (MT
CH)◦ is empty for some neighborhood V of α. If α belongs to the

regular locus of MT
CH , then the forward trajectory γ of −R(z)∂z starting at α does

not belong to a tail (see Theorem 2.7) and therefore belongs to the closure of a
connected component V ∩ (MT

CH)◦ for any small enough neighborhood V of α. As
α is not a singularity of the vector field, a continuity argument proves that any
trajectory of −R(z)∂z starting from a point close enough to α intersects the same
connected component. Therefore, V ∩ (MT

CH)◦ is connected provided V is small
enough. □

In the following, we prove that the closure of a connected component of the
interior of MT

CH cannot be disjoint from Z(P ).

Lemma 2.21. For any linear differential operator T given by (1.1), one of the
following statements holds:

(1) MT
CH is fully irregular;

(2) MT
CH = C;

(3) the closure of any connected component of the interior (MT
CH)◦ of the min-

imal set contains a root of P (z);
(4) the closure of any connected component of the interior (MT

CH)◦ of the min-
imal set contains an endpoint of a tail.

Proof. We suppose that we are not in the case (1), (2). Besides, we assume the
existence of a connected component C of the interior (MT

CH)◦ of the minimal set
whose closure is disjoint from Z(P ), contradicting statement (3).

We first prove that C cannot be the only connected component of (MT
CH)◦.

Indeed, roots of P (z) that do not belong to the regular locus of MT
CH (the closure

of the interior) belong to tails (see Theorem 2.7) and they are not zeros or poles
of R(z). Besides, MT

CH is assumed to be distinct from C. Consequently, we have
|degQ−degP | ≤ 1. The only case where the regular locus of MT

CH can be disjoint
from Z(P ) is when R(z) is of the form λ or λ(z − α). In the first case, MT

CH is
known to be totally irregular. In the second case, either λ ∈ R>0 (and MT

CH is
totally irregular, see Theorem 2.3) or λ /∈ R>0 and MT

CH has no tails (and P (z) has
no root at all). We assume therefore that the interior MT

CH has several connected
components.

We denote by A the set of points of C that belongs to the closure of another
connected component of (MT

CH)◦. We know by hypothesis that these points are
not roots of P (z) and Lemma 2.20 proves that each of them is a zero of R(z).
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Since MT
CH is minimal, there is a point u ∈ MT

CH \ C and a point z0 ∈ tru ∩ C.
As root trail tru changes continuously in u, u may be chosen outside A. Since
|degQ−degP | ≤ 1, the zeros of tQ(z)+P (z)(z−u) as t → 0 tends to Z(P )∪{u}.
The minimal set MT

CH contains therefore a continuous path γ(t) from an element
of Z(P ) ∪ {u} to z0 such that γ(t) solves tQ(γ(t)) + P (γ(t))(γ(t)− u) = 0.

The path γ has to enter the component C and can do so either through a tail
or an element of A. The path γ cannot contain any element α ∈ A because the
equations Q(α) = 0 and tQ(α)+P (α)(α−u) = 0 (for some t > 0) imply P (α) = 0,
contradicting our assumption. Our assumption that neither (1), (2) nor (3) was
satisfied this implies (4). □

2.5. Asymptotic geometry of Hutchinson invariant sets. Let us recall the
results of [AHN+22] concerning minimal Hutchinson invariant sets (see Theo-
rems 1.11 and 1.12 of [AHN+22]).

Theorem 2.22. For any operator T as in (1.1) with a minimal set MT
CH having

a nonempty interior, MT
CH is:

• a compact contractible subset of C if degQ− degP = 1, and Re(λ) ≥ 0;
• a noncompact non-trivial subset of C if degQ− degP = 0 or −1;
• trivial, i.e. equal to C otherwise.

Besides, the closure MT
CH in the extended plane C ∪ S1 is contractible, connected

and compact.

Thus, the only interesting cases for the description of ∂MT
CH are those for which

the values of degQ − degP are 1, 0 or −1. In the latter two cases, we have more
precise results given below.

2.5.1. degQ − degP = −1. The following statement has been proved in Corol-
lary 6.2 of [AHN+22].

Proposition 2.23. For an operator T as in (1.1) such that degQ − degP =
−1. Then the complement of its minimal Hutchinson invariant set MT

CH in C has
exactly two connected components X1, X2. Each Xi contains infinite cones whose

intervals of directions are arbitrarily close to
(

ϕ∞−π
2 , ϕ∞+π

2

)
and

(
ϕ∞+π

2 , ϕ∞+3π
2

)
respectively.

2.5.2. degQ−degP = 0. The following statement has been proven in Corollary 6.4
of [AHN+22].

Proposition 2.24. Take any operator T as in (1.1) such that degQ− degP = 0.
Then for any ϵ > 0, there exists an open cone Γ whose interval of directions is
arbitrary close to (ϕ∞ + π, ϕ∞ + π) and such that MT

CH is contained in Γ.

3. Local analysis of the boundary of MT
CH

We consider an operator T as in (1.1) whose minimal set MT
CH has a nonempty

interior.

Notation 3.1. For any point α ∈ ∂MT
CH , we define rα ∈ C∗, mα ∈ Z so that

R(z) =
Q(z)

P (z)
= rα(z − α)mα + o(|z − α|mα). (3.1)

We also define ϕα = arg(rα) and dα : S1 −→ S1 where dα(θ) = ϕα +mαθ.
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3.1. Description of a tangent cone.

Definition 3.2. For any α ∈ ∂MT
CH , we define Kα as the subset of S1 formed by

directions θ such that there is a sequence (zn)n∈N satisfying the following conditions:

• for any n ∈ N, zn ∈ (MT
CH)c;

• zn −→ α;
• arg(zn − α) −→ θ.

We also define Lα as the subset of S1 formed by directions θ such that the half-line
α+ eiθR+ does not intersect the interior of MT

CH .

Lemma 3.3. For any α ∈ ∂MT
CH , the following statements hold:

(1) Kα and Lα are nonempty closed subsets of S1;
(2) Lα ⊂ Kα;
(3) for any θ ∈ Kα, d(θ) ∈ Lα. In particular, Kα is invariant under dα;
(4) for any θ ∈ Kα, there exists a closed interval J ⊂ Kα of length at most π

containing both θ and dα(θ);
(5) Lα ̸= S1.

Proof. From Definition 3.2 it immediately follows that Kα and Lα are closed subsets
of S1.

If α ∈ ∂MT
CH , then we can find a sequence of points in the complement of MT

CH

approaching α. By compactness of S1, we can choose a subsequence for which the
arguments converge to some limit. Thus Kα is nonempty.

Then, for any θ ∈ Kα, we have a sequence (zn)n∈N in the complement of MT
CH

accumulating to α with the limit slope θ. The associated rays r(zn) accumulate
to α + eidα(θ)R+. Since none of them intersects the interior of MT

CH , the half-line

α+ eidα(θ)R+ does not intersect it either and dα(θ) ∈ Lα.
Besides (up to taking a subsequence of (zn)n∈N) there is a closed interval J ⊂ S1

such that:

• the endpoints of J are θ and dα(θ);
• the length of J is at most π;
• for any η ∈ J , there is a bound N(η) such that for any n ≥ N(η), the
associated ray r(zn) intersects the half-line α+ eiηR+ at some point Pη,n.

Existence of sequences (Pη,n)n≥N(η) proves that for any η ∈ J , one has η ∈ Kα.

Finally, Lα ̸= S1 because in this case, MT
CH would have empty interior. □

Let us deduce local description of Kα and Lα depending on the local invariants
of α.

Corollary 3.4. For any α ∈ ∂MT
CH , the following statements hold:

• if |mα| ≥ 2, then Kα = Lα and they are contained in the finite set of

arguments satisfying θ ≡ ϕα

1−mα
[ 2π
1−mα

];
• if mα = 1, then ϕα = 0 and Kα = Lα;
• if mα = 0, then ϕα ∈ Lα;
• if mα = −1, then Kα = Lα and these sets are formed by at most two
intervals, each of length at most π and having their midpoints at ϕα

2 and
ϕα

2 + π.

Proof. We consider maximal interval J in Kα (which is non-empty by Lemma 3.3).
The images of J under the iterated action of dα belong to Lα.

If |mα| ≥ 2, then J is a singleton since otherwise the union of its iterates would
coincide with S1 (contradicting Lemma 3.3). Thus J has to be a fixed point of the
map dα.
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If mα = 1 and ϕα ̸= 0, then J coincides with S1 because no other connected
subset of the circle is preserved under the action of nontrivial rotation. Therefore
dα is the identity map.

If mα = 0, then for any θ ∈ Kα, dα(θ) = ϕα. Therefore ϕα ∈ Lα.
If mα = −1, then J is invariant under the action of θ 7→ ϕα − θ. Thus, either

ϕα

2 or ϕα

2 + π is the bisector of J . If J is of length strictly bigger than π, then
Lemma 3.3 shows that its complement (of length strictly smaller than π) is also
contained in Lα. Therefore Lα = S1 which is a contradiction. □

We obtain a bound on the number of petals of MT
CH that can be attached to a

boundary point.

Corollary 3.5. For any linear differential operator T given by (1.1) we consider a
point α of the boundary ∂MT

CH . Then for any open set U ⊂ C containing α, there
is a neighborhood V of α contained in U such that V ∩ (MT

CH)◦ has at most:

• 1−mα connected components if mα ̸= 1;
• degP connected components if mα = 1

where R(z) = λ(z − α)mα + o((z − α)mα) with λ ∈ C∗ and mα ∈ Z.

Proof. Following Theorem 2.22, the closure MT
CH in the extended plane C ∪ S1 is

contractible, connected and compact. Therefore, for any connected component C of
(MT

CH)◦, if α belongs to the closure of C, then for any small enough neighborhood
V of α, V ∩ C is connected.

If α is not a zero or a pole of R(z), then Lemma 2.20 proves the statement.
Besides, if mα /∈ {0, 1}, Corollary 3.4 proves that α is in the closure of at most
1−mα components.

In the remaining cases, α is a simple zero of R(z). If α is also a root of degree d
of P , then it is a root of degree d+ 1 of Q.

We can divide P and Q by (z − α)d while keeping the same minimal set MT
CH

(because in this case Z(PQ) remains unchanged). Consequently, we can assume
that α is not a root of P . Lemma 2.21 proves that for any connected component
C of (MT

CH)◦ such that α is in the closure of C, either some root of P (z) belongs
to the closure of C or some tail is attached to C. If α is in the closure of several
connected components of (MT

CH)◦, then a same root of P cannot be in the closure

of two of them because MT
CH would fail to be contractible. Similarly a given tail

is attached to only one connected component of (MT
CH)◦ (and contains exactly one

root of P ). Therefore, α is in the closure of at most degP components. □

3.2. Curve of inflections. In §A.3 of [AHN+22] we introduced the curve of in-
flections IR of an analytic vector field R(z)∂z. By definition, it is the closure of
the subset of C at each point of which the integral curve of the vector field R(z)∂z
passing through this point has zero curvature. Here we provide some additional
information about IR.

For an operator T for which R(z) is not of the form λ or λ(z−α) for some λ ∈ C∗

and α ∈ C, the function R′(z) is a non-constant rational function. Therefore the
curve of inflections IR of R(z)∂z (which is defined as the closure of the set of points
for which Im(R′(z)) = 0) is a real plane algebraic curve.

We first characterize the points at which several local branches of the curve of
inflections intersect.

Lemma 3.6. A point z0 ∈ IR belongs to exactly m ≥ 2 local branches of IR in the
following cases:

(1) z0 is a critical point of R′(z) of order m − 1 (including zeroes of order m
of R(z));
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(2) z0 is a pole of R(z) of order m− 1.

The 2m limit slopes of the local branches at z0 form a regular 2m-gon in S1.

Proof. This follows immediately from Lemma 2.13. □

Lemma 3.7. Let F (z) : C → CP 1 be a non-constant rational function of degree
d. Then the real algebraic curve Γ = {z ∈ C| ImF (z) = 0} ∪ P(F ) is non-empty,
has at most d connected components and has exactly d connected components for
generic F .

Proof. Clearly, as F−1(x) ̸= ∅ for any x ∈ R \ {F (∞)}, Γ ̸= ∅ as well.
By open mapping theorem, the map F : Γ̄ → RP 1, where Γ̄ is the closure of Γ in

CP 1, is onto on each connected component of Γ̄. Since F has degree d this means
that Γ has at most d components.

Note that the ramification points of F : Γ̄ → RP 1 coincide with the ramification
points of F : CP 1 → CP 1 lying on Γ̄. Thus if the ramification values of F are not
in RP 1 then the former map is an unramified cover of degree d, so has exactly d
connected components. This means that the bound is sharp. □

Corollary 3.8. The curve of inflections IR has at most 3 degP+degQ−2 singular
points.

Proof. There are at most degP poles of R′(z) and the critical points of R′(z) are
the zeroes of R′′(z). □

3.2.1. Inflection domains.

Definition 3.9. The curve of inflections IR subdivides C into two open (not
necessarily connected) domains: I+ given by Im(R′(z)) > 0 and I− given by
Im(R′(z)) < 0.

Observe that in I+ (resp. I−), the integral curves of the vector field R(z)∂z are
turning counterclockwise (resp. clockwise).

3.2.2. Circle at infinity. Consider the closure of the curve of inflections IR in the
extended complex plane C ∪ S1.

Lemma 3.10. The intersection IR ∩ S1 is:

• is empty if degQ− degP = 1 and λ /∈ R;
• coincides with the set {ϕ∞

2 , ϕ∞
2 + π

2 ,
ϕ∞
2 + π, ϕ∞

2 + 3π
2 } if degQ− degP =

−1.

In the remaining two cases:

• degQ− degP = 1 and λ ∈ R;
• degQ− degP = 0; or
• degQ− degP ̸∈ {−1, 0, 1}

the set IR ∩S1 consists of 2k points forming a regular 2k-gon for some k satisfying
k ≤ max{degP,degQ}+ 1.

Proof. If k = degQ− degP ∈ Z \ {0, 1}, then R′(z) has an expansion of the form
kλkz

k−1 + o(zk−1) near ∞ from which the characterization of the infinite branches
of the real locus of R′(z) by Lemma 2.13.

If degQ − degP = 0, then R(z) has an expansion λ + A
zk + o(z−k) for some

A ∈ C∗ and k ∈ N∗ near ∞. (The case when R(z) is constant is ruled out by
the genericity assumptions). Therefore R′(z) has an expansion − Ak

zk+1 + o(z−k−1).
We conclude that IR has 2k infinite branches whose limit directions form a regular
2k-gon.
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If degQ − degP = 1, then R(z) has an expansion λz + A + Bz−k + o(z−k)
for some A ∈ C, B ∈ C∗, and k ∈ N∗. (The case when R(z) is a linear function
is ruled out by the genericity assumptions). We obtain that R′(z) is of the form
λ − Bk

zk+1 + o(z−k−1). Consequently, unless λ is real, the curve of inflections IR is
compact in C. If λ is real, the infinite branches of IR are asymptotically the same
as that of the real locus of − kB

zk+1 . Therefore IR has 2k infinite branches whose
limit directions form a regular 2k-gon.

In these last two cases, we have R′(z) = M
zk+1 + o(z−k−1) for some M ∈ C∗ and

k ≥ 1. The number k is the ramification index of either R−λz (for degQ−degP =
1) or R (for degQ−degP = 0) at infinity, thus K cannot be bigger than the degree
max{degP,degQ} of R. Therefore k ≤ max{degP,degQ}+ 1.

□

3.2.3. Singularities of the vector field. Next we deduce from Corollary 3.4 a proof
of the statement that any root of P (z) or Q(s) belonging to ∂MT

CH automatically
belongs to the curve of inflections.

Corollary 3.11. Consider an operator T as in (1.1) such that MT
CH does not

coincide with C and has a nonempty interior. Let α be a zero or a pole of R(z) such
that α ∈ ∂MT

CH . Then α also belongs to the curve of inflections IR. Additionally,
the number of local branches of IR at α equals:

• a+ 1 if α is a pole of order a ≥ 1;
• a− 1 if α is a zero of order a ≥ 2;
• some integer b ≥ 1 if α is a simple zero.

Proof. The statement is proved by direct computation of Im(R′) in case of a pole
or a zero of order a ≥ 2. If α is a simple zero of R(z), then we have R(α + ϵ) =
R′(α)ϵ + o(ϵ). If α ∈ ∂MT

CH , then ϕα = arg(R′(α)) = 0 (see Corollary 3.4). Thus
α ∈ IR.

Unless R(z) is linear, R(z) is of the form R′(α)(z−α)+M(z−α)d + o(|z−α|d)
for some d ≥ 2 and M ∈ C∗. Thus R′(z) = R′(α) +Md(z − α)d−1 + o(|z − α|d−1).
Consequently, the number of local branches of the equation Im(R′) = 0 equals
d− 1.

If R(z) = λ(z − α), then Re(λ) ≥ 0 (otherwise MT
CH = C) and Im(λ) ̸= 0

(otherwise MT
CH is totally irregular). It follows that Im(R′(z)) is a non-vanishing

constant and the curve of inflections is empty. In this case, MT
CH does not contain

any zero or pole of R(z). □

3.2.4. Tangency locus.

Definition 3.12. For the rational vector field R(z)∂z, the tangency locus TR is
the subset of the curve of inflections IR where R(z)∂z is tangent to some branch of
IR.

Proposition 3.13. For an operator T as in (1.1), the tangency locus TR is the
union of:

• at most max{degQ,degP}+ 1 lines;
• at most 2(3 degP + degQ− 1)2 points.

Proof. For any point z ∈ TR, an immediate computation involving the Taylor ex-
pansion of R′(z) proves that z belongs to the intersection of the curve of inflections
(given by Im(R′) = 0) with a real plane algebraic curve given by the equation
Im(R′′R) = 0. The degrees of these two curves are respectively degQ+3degP − 1
and 2 degQ+6degP−2. Therefore, Bézout’s theorem implies that TR∩∂MT

CH con-
tains at most 2(degQ+3degP − 1)2 such points and some irreducible components
corresponding to the common factors of the two equations.
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By definition of the tangency locus these irreducible components are the integral
curves of R(z)∂z contained in the curve of inflections. Such integral curves have
identically vanishing curvature and therefore they are segments of straight lines.
Therefore the relevant irreducible components are straight lines. But IR intersects
S1 at most 2max{degQ,degP} + 2 points by Lemma 3.10. Thus the number of
the lines is at most max{degQ,degP}+ 1. □

We deduce an estimate on the number of connected components of the transverse
locus I∗R of the curve of inflections. Denote d = 3degP + degQ− 1 = deg IR.

Corollary 3.14. For an operator T as in (1.1), the transverse locus I∗R of the
curve of inflections is formed by at most 2d2 + 6d+ 2 connected components.

Proof. A connected component of I∗R is either a smooth closed loop (so a connected
component of IR) or an arc joining points at infinity, or singular points of I∗R or
isolated points of the tangent locus.

Following Proposition 3.13, the tangent locus contains at most 2d2 isolated
points. Each of them is the endpoint of two arcs of the transverse locus.

Lemma 3.10 proves that at most 2max{degP,degQ}+ 2 arcs of the transverse
locus go to infinity.

Lemma 3.6 provides the analog result for the multiple points of the curve of
inflections. In the worst case, poles of R(z) and critical points of R′(z) are simple.
At most four arcs of the transverse locus are incident to such points. There are at
most d such points (see Corollary 3.8) so they are incident to at most 4d arcs.

Adding these bounds, we obtain an upper bound 4d2 + 10d + 4 on the number
of ends of non-compact connected components of the transverse locus, i.e. there
are at most 2d2 + 5d + 2 non-compact connected components. By Lemma 3.7 the
number of the compact connected components (loops) of IR is at most d, which
gives the required upper bound.

□

Corollary 3.15. On each connected component of the transverse locus I∗R, the sign
of Im(R′′R) remains constant. If Im(R′′R) is positive (resp. negative), then for any
point z of the component, the associated ray r(z) points towards I+ (resp. I−).

Proof. Any regular point z of the curve of inflections satisfying Im(R′′(z)R(z)) = 0
belongs to the tangent locus (see the proof of Proposition 3.13). A direct compu-
tation proves the rest of the claim. □

3.3. Horns. In this section, we introduce some curvilinear triangles called horns
and find conditions under which we can conclude that they do not belong to the

minimal set MT
CH . Our aim is to prove that some parts of the boundary of the

minimal sets are portions of integral curves of the vector field R(z)∂z.

3.3.1. Definitions. Recall that σ(q) is the argument of R(q), i.e. σ(q) = Im logR(q)
and r(q) = q +R(q)R+ is the associated ray.

Definition 3.16. Assume that a segment γp′

p of the positive trajectory of R(z)∂z
starting at p /∈ Z(PQ) and ending at p′ doesn’t intersect the curve of inflections

except possibly at p. Assume that γp′

p rotates by less than π:
∣∣∣σ|p′

p

∣∣∣ < π.

We define the horn p△
p′

p′′ at p as an open curvilinear triangle formed by γp′

p and

tangents to this trajectory at p and p′ intersecting at a point p′′.

Definition 3.17. A horn p△
p′

p′′ is called small positive (resp. small negative) if
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(1) for any point u ∈ p△
p′

p′′ , the argument σ(u+ tR(u)) is monotone increasing

(resp. decreasing) in the variable t as long as 0 ≤ t and u+ tR(u) ∈ p△
p′

p′′

(2) for any two points u, v ∈ p△
p′

p′′ , the scalar product (R(u), R(v)) is positive.

A horn p△
p′

p′′ is called small if it is either small positive or small negative.

Remark 3.18. A small positive horn becomes a small negative one after the conju-
gation, i.e. after replacing R(z) with R(z̄). Indeed,

(R(u), R(v)) = ReR(u)R(v)

remains the same after the conjugation, and

dσ(u+ tR(u)

dt
(t) = Im

R′(u+ tR(u))

R(u+ tR(u))
R(u)

changes sign.

Lemma 3.19. The curve of inflections (given by ImR′ = 0) does not intersect
small horns.

Proof. We have that dσ(u+tR(u)
dt |t=0 = ImR′(u) ≥ 0. Assume that we have the

equality at some u ∈ p△
p′

p′′ . Since p△
p′

p′′ is open and R′ is an open map, this

assumption will imply that dσ(u+tR(u)
dt |t=0 changes sign in p△

p′

p′′ , which contradicts
the smallness assumptions. □

We define the cone complementary to p△
p′

p′′ (in short, the complementary cone)

to be the open cone p′′∠ with the apex p′′ bounded by part of the ray r(p) starting
at p′′ and by the ray extending the segment p′p′′.

Lemma 3.20. Consider a point p which neither belongs to Z(PQ) nor to the
interior of MT

CH . Assume that the integral curve γ of the vector field R(z)∂z∂z

containing p is not a straight line. Then there exists a horn p△
p′

p′′ such that both

p△
p′

p′′ and its complementary cone p′′∠ do not intersect MT
CH .

Proof. By definition, r(p) ⊂ MT
CH

c
. Choose some δ > 0 and define p0 = p and

pi+1 = pi + δR(pi) ∈ r(pi) ⊂ MT
CH

c
, i = 0, ..., N = N(δ) = C/δ.

The broken line γ̂δ
p = ∪N

i=0[pi, pi+1] ⊂ MT
CH

c
is the Euler approximation to the

positive trajectory γp of R∂z starting from p. Since γ̂δ
p → γp as δ → 0, we see that

γp′

p ⊂ MT
CH

c
for sufficiently small γp′

p .

Clearly, if γp′

p is in the curve of inflections then it is a straight line, which is
excluded by our assumption. Thus we can assume that for p′ sufficiently close to p
the curve γp′

p intersects the curve of inflections only at p ( and therefore is convex)
and of angle smaller than π. The claim now follows from(⋃

s∈γp′
p

r(s)

)◦

= p′′∠
⋃

p△
p′

p′′ ⊂ MT
CH

c
.

□

3.3.2. Small horns exist.

Proposition 3.21. For any point p /∈ Z(PQ) such that the trajectory γ(p) of R

starting at p is not a straight line, there exists a small horn p△
p′

p′′ .
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Proof. Using an affine change of variables we can assume that p = 0 and R(0) = 1.
By assumption R(z) is not a real rational function. Let

R(u) = 1 + ρ(u) + ibum +O(um+1), b > 0, ρ ∈ R[u], m ≥ 1 (3.2)

be the Taylor expansion of R(z) at 0 (the case m = 1 is covered by Lemma 3.22).

Here we can assume that b > 0 by replacing R(z) by R(z̄), if necessary.
First, we consider the case m = 1, i.e. p /∈ IR.

Lemma 3.22. For every compact set K not intersecting the curve of inflections

IR, there is a δ = δ(K) > 0 such that for every p ∈ K, there is a small horn p△
p′

p′′

of length γp′

p ≥ δ.

Proof. Indeed, for any p ∈ K the functions ReR(u)R(v) and Im R′(u)
R(u) R(v) are

both non-zero at (p, p) ∈2, so they remain non-zero for all (u, v) ∈ C2 such that

dist((p, p), (u, v)) < δ = δ(p) by continuity. This means that any p△
p′

p′′ ⊂ Uδ(p)(p)

is a small horn. The uniform lower bound follows from the continuity of δ(p). □

From now on we assume that m ≥ 2. Our next goal is to find the asymptotics

of γ(0) and 0△
p′

p′′ .

Lemma 3.23.

γ0 =
{
0 < x < ϵ, y = b

m+1x
m+1 +O(xm+2)

}
⊂ {y ≥ 0} (3.3)

0△
p′

p′′ ⊂ {0 < x < ϵ, 0 < y < γ0(x)} . (3.4)

Proof. Note that γ0 ⊂ {ImF = 0}, where F ′ = 1
R , F (0) = 0.

Now,
1

R
=

1

1 + ρ(u)
− ibum

(1 + ρ(u))2
+O(um+1), (3.5)

so
F (u) = u+ ρ̃(u)− i b

m+1u
m+1 +O(um+2), ρ̃ ∈ R[u].

For u = x+ iy we get

ImF (u) = y(1 + o(1))− b
m+1x

m+1 +O(um+2).

Recalling that γ0 is tangent to the real axis, we have y = o(x). Therefore

γ0 ⊂ {ImF = 0} =
{
y = b

m+1x
m+1 +O(xm+2)

}
⊂ {y ≥ 0}

and the claim of the Lemma follows since r(0) = R+.
□

We have to check the two conditions in Definition 3.17 for 0△
p′

p′′ with p′ suffi-

ciently close to 0. The second condition is easy: since R(0) = 1 then the scalar

product (R(u), R(v)) is positive for all u, v ∈ 0△
p′

p′′ by continuity.

To check the first condition set u = x1 + iy1, v = x2 + iy2 = u + tR(u) ∈ 0△
p′

p′′

with t > 0. By the second property of the small horns, we have x2 > x1. By (3.4)
we have yi = O

(
xm+1
i

)
. Combining (3.5) and

R′(v) = ρ′(v) + imbvm−1 +O(vm), (3.6)

we get

R′(v)

R(v)
=

(
ρ′(x2) + imbxm−1

2 +O(xm
2 )

) 1 + ρ(x2)− ibxm
2 +O(xm+1

2 )

(1 + ρ(x1))
2

=
ρ′(x2) (1 + ρ(x2)) + imbxm−1

2 +O(xm
2 )

(1 + ρ(x2))
2 .
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Figure 1. Removing small horns.

Thus, using (3.2), we get for Φ(u, v) = (1 + ρ(x2))
2
ImR(u)R

′(v)
R(v) the equation

Φ = Im
([
1 + ρ(x1) + ibxm

1 +O(xm+1
1 )

]
·
[
ρ′(x2) (1 + ρ(x2)) + imbxm−1

2 +O(xm
2 )

])
= mbxm−1

2 +O(xm
2 ) > 0, (3.7)

where we use x1 ≤ x2. This proves the first requirement of Definition 3.17. □

Corollary 3.24. The germ of IR at p cannot lie between γ+
p and r(p).

Proof. This would mean that this germ lies inside p△
p′

p′′ which is impossible by
Proposition 3.21 and Lemma 3.19. □

3.3.3. Removing small horns. We will use the following general Lemma

Lemma 3.25. Assume that for some open set U ⊂ C \ Z(PQ) and every point

u ∈ U , the associated ray r(u) lies in the union U ∪
(
MT

CH

)c
. Then MT

CH ∩U = ∅.

Indeed, if not then MT
CH \ U ⊊ MT

CH will be again invariant, which contradicts
minimality of MT

CH .
The crucial property of small horns is the following Lemma.

Lemma 3.26. For any v ∈ p△
p′

p′′ , one has r(v) ⊂ p△
p′

p′′ ∪ p′′∠.

Proof. We prove the statement assuming that the small horn p△
p′

p′′ is positive, the
negative case will follow by conjugation.

Let u ∈ γp′

p be a point such that v ∈ r(u). By definition of small horns, we have
σ(p) < σ(u) < σ(v), see Fig. 1.

The ray rv does not intersect γp′

p . Indeed, assume that the ray r(v) intersects

γp′

p at a point s. Then at the intersection point the slope of γp′

p should be smaller
than the slope of r(v), i.e. σ(s) < σ(v) which contradicts to the requirement
that the slope is monotone increasing along the segment joining v and s. Also
r(v) can not intersect pp′′ since σ(v) > σ(p) and at a possible point of inter-
section s necessarily σ(s) < σ(p), again contradicting monotonical increasing of
σalongthesegmentjoiningvands.

Thus r(v) leaves p△
p′

p′′ and enters p′′∠ at some point of p′′p′ with the slope

σ(p) < σ(v) < σ(p′). Thus r(v) never leaves p′′∠. □

Proposition 3.27. Assume that p△
p′

p′′ is a small horn and p′′∠ ⊂ MT
CH

c
. Then p

is not in the interior of MT
CH .

Proof. Follows from Lemmas 3.25 and 3.26. □
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4. Boundary arcs

Recall that we consider an operator T whose minimal set MT
CH is different from

C and has a nonempty interior. We want to describe its boundary in combinatorial
and dynamical terms. To do this, we introduce two set-valued functions.

Recall that in our terminology, MT
CH is the closure of MT

CH in the extended plane
C ∪ S1.

4.1. Correspondences Γ and ∆.

Definition 4.1. For any x ∈ ∂MT
CH \ Z(PQ), we define:

• Γ(x) = {y ∈ γ+
x | y ̸= x} ∩MT

CH where γ+
x is the positive trajectory of the

vector field R(z)∂z starting at x;

• ∆(x) = {y ∈ r(x) | y ̸= x} ∩MT
CH .

Using correspondences Γ and ∆, we split the set of boundary points of MT
CH

disjoint from the curve of inflections into the following three types.

Definition 4.2. A point of ∂MT
CH \ (Z(PQ) ∪ IR) is a point of:

• local type if Γ(z) ̸= ∅ and ∆(z) = ∅;
• global type if Γ(z) = ∅ and ∆(z) ̸= ∅;
• extruding type if Γ(z) ̸= ∅ and ∆(z) ̸= ∅.

By Proposition 4.7 these are the only possibilities for points in ∂MT
CH \ IR.

4.2. Support lines. In this (sub)section We prove that for a given point z, the

condition ∆(z) ̸= ∅ means that the associated ray r(z) is a support line of MT
CH .

For any oriented support line of MT
CH , we define the co-orientation of its support

in the following way. The support point x is:

• a direct support point if the standard orientation of ∂MT
CH and the orien-

tation of the support line agree at x;
• an indirect support point otherwise.

In particular, if the support line is the positively oriented real axis, a support
point x is called direct if the intersection of MT

CH with a neighborhood of x is
contained in the upper half-plane (see Fig. ???).

Definition 4.3. Consider z ∈ C such that:

• z does not belong to the tangency locus TR of the curve of inflections IR;
• z is not a root of P or Q.

Then we say that z ∈ E+ (resp. E−) if the associated ray r(z) is pointing inside
the inflection domain I+ (resp. I−).

Lemma 4.4. Consider z ∈ ∂MT
CH \ Z(PQ) such that z ∈ E+ (resp. E−). If

y ∈ ∆(z), then y is an indirect support point (resp. a direct support point).

Proof. Without loss of generality, we can assume that z ∈ E+, z = 0, r(z) = R>0

and y = 1. This implies that γ0 lies in the upper half-plane. By Lemma 3.20

there is a neighborhood V of y such that V ∩
(
MT

CH

)◦
is contained in the lower

half-plane. Therefore y is an indirect support point. □

Lemma 4.5. Take x, y ∈ ∂MT
CH such that:

• x, y ∈ E− ∪ E+

• the associated rays r(x) and r(y) intersect at some point m ∈ C;
• σ(y) ∈]σ(x)− π, σ(x)[.

Then the open cone Γ with apex m and the interval of directions ]σ(y), σ(x)[ is

disjoint from
(
MT

CH

)◦
and there are the following subcases:
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• either y ∈ E+ or ∆(y) ⊂ [y,m];
• either x ∈ E− or ∆(x) ⊂ [x,m].

Proof. The fact that Γ is disjoint from
(
MT

CH

)◦
follows from Lemma 2.9 applied

to a path formed by the concatenation of segments [x,m] and [m, y]. Then, we
assume by contradiction that y ∈ E− and some point z ∈ ∆(y) does not belong

to [y,m]. Since Γ is disjoint from
(
MT

CH

)◦
, it follows that z is an indirect support

point of the line containing r(y) which contradicts Lemma 4.4. Consequently either
∆(y) ⊂ [y,m] or y /∈ E−.

An analogous argument proves that either x ∈ E− or ∆(x) ⊂ [x,m]. □

4.3. Local arcs. In this section, we prove that local points (see Proposition 4.7)
form local arcs.

Definition 4.6. A local arc of ∂MT
CH is a maximal open arc of an integral curve

of vector field R(z)∂z that contains only local points. In particular, it is disjoint
from Z(PQ) and IR.

Local arcs are oriented by the vector field R(z)∂z.

Using the geometry of horns (see Section 3.3), we can show that every local point
actually belongs to a local arc of ∂MT

CH .

Proposition 4.7. Consider a point p belonging to ∂MT
CH and such that ∆(p) = ∅

and p /∈ Z(PQ) ∪ IR. Then, the germ of the integral curve γp of R(z)∂z passing
through p belongs to ∂MT

CH .

Without loss of generality, we assume that p = 0, r(p) = R+ and p ∈ E+, so γp′

p

lies in the upper half-plane. The proof consists of two steps illustrated by Figure 2
and Figure 3 respectively.

Lemma 4.8. MT
CH lies above the integral curve γp of R(z)∂z passing through p.

Proof. By Lemma 3.20 the union p△
p′

p′′ ∪ p′′∠ is outside of MT
CH . Let q′ ∈ γp′

p ,

q′ ̸= p, p′, and let q′′ ∈ R+ be the intersection point of R+ with the line tangent to

γp′

p at q′. Thus, p△
q′

q′′ is a horn at p, p△
q′

q′′ ⊂ p△
p′

p′′ . Clearly, σ(q′) < σ(p′).

The condition ∆(p) = ∅ implies that q′′ ∈ MT
CH

c
. Moreover, as +∞ /∈ ∆(0),

there is an open sector S with a vertex on R, containing q′′ and disjoint from MT
CH .

Take a point p̃ close to p, lying below the trajectory of R(z)∂z passing through p

and in the same inflection domain as γp′

p . Consider a horn p̃△
q̃′

q̃′′ with vertices q̃′

and q̃′′ close to q′ and q′′, respectively. By continuity, the part of r(p̃) starting from

q̃′′ lies in S. Also, q̃′ lies in the horn p△
p′

p′′ , so r(q̃′) ∩MT
CH = ∅ by Lemma 3.20.

Thus the complementary cone q̃′′∠ of p̃ with vertex q̃′′ lies outside of MT
CH .

Therefore by Proposition 3.27 p̃ /∈ MT
CH and therefore near p the set MT

CH lies
above the trajectory of R(z)∂z passing through p, see Fig. 2.

□

Lemma 4.9. The boundary ∂MT
CH coincides with the integral curve γp in a neigh-

borhood of p.

Proof. Lemma 4.8 implies that p lies on the boundary of a sector S with a vertex
s ∈ R, s ̸= p, and disjoint from MT

CH . Assume that a point q /∈ MT
CH close to p

lies above γp. By Lemma 3.20, both q△
q′

q′′ and q′′∠ lie outside of MT
CH . Choosing

q sufficiently close to γp we can assume by Lemma 3.22 that q′′ /∈ MT
CH , and,

moreover, that this is true for any point on the trajectory γq of R(z)∂z passing
through q sufficiently close to p.
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Figure 2. MT
CH lies above the trajectory γp′

p .

Figure 3. γp′

p is boundary of MT
CH

Let p̃ be a point on γq close to q and in the negative direction from q, take p̃′ = q′

and p̃′′ be the intersection of r(p̃) and the line q′q′′. The ray p̃′′p̃′ lies outside of

MT
CH

◦
. Moreover, as long as the ray p′′ +R(p̃)R ⊂ r(p̃) lies outside MT

CH
◦
we have

p̃′′∠ ∩MT
CH = ∅, so p̃ /∈ MT

CH by Proposition 3.27. But these arguments work for
points p̃ with slope σ(p̃) exceeding some negative number, namely the slope of the
second side of S. In particular, it includes some neighborhood of p, which means
that p /∈ MT

CH , a contradiction, see Figure 3.
□

Local analysis of horns (see Section 3.3) leads to the following results about the
correspondence Γ.

Corollary 4.10. Consider z ∈ ∂MT
CH such that z /∈ Z(PQ)∪IR. If Γ(z) ̸= ∅ then

z is either the starting point or a point of a local arc.



ON BOUNDARY POINTS OF MINIMAL SETS 25

Proof. We just have to prove that for some y ∈ Γ(z) such that y is close enough to
z, the arc α of integral curve between z and y belongs to ∂MT

CH . This follows from
Lemma 3.20. □

Proposition 4.11. Any local arc is a locally strictly convex real-analytic curve.
Its orientation coincides with the standard topological orientation of ∂MT

CH if it is
contained in I+ (and with the opposite orientation otherwise).

Proof. As any integral curve of a real-analytic vector field, a local arc is a real-
analytic curve in R2. The arc has to be locally convex because otherwise, the
associated ray (which is contained in the tangent line) at some point would cross
the interior of MT

CH . Besides, direct computation shows that the curvature of an
integral curve becomes zero only at points belonging to IR. □

Let us check that a local arc of ∂MT
CH can not end inside an inflection domain.

It can not be periodic either.

Proposition 4.12. Every local arc has an endpoint that belongs to Z(PQ) ∪ IR.
Besides, if such an endpoint belongs to Z(PQ), it is either a regular point or a

simple pole of R(z).

Proof. Assume that the local arc γ is periodic and doesn’t intersect Z(PQ) ∪ IR.
Then following Proposition 4.11, γ is a strictly convex closed loop disjoint from
Z(PQ) and MT

CH is a strictly convex compact domain bounded by γ (in particular
γ encompasses every point of Z(PQ)). A neighborhood of γ is foliated by periodic
integral curves γt of the vector field R(z)∂z that are also disjoint from Z(PQ) and
IR, so strictly convex as well. Each of them cuts out a strictly convex compact
domain Dt. For each point z in the complement of some Dt, r(z) remains disjoint
from Dt, which by Lemma 3.25 contradicts the minimality of MT

CH .
Now, we have to prove that a local arc can not go to infinity. When |degQ −

degP | ≤ 1, integral curves going to infinity enter the cones disjoint from MT
CH and

never leave them (see Section 2.5).
In the remaining cases, Poincaré-Bendixson theorem proves that a local arc γ

has an ending point y ∈ ∂MT
CH . We assume by contradiction that y /∈ Z(PQ)∪IR.

We consider an arc β formed by a portion of the integral curve ending at y and a
portion of the associated ray r(y). Provided that β remains in the same inflection
domain as y, the family of associated rays starting at the points of the arc β sweeps
out a domain containing a cone (see Lemmas 2.9 and 3.20). Therefore, we have
∆(y) = ∅. Proposition 4.7 then proves that the local arc can be continued in a
neighborhood of y.

If y ∈ Z(PQ) and is a zero or a pole of R(z), then Ly contains an interval of
length at least π (see Definition 3.2). Corollary 3.4 proves that y is either a simple
pole or a simple zero satisfying ϕy = 0. In the latter case, y is a repelling singular
point of R(z)∂z and therefore can not be the endpoint of a local arc. □

As we will see in Section 4.5, in contrast with the case of ending points, a local
arc can start inside an inflection domain at a point of extruding type.

4.4. Global arcs.

4.4.1. Additional results about correspondence ∆.

Lemma 4.13. Consider z ∈ ∂MT
CH \ Z(PQ) such that z ∈ E+ (resp. E−). If

y ∈ ∂MT
CH and y ∈ ∆(z), then one of the following statements holds:

• y ∈ Z(PQ) ∪ IR;
• y ∈ I− (resp. I+).
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Proof. Without loss of generality, we assume that z = 0, r(z) = R+ and z ∈ E+.
We consider y ∈ ∆(z) such that y /∈ Z(PQ) ∪ IR. If ∆(y) = ∅, then Proposi-

tion 4.7 shows that y belongs to a local arc. Besides, y is an indirect support point
of the associated ray r(z) (see Lemma 4.4). If y ∈ I+, then the associated rays
starting from a germ of the local arc at y sweep out a neighborhood of z and we
get a contradiction. Therefore y ∈ I−.

Now we consider the case where ∆(y) ̸= ∅ and assume by contradiction that
y ∈ I+. If Im(R(y)) > 0, then Lemma 4.5 provides an immediate contradiction. If
Im(R(y)) < 0, then Ly (see Definition 3.2) contains an interval of length strictly
larger than π such that σ(y) is one of the ends. It follows from Corollary 3.4 that
y is a simple zero of R(z) (and therefore y ∈ Z(PQ)).

If r(y) = y + R−, then for some small ϵ > 0, points of the interval ] − ϵ, ϵ[
are disjoint from the interior of MT

CH . Associated rays starting from the points of
] − ϵ, ϵ[ sweep out an open cone containing a neighborhood of y. This contradicts
the assumption y ∈ ∂MT

CH . Therefore, r(y) = y+R+ and r(y) ⊂ r(z). In this case,
for some small ϵ′ > 0, points of ]y− ϵ′, 0[ are disjoint from the interior of MT

CH and
their associated rays will sweep out a neighborhood of y if y ∈ I+. Therefore, in
that case we get that y ∈ I−. Similar result holds for z ∈ E−. □

Definition 4.14. For any point z ∈ ∂MT
CH such that s /∈ Z(PQ)∪IR and ∆(z) ̸=

∅, we define ∆min(z) (resp. ∆max(z)) as the infimum (resp. the supremum) in
∆(z) of the order induced by the orientation of the associated ray r(z).

Besides, we define Lz = |∆min(z)− z|.

Lemma 4.15. For any z ∈ ∂MT
CH such that z /∈ Z(PQ) ∪ IR and ∆(z) ̸= ∅, we

have ∆min(z) ̸= z and Lz ̸= 0.

Proof. Without loss of generality, we assume that z = 0, z ∈ I+ and z(x) = R>0.
For any small enough real positive ϵ, we have Re(R(ϵ)), Im(R(ϵ)) > 0 and ϵ ∈ I+.
If such an ϵ belongs to ∆(z), then it contradicts Lemma 4.13. □

Since MT
CH is compact in C∪ S1, it follows immediately that for any z, ∆min(z)

is actually a point of ∂MT
CH .

Definition 4.16. For any point z ∈ ∂MT
CH such that s /∈ ZPQ∪IR and ∆(z) ̸= ∅,

we define U(z) as the connected component of (MT
CH)c \ [z,∆min(z)] incident to:

• the right side of [z,∆max(z)] if z ∈ I+;
• the left side of [z,∆max(z)] if z ∈ I−.

i.e. in the half-plane bounded by r(z) different to that containing the germ of the
trajectory of R∂z starting at z.

Lemma 4.17. Consider z ∈ ∂MT
CH such that z /∈ Z(PQ) ∪ IR, ∆(z) ̸= ∅ and

z ∈ I+ (resp. I−). For any y ∈ ∂MT
CH ∩ ∂U(z) such that y ∈ I+ (resp. I−) and

∆(y) ̸= ∅, we have U(y) ⊂ U(z).
Besides, if y ̸= z, we have U(y) ⊊ U(z).

Proof. Applying Lemma 4.5 to the associated rays r(z) and r(y), we see that ∆(y) ⊂
∂U(z). Thus U(y) ⊂ U(z).

In case when U(y) = U(z), the associated ray r(y) has to coincide with r(z)
(with the same orientation since y and z belong to the same inflection domain). It
follows that y = z. □

4.4.2. Orientation of global arcs.

Definition 4.18. A global arc in ∂MT
CH is a maximal open connected arc formed

by points of global type.
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We have a geometrically meaningful way to define orientation on global arcs.

Lemma 4.19. Any global arc (αt)t∈I can be oriented in such a way that for t′ > t,
we have:

• αt′ ∈ ∂MT
CH ∩ ∂U(αt);

• U(αt) ⊂ U(αt′).

In particular, in I+, the orientation of global arcs coincides with the standard topo-
logical orientation of ∂MT

CH (it coincides with the opposite orientation in I−).
Besides, a global arc is an interval, i.e. it can not be a closed loop.

Proof. Following Lemma 4.13, ∆min(αt) either belongs to Z(PQ) ∪ IR or to an
inflection domain different from αt. It follows that global arc α does not contain
a boundary arc from αt to ∆min(αt). Removal of αt from α cuts the arc into
two pieces, one of which is contained in ∂U(αt). Lemma 4.17 then proves the
inclusion of the sets of the form U(αt) as t sweeps out the interval I which provides
a meaningful orientation on the global arc. □

Lemma 4.20. Along a global arc α, the function σ(z) = arg(R(z)) is a monotone
mapping of α to a closed half-circle of S1.

Besides, if σ(αt) = σ(αt′) for some t > t′, then ∆(αt) coincides with the point
at infinity σ(αt) = σ(αt′) that also belongs to ∆(αt′).

Proof. Consider two points αt and αt′ of a global arc satisfying t > t′ for the
canonical orientation. By Lemma 4.19, αt′ ∈ ∂U(αt).

Without loss of generality, we assume that α is contained in I+, αt = 0 and
r(αt) = R+. If σ(αt′) ∈ [−π, 0[, any associated ray starting in a small enough
neighborhood of αt′ will cross MT

CH . If σ(αt′) = 0, then the interior of the strip
bounded by r(αt), r(αt′) and the portion of global arc between αt and αt′ is dis-
joint from MT

CH . It follows that ∆(αt) contains only the point at infinity. In the
remaining case, we have σ(αt′) ∈]0, π[. □

Proposition 4.21. Consider z ∈ ∂MT
CH such that z /∈ Z(PQ)∪IR and ∆(z) ̸= ∅.

Then, z is either the endpoint or a point of a global arc.

Proof. We consider an arbitrarily small open arc α of ∂MT
CH ∩U(z) ending at z. By

assumptions, α is disjoint from Z(PQ)∪IR. If some point y ∈ α satisfies Γ(y) ̸= ∅,
then α partially coincides with a local arc. Since the ending point of any local arc
belongs to Z(PQ)∪IR (see Proposition 4.12), comparison of the orientation of local
arcs and the orientation of ∂MT

CH in a given inflection domain (see Lemma 4.11)
proves that z also belongs to this local arc. This is a contradiction. Therefore, any
point y in arc α satisfies Γ(y) = ∅. Proposition 4.7 then proves by contradiction
that each point of arc α satisfies ∆(y) ̸= ∅ and is thus a point of global type.
Therefore, z is either the endpoint or a point of a global arc containing α. □

Proposition 4.22. If a point z ∈ ∂MT
CH satisfies:

• z /∈ Z(PQ) ∪ IR;
• ∆(z) ̸= ∅;
• Γ(z) = ∅;

then z belongs to a global arc.

Proof. Following Proposition 4.21, z is either the ending point or a point of a global
arc. We consider a connected neighborhood V of z in ∂MT

CH that is disjoint from
Z(PQ) ∪ IR. Without loss of generality, we assume that V belongs to I+.

We consider a point y ∈ V such that the oriented arc from y to z in ∂MT
CH has the

same orientation as the standard topological orientation of the boundary. If Γ(y) ̸=
∅, then y is either a point or the starting point of a local arc (Corollary 4.10) that
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can be continued til z (see Proposition 4.12) since V is disjoint from Z(PQ) ∪ IR.
Therefore, Γ(y) = ∅ and it follows then from Proposition 4.7 that ∆(y) = ∅. Thus,
any such point y is a global point belonging to global arc α.

Then, we consider points y ∈ V such that the oriented arc from y to z in ∂MT
CH

has the opposite orientation as the standard topological orientation of the boundary.
If such point y satisfies Γ(y) ̸= ∅, then it is a point or the starting point of a local
arc. Since V is connected and disjoint from Z(PQ) ∪ IR, it contains at most one
local arc starting at a point of extruding type. The complement of the closure of
this local arc in V coincides with global arc β. By hypothesis, z is not a point of
extruding type so it belongs to a global arc β. □

Proposition 4.23. If z0 ∈ C is the endpoint of a global arc α and is neither a zero
nor a pole of R(z), then ∆(z0) ̸= ∅.

Recheck
— Mitya

Proof. We assume that α is parameterized by the interval ]0, 1[ (with the correct
orientation) and α(t) → z0 as t → 1. For any n ≥ 2, we pick a point βn ∈
∆(α(1−1/n)). Since C∪S1 is compact, the sequence (βn)n≥2 has an accumulation
point β. Since z0 is the endpoint of α, the point β can not coincide with z0 (see
Lemma 4.19). It follows that a family of associated rays accumulates on a half-line
starting at z0 and containing β. Since arg(R(z)) is continuous in a neighborhood
of z0, we get that this half-line coincides with the associated ray r(z0). □

If at some point z0, ∆(z0) contains more than one point, then ∂MT
CH cannot be

smooth at z0.

Proposition 4.24. At a point z such that ∆(z) contains at least two points, the
boundary ∂MT

CH has a nonconvexity point. There is a cone C at z of angle strictly
bigger than π and a neighborhood V of z such that C ∩ V ⊂ MT

CH .

Proof. First assume that ∆(z) contains two points u, v both of which are not points
at infinity. Lemma 2.11 proves that z belongs to two distinct root trails. Assuming
that R(z) + (u − z)R′(z) and R(z) + (v − z)R′(z) are nonzero, the tangent slopes

of these root trails at z are determined by the argument of R2(z)
R(z)+(u−z)R′(z) and

R2(z)
R(z)+(v−z)R′(z) . Since Im(R′(z)) ̸= 0, these two branches intersect transversely at

z and the claim follows. If R(z) + (u− z)R′(z) = 0, then two branches of the root
trail intersect transversely either.

In the remaining case, ∆(z) contains exactly one point u satisfying the condition
R(z) + (u − z)R′(z) ̸= 0 and a point σ(z) at infinity. Then the root trail of

u at z has a slope given by the argument of R2(z)
R(z)+(u−z)R′(z) (or R(z)

R′(z) if u is at

infinity, see Lemma 2.15). Similarly, R′(z) /∈ R so these curves intersect transversely
at z. Summarizing we see that in all possible cases, the boundary ∂MT

CH has a
nonconvexity point. □

For a point z0 for which ∆(z0) consists of a single point u satisfying the condition
R(z0) + (u − z0)R

′(z0) ̸= 0, Lemma 2.11 proves that: (i) the root trail tru has a
unique branch at z0, (ii) it is contained in MT

CH , and (iii) its tangent slope is the

argument of R2(z0)
R(z0)+(u−z0)R′(z0)

(mod π).

4.5. Points of extruding type. Outside the local and the global arcs, the only
singular boundary points in the complement of Z(PQ) ∪ IR which can occur are
points of extruding type.
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Proposition 4.25. Let z be a point of extruding type in ∂MT
CH . Then z is both

the ending point of a global arc and the starting point of a local arc.
The boundary ∂MT

CH is not C1 at z and z is a point of nonconvexity. There
exist a neighborhood V of z and a cone C at z of angle strictly bigger than π such
that MT

CH ∩ V contains C ∩ V , see Figure ???.

Proof. By definition of the correspondence Γ, z is the starting point of a local arc.
Propositions 4.21 and 4.22 show that z is the ending point of a global arc.

For any point u ∈ ∆(z), the root trail tru has a unique local branch at z and

its tangent direction is the argument of R2(z)
R(z)+(u−z)R′(z) (mod π), see Lemma 2.11.

Indeed, R(z) + (u − z)R′(z) ̸= 0 because u − z is real collinear to R(z) while
Im(R′(z)) ̸= 0. Since z /∈ IR, this branch transversely intersects the integral curve
of R(z)∂z containing z. Both of these branches are (semi)analytic curves contained
in MT

CH . The claim follows. □

4.6. Boundary arcs in inflection domains.

Proposition 4.26. For any connected component D of the complement to the
curve of inflections IR, ∂M

T
CH ∩ D is a union of disjoint topological arcs. In each

of them, local and global arcs have the same orientation. If Im(R′) is positive
(resp. negative) in D then the latter orientation coincides with (is opposite to) the
topological orientation of ∂MT

CH .

Proof. The statement about orientation follows from Proposition 4.11 and Lemma 4.19.
Proposition 4.25 shows that a point of extruding type is incident to a local and a
global arcs. It remains to prove that any point of Z(PQ)∩D is incident to exactly
two arcs.

Such a point z0 is neither a zero nor a pole of R(z), see Corollary 3.11. Therefore
Lemma 2.20 proves that for a small enough neighborhood V of z0, the intersection
of V with the interior of MT

CH is connected. Thus at most two arcs are incident to
z0. □

5. Singular boundary points on the curve of inflections

At points belonging to the curve of inflections the boundary ∂MT
CH can display

a more complicated behaviour. In this section, we classify boundary points that
belong to the transverse locus I∗R of the curve of inflections (see Definition 1.4).

Definition 5.1. A point of ∂MT
CH \ Z(PQ) belonging to the transverse locus I∗R

is a point of:

• bouncing type if ∆+ ̸= ∅ and Γ ∪∆− ̸= ∅;
• switch type if ∆+(z) ̸= ∅ and Γ ∪∆−(z) = ∅;
• C1-inflection type if ∆+ = ∅, ∆− ̸= ∅ and Γ = ∅;
• C2-inflection type if ∆+ ∪∆0 = ∅ and either ∆− = ∅ or Γ ̸= ∅.

I added ∆0, this should be rechecked
— Mitya

5.1. Horns at points of the transverse locus. At a point p of I∗R, the curve of
inflections is smooth and the vector field is transversal to it. This means that by
(3.2) we have

R(u) = 1 + ρu+ (a+ ib)u2 + ... (5.1)

where we assumed that p = 0. The condition ImR′(0) = 0 means ρ ∈ R, and the
transversality condition is equivalent to b ̸= 0. Without loss of generality we can
assume that b > 0. In other words, m = 2 in (3.2) which implies that the integral
curves locally look like cubic curves with inflections at these points.
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We define the diameter of a horn p△
p′

p′′ to be the smallest t > 0 such that

u+ t′R(u) ∈ p△
p′

p′′ for any u ∈ p△
p′

p′′ and t ∈ [0, t].

Lemma 5.2. Let p ∈ I∗R. Then there exists a sufficiently small neighborhood U of
p and ϵ > 0 such that for all points in Ω+ = I+ ∩ U there exists a small horn of
diameter greater than ϵ.

Proof. Consider the function

T (u, t) =
dσ(u+ tR(u))

dt
(t) = Im

[
R′(u+ tR(u))

R(u+ tR(u))
R(u)

]
defined in Cu × Rt. Since T (0, 0, t) = 2bt + O(t2), we have ∂T

∂t (0, 0) = 2b > 0.

Therefore ∂
∂tT (u, t) > b > 0 in some sufficiently small neighborhood U × (−ϵ, ϵ)

of (0, 0). Moreover, by definition of Ω+ we have Ω+ × {0} ⊂ {T > 0}. Taken
together, this implies that Ω+ × [0, ϵ] ⊂ {T > 0} for some ϵ > 0. This means
that the argument of R(u + tR(u)) is monotone increasing for 0 < t < ϵ and for
every u ∈ Ω+. Thus for every u ∈ Ω+, any horn of diameter less that ϵ is a small
horn. □

5.2. Points of bouncing type.

Proposition 5.3. Let z be a point of bouncing type in ∂MT
CH . Then z is the ending

point of a global arc and also the starting point of another arc which can either be
local or global.

The boundary ∂MT
CH is not C1 at z and z is a point of nonconvexity. There

exist a neighborhood V of z and a cone C at z of angle strictly bigger than π such
that MT

CH ∩ V contains C ∩ V .
Besides, for small enough V , one has V ∩ ∂MT

CH ∩ IR = {z}.

Proof. Without loss of generality, we can assume that z = 0, R(0) = 1, and R′(0) ∈
R. We have R′(ϵ) = R′(0) +R′′(0)ϵ+ o(ϵ). Since z belongs to I∗R, we get R′′(0) =
a + bi with a ∈ R and b ∈ R∗. Additionally and without loss of generality, let us
assume that b > 0.

Recall that by Lemma 3.20 a germ of the domain bounded by the integral curve
of R starting at z and r(z) lies in the complement to MT

CH .
Let us first consider the case when ∆0(z) = ∅. Since ∆+(z) ̸= ∅, we have that

for u ∈ ∆+(z), the germ of tru at z is strictly convex and contained in the lower
half-plane (see Proposition 2.18). Then, since Γ(z)∪∆−(z) is nonempty there exists
an arc (portion of a root trail or an integral curve) starting at 0 with an horizontal
tangent, contained in the upper half-plane, and belonging to MT

CH .
Denoting by α the union of the latter arc with the root trail of u, there exists a

neighborhood V of z such that the α cuts V into two parts. The part of V to the
left of α is entirely contained in MT

CH . This domain contains the intersection of V
with a cone with vertex at z and of angle strictly larger than π. It also contains all
the intersection of V with IR excepted for the point z.

If ∆0(z) is nonempty, then it contains the unique point u = − 1
R′(0) . In such

a case, the root trail tru has exactly two branches intersecting at z (see Lem-
mas 2.11, 2.15 and Remark 2.16). The tangent slopes of these branches (which
intersect orthogonally) are θ0

2 (mod π/2) where θ0 is the argument of 1
R′′(0) . In

contrast, the tangent slope of IR at z is θ0 (mod π). Since R′′(0) /∈ R, we have that
θ0 /∈ πZ and these branches intersect transversely. Consequently, there is a neigh-
borhood V of z such that the intersection of V with MT

CH contains the intersection
of V with a cone of angle arbitrarily close to 3π

2 . In particular, it contains all the
intersection of V with IR except for z itself.
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It remains to prove that in a neighborhood of z, ∂MT
CH is formed by exactly two

arcs.

Lemma 5.4. Assume that Γ(z) = ∅ and ∆− ̸= ∅. Then z is a starting point of a
global arc.

Proof. We assume that z = 0, R(0) = 1 and γz lies in the upper half-plane. By
Lemma 3.20 the points lying below γz are not in MT

CH . Let q be a point lying

slightly above γz, q /∈ MT
CH

◦
. Denote by p̃ = p̃(q) the first point on γq such that

∆(p̃) ̸= ∅, in particular p̃ ∈ MT
CH . Using the arguments and notations of Lemma 4.9

(and Lemma 5.2 instead of Lemma 3.22) we see that the arc γq
p̃ ∩MT

CH
◦
= ∅, thus

p̃ ∈ ∂MT
CH . The points p̃(q) form a global arc of ∂MT

CH starting at z and lying
between tru and γz in the upper half-plane. □

If Γ(z) ̸= ∅, then a local arc whose germ is contained in the upper half-plane
starts at z.

In both cases the portion of boundary of ∂MT
CH in a neighborhood of z in the

lower half-plane is a global arc ending at z. Indeed, assume q ∈ z△z′

z′′ ∪ z′′∠ ⊂ MT
CH

lies slightly below γz, and denote again by p̃ = p̃(q) the first point on γq such that
∆(p̃) ̸= ∅, in particular p̃ ∈ MT

CH . Then repeating the arguments of Lemma 4.8 we

see that γq
p̃ ∩MT

CH
◦
= ∅. Thus the points p̃ form a global arc of ∂MT

CH lying in the
lower half-plane and ending at z.

□

5.3. Points of C2-inflection type.

Proposition 5.5. Consider a point p of ∂MT
CH \Z(PQ) belonging to the transverse

locus I∗R. If ∆(p) = ∅, then Γ(p) ̸= ∅ and p is the starting point of a local arc.

Proof. We keep the previous normalization p = 0, R(0) = 1, ImR′′(0) = b > 0.
The positive trajectory γ0 cuts I+ into two parts, one containing the convex hull
of γ0 (denoted by Ω++) and another one denoted by Ω+−.

Repeating the arguments of Lemma 4.8 and using Lemma 5.2 (see Figure 2)
for points in Ω+−, we can conclude that MT

CH does not intersect Ω+−. Together
with ∆(0) = ∅ this implies that some small sector S− = {−ϵ < arg z < 0} doesn’t
intersect MT

CH .
Now, assume by contradiction, that there exists some q ∈ Ω++ \ MT

CH . By
decreasing Ω++ if needed and repeating the arguments of Lemma 4.9 (see Figure 3),
we obtain that Ω++ ∩MT

CH = ∅. Therefore there is a neighbourhood U+ of 0 in I+

which is disjoint from MT
CH . We can assume that U+ is an intersection of I+ with

a small disk centered at 0.
For sufficiently small ϵ > 0 the set U = U+ ∪ {ϵ < arg z < ϵ} is disjoint from

MT
CH : the part lying in the lower half-plane is in U+ ∪S− and the part lying in the

upper half-plane is in U+ ∪ 0△
p′

p′′ ∪ p′′∠.
Now, take a small neighborhood U− of 0 in Ω− bounded by a convex curve

transversal to R. For any u ∈ U , the ray r(u), being close to R+, lies inside
U ∪ U−. By Lemma 3.25, this implies that U− ⊂ MT

CH
c
, and therefore 0 /∈ MT

CH ,
a contradiction. Thus Ω++ ⊂ MT

CH and γ0 ⊂ ∂MT
CH . □

Proposition 5.6. Consider a point p of C2-inflection type. Then there is a neigh-
borhood V of p in which ∂MT

CH is formed by:

• a portion of local arc γ parameterized by an interval [0, ϵ[, ϵ > 0 with
γ(0) = p;

• a portion of global arc α parameterized by [0, ϵ[ and such that α(0) = p and
∆(α(t)) = {γ(t)}.
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Figure 4. A point p ∈ ∂MT
CH ∩ I∗R with ∆(p) = ∅ is a starting

point of a local arc.

In particular, p is simultaneously the starting point of a local arc and the starting
point of a global arc.

Proof. We again assume that p = 0 and R(0) = 1. Following the definition of a
point of C2-inflection type (see Theorem 1.6), we have that ∆+(0) ∪ ∆0(0) = ∅
and either ∆−(0) = ∅ or Γ(0) ̸= ∅. By Proposition 5.5, if ∆−(0) = ∅, Γ(0) is also
nonempty. Therefore, we will assume that 0 is the starting point of a local arc γ0 and
deduce the shape of the boundary close to 0 from the assumption ∆+(0)∪∆0(0) = ∅.

The curve γ0 divides the domain I+ into two parts, and as before we denote the
one containing the horn of 0 by Ω+−.

Lemma 5.7. Ω+− ∩MT
CH = ∅.

Proof. Consider the case R′(0) < 0 first. Denote I− = ∂Ω+− ∩ IR \ {0}. We claim
that r(u) ∩MT

CH = ∅ for all u ∈ I− sufficiently close to 0.

Denote ρ = − (R′(0))
−1

. By assumption MT
CH ∩ R+ = ∆(0) = ∆−(0) is a

compact subset of (ρ,+∞], so MT
CH∩R+ ⊂ [ρ′,+∞], ρ′ > ρ. Again, by compactness

of MT
CH and by Lemma 3.20 we can assume that

MT
CH ∩ {| Im z| < δ′} ⊂ {Re z > ρ′ − ϵ, Im z ≤ 0} ∪ {Re z < ϵ}. (5.2)

For all u ∈ I−, u ̸= 0, the slope σ(u) is positive:

ImR(u) = R′(0) Imu+O(u2) > 0,

as Imu < 0 and Reu = O(Imu) by transversality of IR and r(0). Thus Im(u +
tR(u)) = 0 for t = ρ + O(u), and r(u) ∩ R+ = ρ + O(u). Therefore for any ϵ > 0
for any point u ∈ I− sufficiently close to 0 the ray r(u) has arbitrarily small slope
and r(u) ∩ R+ ∈ (ρ− ϵ, ρ+ ϵ). Therefore

r+(u) = r(u) ∩ {Im z > 0} ⊂ 0△
p′

p′′ ∪ p′′∠ ⊂ MT
CH

c
(5.3)

for all u ∈ I− sufficiently close to 0.
Let u ∈ I−, | Imu| < δ′, and take u′′ ∈ r(u) with Reu′′ = ϵ. If ϵ is sufficiently

small then by Lemma 5.2 we can assume that the horn u△u′

u′′ is small.
The horn u′′∠ lies above r(u) and to the right of {Re z > ϵ}. Thus

u′′∠ ∩ {Im z < 0} ⊂ {ϵ < Re z < −ρ−1 + ϵ, Im z > −δ}
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and therefore u′′∠ ∩ {Im z ≤ 0} ⊂ MT
CH

c
. Repeating the arguments of Lemma 4.8

we conclude that u′′∠∩ {Im z > 0} ⊂ MT
CH

c
as well, which implies that u ∈ MT

CH
c

and therefore Ω+− ⊂ MT
CH

c
as well.

If R′(0) > 0 then ∆−(0) = ∆0(0) = ∅, so ∆(0) = ∅. Then the arguments of
Lemma 4.8 are applicable for all p̃ ∈ Ω+−, which proves the claim in this case as
well.

□

Let γ̃0 be the curve of points in I− whose associated rays are tangent to the
positive trajectory γ0 of R∂z starting at 0.

Lemma 5.8. For R as in (5.1) the local arc γ0 is described by equation y(x) =
b
3x

3 + o(x3), x ≥ 0 and curve γ̃0 is described by y(x) = 5 b
3x

3 + o(x3), x ≤ 0.

Proof. Using (3.3) for (5.1) we see that

γ0(t) = t+ o(t) + i

(
b

3
t3 +O(t4)

)
with a ∈ R and therefore the slope σ(γ0(t)) = bt2 +O(t3).

The point u ∈ γ̃0 whose associated ray r(u) is tangent to γ0 at γ0(t) has the
form

u = γ0(t)− sR(0) = t− s+ o(t) + i

(
−sbt2 +

b

3
t3 +O(t4)

)
with the condition σ(u) = σ(γ0(t)) = bt2 + O(t3). The latter condition means
s = 2t+ o(t) and therefore

u = −t+ o(t)− i

(
5

3
bt3 +O(t4)

)
.

□

Lemma 5.9. For any α ∈ γ̃0 the ray r(α) doesn’t intersect γ̃0 ∪ γ0 between α and
the point of tangency z = z(α) of r(α) and γ0.

Proof. By Lemma 5.8 γ0 ∪ γ̃0 = {y = γ(x)}, with γ′′ being continuous, monotonic
and vanishing at x = 0 on the interval [Reα,Re z]. Let r(α) = {y = kx + b}. By
construction, γ̂ = γ(x) − kx − b vanishes at Reα and has a double zero at Re z.
Any other point of intersection of r(α) and γ̃0 ∪ γ0 will mean existence of another
zero of γ̂ on [Reα,Re z]. By Rolle Theorem this will imply existence of two zeros
of γ̂′′ = γ′′ on [Reα,Re z], which contradicts monotonicity of γ′′. □

Corollary 5.10. Let α+ = r(α)∩IR and let r+(α) = r(α) \Ω−− = α++σ(α)R+.

Then r+(α) ∩MT
CH

◦
= ∅.

Proof. Indeed, the piece of r+(α) between α+ and the point of tangency z = z(α)
of r(α) and γ0 lies in Ω+− by Lemma 5.9, and the remaining piece coincides with
r(z). Thus the claim follows from Lemma 5.7 and Lemma 3.20. □

The curve γ̃0 divides Ω− into two parts. Denote by Ω−− the part consisting of
points whose associated ray does not intersect γ0 and let Ω−+ denotes the second
part. Clearly Ω−+ ⊂ MT

CH .

Lemma 5.11. For any u ∈ Ω−−

(1) r(u) ∩ γ̃0 = ∅,
(2) r(u) \ Ω−− ⊂ MT

CH
c
.
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Figure 5. A point in the transverse locus of ∂MT
CH ∩ IR with

empty ∆ correspondence is the starting point of a global arc.

Proof. Let γω
α be the piece of trajectory of R∂z containing u and with ends α =

α(u) ∈ γ̃0 and ω = ω(u) ∈ (I)R: by Lemma 5.8 γ̃0 is transversal to the trajectories
of R∂z near 0 except γ0. Let D(u) = ∪z∈γω

α
r(z) be the domain sweeped by rays

tangent to γω
α . As γω

α is convex, ∂D(u) = r(α) ∪ γω
α ∪ r(β). By Lemma 5.9,

Lemma 5.8 and Lemma 5.7 ∂D(u) ∩ γ̃0 = ∅, so r(u) ∩ γ̃0 = ∅ as well
The boundary of D+(u) = D(u) \ Ω−− consists of r(β), the piece of IR lying

between β and the point α+ and r+(α) which do not intersect MT
CH

◦
by Lemma 5.7

and Corollary 5.10. This implies the second claim of the Lemma. □

Proof of Proposition 5.6. Take some u ∈ Ω−− and let Ω−−(u) be the curvilinear
triangle bounded by γβ

α, γ̃0 and I. The ray r(u) doesn’t cross γβ
α by convexity

and doesn’t cross γ̃0 by Lemma 5.11, so it leaves Ω−−(u) through I, with r(u) \
Ω−−(u) ⊂ MT

CH
c
Lemma 5.11. As Ω−−(u

′) ⊂ Ω−−(u) for any u′ ∈ Ω−−(u), this

means that r(u′) ⊂ Ω−−(u) ∪MT
CH

c
for all u′ ∈ Ω−−(u), and the claim follows by

Lemma 3.25. □

□

5.4. Points of C1-inflection type.

Proposition 5.12. A point p ∈ ∂MT
CH ∩ I∗R of C1−inflection type is the starting

point of two global arcs (one in each of the incident inflection domains).

Proof. We assume that p = 0, R(0) = 1 and γz ⊂ I+ lies in the upper half-plane.
We use z = x+ iy notations.

Exactly as in the case of bouncing type, the conditions ∆− ̸= ∅ and Γ = ∅
imply that z is a starting point of a global arc, see Lemma 5.4. Denote this arc by
η = {y = ξ(x)}. Arguments of Lemma 5.4 show that η lies between tr∞ and tru∞ ,
where u∞ = sup∆−.

We repeat the arguments of C2-inflection case above. The Lemma 5.7 can be
repeated verbatim, thus we get Ω+− ⊂ MT

CH .
Let η̃ be the curve of points in I− bounding (the germ at 0 of) the domain Ω−−

consisting of points of I− whose associated rays do not intersect η. In particular,
r(α) is tangent to η for all α ∈ η̃. If γβ

α is a trajectory of R∂z starting at α ∈ η̃ and
ending at β ∈ IR then γβ

α ⊂ Ω−− by convexity of γβ
α, as in Lemma 5.11.

The same arguments as in Lemma 5.11 and in the proof of Proposition 5.6 now
show that Ω−− satisfies the conditions of Lemma 3.25 and is therefore disjoint from
MT

CH .
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WRONG: why r(u) doesn’t intersect η̃? We need an analogue of Lemma 5.9. Lemma below (check it: is the

reparameterization trick kosher?) shows that η̃ is C2, but I do not know a proof right now
— Mitya

□

Lemma 5.13. Let γ1(s) be an arc supported by a Ck-smooth arc γ2(s): the ray
r(γ1(s)) is tangent to γ2 at point γ2(s). Then γ1(s) is Ck+1-smooth.

Proof. Let p = γ1(s) and take a point p′ = γ1(s
′) close to p. Necessarily r(p) and

r(p′) should intersect near the arc joining q = γ2(s) and q′ = γ1(s). This means
that the map

(s, t) → w(s, t) = γ1(s) + tR(γ1(s)) (5.4)

has critical locus at points
(
s, t = t(s) = γ2(s)−γ1(s)

R(γ1(s))

)
(note that w(s, t(s)) = γ2(s)

by definition). In other words, the vectors

∂w

∂t
(s, t(s)) = R(γ1(s)),

∂w

∂s
(s, t(s)) = [1 + t(s)R′(γ1(s))] γ̇1(s), (5.5)

should be R-collinear, ∂w
∂s (s, t(s)) = α∂w

∂t (s, t(s)) for some α = α(s) ∈ R \ {0}.
If α = 0, then 1 + t(s)R′ = 0 and R′ ∈ R \ {0} (as t(s) ∈ R), so γ1(s) ∈ IR.
Otherwise, by reparameterisation of γ1(s) we can assume α = 1, and we get that

γ1(s) (up to reparameterization of γ1, γ2) satisfies an ordinary differential equation

γ̇1(s) =
R2(γt(s))

R(γt(s)) + (γ2(s)− γ1(s))R′(γ1(s))
(5.6)

with continuous RHS. Thus if γ2(s) was Ck-smooth, then γ1(s) will be Ck+1-
smooth.

□

5.5. Points of switch type. Recall that a point p of ∂MT
CH \ Z(PQ) belonging

to the transverse locus I∗R is called a point of switch type if ∆+(p) ̸= ∅ and Γ(p) ∪
∆−(p) = ∅.

Proposition 5.14. The negative part γ−
0 (t) of the integral curve γ0(t) is part of

the boundary of MT
CH .

As before, we assume that p = 0, R(0) = 1 and ImR′′(0) > 0. The trajectory
γ0(t) and the curve IR divide U into four domains Ω±,±, with Ω+− containing the
(germ of) H0.

Lemma 5.15. Ω++ ⊂ MT
CH

c
.

Proof. Recall that by Lemma 3.20 the union H(0) = 0△
p′

p′′ ∪ p′′∠ doesn’t intersect

MT
CH .
We assume first that R′(0) < 0 and denote ρ = −(R′(0))−1 ∈ R+. As ∆(0) ⊂

(0, ρ) is compact and +∞ /∈ ∆(0) there exists a small open sector S with the ray
(ρ′,+∞) as bisector, for some ρ′ < ρ, and disjoint from MT

CH .
Let U be a small neighborhood of 0 such that the slope σ(z) is smaller than the

slope of sides of S for all z ∈ U . Moreover, we assume that U is so small that the
rays r(z), z ∈ U , do not intersect the interval [0, ρ′]: trails of these points lie in the
lower half-plane. Thus

• for any z ∈ U , Im z > 0, the ray r(z) intersects the boundary of H(0) ∪ S
only once at γ+

0 (t).

The same conclusion holds in the case R′(0) > 0: in this case σ(z) > 0 for all
z ∈ U , Im z > 0.

Since Γ(0) = ∅ there is a point q ∈ Ω++ \ MT
CH . The proof now follows from

arguments of Lemma 4.9. □
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Proposition 5.16. Let p = γ(t) for some t < 0 sufficiently close to 0. The
curvilinear triangle H(p) ⊂ Ω−+ bounded by r(p), the curve γ−(t) and the inflection
curve lies outside MT

CH .

We write x = Re z, y = Im z.

Lemma 5.17. ∂
∂xσ(x + iy) < 0 as long as z = x + iy lies in a sufficiently small

sector {|z| < δ, x < 0, |y| < −ϵx} for some ϵ, δ > 0 depending on R only.

Proof. We recall that R(z) = 1 + az + bz2 + .., with Im b > 0. Then logR =

az +
(
b− a2

2

)
z2 + ... and (logR)

′
= a+ (2b− a2)z + .... Therefore

∂

∂x
σ(x+ iy) = Im (logR)

′
= Im

(
(2b− a2)z + ...

)
< 0

for z satisfying the conditions above, as 0 < arg(2b− a2) < π. □

Lemma 5.18. r(z) doesn’t intersect γ−
0 (t) for all z ∈ H(p).

Proof. Consider first the case Im z < 0. As γ−
0 (t) is tangent to R, we can assume

that this part of H(p) satisfies the conditions of Lemma 5.17, so σ(z) > σ(z+),
where z+ = z + t(z) ∈ γ−

0 (t). Thus the ray r(z) lies in the half-plane bounded by
the line tangent to γ−

0 (t) at z+ and containing z. Therefore r(z) doesn’t intersect
γ−
0 (t) by convexity of γ−

0 (t).
Now, assume Im z > 0. Recall that we chose U so small that for any z ∈ U ,

Im z > 0, the intersection r(z) ∩ R ⊂ (ρ′,+∞) ⊂ R+. Thus r(z) ∩ {Imw < 0} ⊂
{Re z > ρ′ > 0} which is disjoint from γ−. □

Lemma 5.19. r(z) doesn’t intersect r(p) for all z ∈ H(p).

Proof. Let γ−
z be a part of an integral curve of R ending at z and starting at

z′′ ∈ γ−
z with Im z′′ = Im p. Necessarily z′′ /∈ H(p). Moreover the trajectory γ−

z

cannot intersect the trajectory γ−
0 by uniqueness of solutions of ODE, so necessarily

Re z′′ < Re z and therefore by Lemma 5.17 we have σ(z′′) > σ(z).
Let z′ = γ−

z ∩ r(p) be the point where γ−
z enters H(p). This point necessarily

lies on r(p) as γ−
z doesn’t intersect neither the inflection point nor γ−. Thus

σ(z′) < σ(p).
Assume now that r(z) intersects r(p). Then σ(z) > σ(p). Therefore the slope

σ(w), w ∈ γ−
z , is not monotonic, so γ−

z has inflection point, which is impossible
since γ−

z doesn’t intersect the inflection curve. □

Proof of Proposition 5.16. By minimality, it is enough to prove that r(z) ⊂ H(p)∪
MT

CH
c
for any z ∈ H(p). By Lemmas 5.18, 5.19 the ray r(z) doesn’t intersect r(p)

and γ−
0 (t). Thus r(z) leaves H(p) through the inflection curve IR with a small

slope.
If the slope is positive then r(z) ⊂ U++ ∪ H(0). In particular, this is the case

for all z ∈ H(p), Im z < 0 by Lemma 5.17.
Assume now that σ(z) < 0 (and therefore Im z > 0). Recall that we chose U so

small that for any z ∈ U , Im z > 0, the intersection r(z) ∩ R ⊂ (s′,+∞) ⊂ R+.
Thus r(z) \H(p) ⊂ U++ ∪H(0) ∪ S.

□

Proposition 5.20. Consider a point p of switch type in ∂MT
CH . Then there is a

neighborhood V of p such that MT
CH ∩ V is contained in a half-disk centered at p.

Besides, no neighborhood of p in MT
CH can be contained in a cone centered at p

with an angle strictly smaller than π. A point of switch type is the ending point of
both a local arc and a global arc.
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Proof. We essentially repeat the arguments of Lemma 4.8. Take z′ ∈ H(0) slightly
below γ+

0 (t) and let z ∈ γ−
z′ be the first point such that r(z) ∩MT

CH ̸= ∅. Clearly
z ∈ ∂MT

CH and such points form a global arc ending at 0 by condition ∆(0) ̸= ∅. □

5.6. Classification of boundary points. Here, we summarize several results ob-
tained in previous sections to obtain a complete classification of boundary points.

Proof of Theorem 1.6. It follows from Corollary 3.8 that there are at most 2d sin-
gular points in the curve of inflections (d = 3degP + degQ− 1). Proposition 3.13
proves that the tangency locus TR is formed by at most 2d2 isolated points and d
lines.

The classification of points in I∗R is trivial. If ∆+ is nonempty, then a point is
of bouncing or switch type depending whether Γ ∪ ∆− is empty or not. If ∆+ is
empty, then a point is of C1-inflection or C1-inflection type depending whether the
conjunction of ∆− ̸= ∅ and Γ = ∅ is satisfied or not.

Finally, for points that lie outside Z(PQ)∪IR, we just have to check that Γ and
∆ can not both be empty. This is proved in Proposition 4.7. □

5.7. Estimates concerning local and global arcs. We prove that the number
of points of switch type is an estimate of the number of local arcs (up to an error
depending only on degP and degQ).

Lemma 5.21. In the boundary of MT
CH , the ending point of every local arc (ex-

cepted at most d(2d+1) of them) is a point of switch type (d = 3degP +degQ−1).
Conversely every point of switch type is the endpoint of some local arc.

Proof. Proposition ?? proves that every point of switch type is the endpoint of
some local arc. It remains to list every possible endpoint for a local arc.

Following Proposition 4.12, every local arc has an endpoint that belongs to
Z(PQ) or IR. For any point α that is the endpoint of a local arc, Lα contains
an interval of length at most π. It follows then from Corollary 3.4 that such a point
is either a simple pole of R(z) or a point that is neither a zero or a pole of R(z).
Only two local arcs can have the same simple pole as an endpoint. In other point
is the endpoint of at most one local. Consequently, at most 3 degP + degQ local
arcs have an endpoint in Z(PQ).

It remains to count local arcs whose endpoint belongs to IR \Z(PQ). Any such
point is incident to a unique integral curve so it can be the endpoint of only one local
arc. If such a point belong to the transverse locus of the curve of inflections, then
it is a point of switch type (see Proposition ??). There are |S| of them. Following
Proposition 3.13, the tangency locus of IR is formed by at most 2d2 points and
d lines (where d = 3degP + degQ − 1). On these lines, vectors of field R(z)∂z
are contained in the line so a local arc ending in one of their points would already
belong to them. It follows that |L| ≤ |S|+ d(2d+ 1). □

Similarly, we prove an estimate on the number of global arcs that do not start
at a point of the transverse locus of the curve of inflections.

Lemma 5.22. In the boundary of MT
CH , the starting point of every local arc (ex-

cepted at most 12d + 5d2 of them) is a point of C1-inflection, C2-inflection or
bouncing type.

Proof. We list every possible starting point for a global arc (Lemma 4.19 proves
that global arcs cannot be closed loops).

Since points of extruding type are not starting points of global arcs (see Propo-
sition 4.25), every global arc either starts at a point at infinity or starts at a point
of Z(PQ) ∪ IR.
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We first count the number of global arcs that can start at infinity. If degQ −
degP = 1, we know from Theorem 2.22 that MT

CH is compact. If degQ− degP =
−1, then Proposition 6.9 proves that MT

CH has only one connected component
while its clement has two connected components. Therefore, we have at most four
infinite global arcs in this case. If degQ − degP = 0, the complement of MT

CH

is connected so each connected component has at most two infinite global arcs.
Following Proposition 2.19, MT

CH has at most degP +degQ connected components
so the number of global arcs starting at infinity is at most 2 degP +2degQ. In the
only case where 4 > 2 degP + 2degQ while degQ− degP = −1, Q(z) is constant
while degP = 1. In this case, MT

CH is a straight line (see Proposition 6.7).
Now we consider points of the transverse locus of IR. Each point of C1−inflection

type is the starting point of exactly two global arcs (see Proposition 5.12). Each
point of bouncing or C2−inflection type is the starting point of exactly one global
arc (see Propositions 5.3 and 5.6). No global arc starts at a point of switch type
(see Proposition 5.20).

Now we consider the tangent locus of IR. It is formed by at most 2d2 points
and degP + degQ + 1 R-invariant lines. Each line contains the starting point of
at most four global arcs (because the line has two sides and rays have two possible
directions). Otherwise, rays starting from these global arcs intersect some of the
other global arcs. Using Lemma 2.20, we prove that each of the 2d2 remaining points
of the tangent locus is the starting point of at most two global arcs. For the same
reasons, each singular point of IR that does not belong to Z(PQ) is the starting
point of at most two global arcs. There are 2d such points (see Corollary 3.8).

It remains to estimate the number of global arcs that start at a root α of P (z)
or Q(z) in terms of the local degree mα of R(z) in α. Corollary 3.5 proves that α
is the starting point of at most:

• two arcs if mα = 0;
• 2(1−mα) arcs if mα ≤ −1;
• 2 degP arcs if mα ≥ 1.

Consequently, in the worst case, roots of P (z) and Q(z) are simple and disjoint so
at most 2 degP (degP + 2) can start at these points.

Therefore, the number of global arc whose starting point does not belong to I∗R
is at most (2 degP +2degQ)+4(degP +degQ+1)+4d2+4d+2degP (degP +2).

If degP = 0, then degQ = 1 (otherwise MT
CH is trivial) and MT

CH is fully
irregular (and has therefore no global arc) so we can replace the obtained bound
by the slightly weaker (but more practical) upper bound 12d+ 5d2. □

5.8. Bounding the number of intersection points between ∂MT
CH and the

transverse locus of IR. In order to prove Theorem 1.7, we introduce a new
decomposition of the boundary ∂MT

CH .

Lemma 5.23. For any linear differential operator T given by (1.1), we define the
long arcs as the connected components of ∂MT

CH in the complement of the union
of:

• the roots Z(PQ);
• the singular locus SR of the curve of inflections;
• the tangency locus TR of the curve of inflections.

Besides, one of the following statements hold:

(1) a long arc is a closed loop and coincides with ∂MT
CH ;

(2) each long arc is an interval and there are at most ??? of them (where
d = 3degP + degQ− 1).



ON BOUNDARY POINTS OF MINIMAL SETS 39

Proof. Theorem 2.22 proves that MT
CH is connected and contractible in the ex-

tended plane. It follows that if a long arc is a closed loop, then it coincides with
∂MT

CH . We will then assume that each long arc is an interval and investigate its
endpoints.

A long arc is the union of local and global arcs, glued along points of bouncing,
C1-inflection, C2-inflection and switch type (see Sections 5.2 to 5.5 for a description
of these points, classified in Theorem 1.6).

EST-CE QU’ON A BESOIN DE CA ???
ON AURAIT BESOIN D’UN LEMME

□

1) Definition of a long arc 2) Estimate on the number of long arcs 3) Word and
connected components of ???

Definition 5.24. On each edge E of the curve of inflections IR, the direction of
vector field R(z) defines a same co-orientation between the two inflection domains
bounded by edge E. In the exceptional case where R(z) is real on the real axis (up
to an affine change of variables), the co-orientation of each edge of the real axis is
defined to be trivial.

OBSERVATION: AT POINTS OF INFLECTION AND SWITCH TYPE, ∂MT
CH

intersects transversely IR.

OBSERVATION: AN ASSOCIATED RAY INTERSECTS THE CURVE OF
INFLECTION AT MOST d times.

Proof of Theorem 1.7. ??? □

6. Global geometry of minimal sets

At present we do not know a general recipe how to describe non-trivial MT
CH .

Nevertheless we can prove some general statements about their global geometry
and provide some illuminating examples.

Recall that MT
CH can be nontrivial if and only if degQ− degP ∈ {−1, 0, 1}.

In some cases, description of the convex hull Conv(MT
CH) is easier to obtain.

The following has been proved as Corollary 5.16 in [AHN+22].

Proposition 6.1. Consider a linear differential operator T given by (1.1).Then
the intersection of all convex Hutchinson invariant set coincides with the convex
hull Conv(MT

CH) of the minimal set MT
CH .

The local analysis of boundary points carried on in the previous sections pro-
vides interesting partial results towards a characterization of points where ∂MT

CH

is locally convex.

6.1. Local convexity of the boundary. Local analysis in terms of correspon-
dences Γ and ∆ shows that corner points of MT

CH have to satisfy very specific
conditions.

Corollary 6.2. For a linear differential operator T given by (1.1), consider a
point α which is a corner point of the boundary ∂MT

CH . In other words, there is a
neighborhood V of α such that V ∩MT

CH is contained in a cone with apex α and with
the opening strictly smaller than π. Then one of the following statements holds:

• α is a simple zero of R(z) satisfying ϕα = 0 (see 3.1);
• α is a common root of P (z) and Q(z) of the same multiplicity (i.e. α is
neither a zero nor a pole of R(z)).
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Besides, if α is a cusp (neighborhoods of α in MT
CH can be included in cones of

arbitrarily small opening angle), then one of the following statements holds:

• α is a common root of P (z) and Q(z) of the same multiplicity;
• MT

CH is totally irregular and contained in a half-line.

Proof. Corollary 3.4 immediately implies that α can not be a pole or a multiple
zero of R(z). Besides, if α is a simple zero, it has to satisfy the condition ϕα = 0.
Now we assume that α is neither a zero nor a pole of R(z). It remains to prove
that α ∈ Z(PQ).

Assume that α /∈ Z(PQ). In this case if some point of the forward trajectory of
R(z)∂z starting at α belongs to MT

CH , then a germ of the integral curve starting at
α is contained in MT

CH (see Proposition 2.10) and α can not be a corner point. We
conclude that Γ(α) = ∅.

If ∆(α) contains some point y, then a branch of the root trail try containing α
belongs to MT

CH (see Lemmas 2.11 and 2.15). Thus in this case α can not be a
corner point and we get ∆(α) = 0.

Now we take a cone C with apex at α, of angle at least π which is locally disjoint
from MT

CH . If r(α) is contained in C, but is not one of the two limit rays, we can
freely remove a neighborhood of α from MT

CH and still get an invariant set. In any
other case, we can find an arc contained in a neighborhood of α and the complement
of MT

CH whose associated rays sweep out a domain containing α. Thus we get a
contradiction in this case as well which implies that α has to be in Z(PQ).

Finally if α is a simple zero of R(z) and a cusp, then we have Lα = S1 (see
Definition 3.2). It follows that MT

CH has empty interior. All such cases have been
completely classified in [AHN+22] (see Section 7 of loc. cit). □

Further local analysis provides necessary conditions under which boundary points
belong to locally convex part of ∂MT

CH .

Proposition 6.3. For a linear differential operator T given by (1.1), consider a
point α such that there is a neighborhood V of α with the property that V ∩MT

CH

is contained in a half-plane whose boundary contains α.
If α ∈ Z(PQ), then one of the following statements holds:

• α is a simple pole of R(z);
• α is a simple zero of R(z) satisfying ϕα = 0 (see 3.1);
• α is a common root of P (z) and Q(z) of the same multiplicity (i.e. α is

neither a zero nor a pole of R(z)).

If α ∈ I∗R \ Z(PQ), then α is a point of switch type.
If α /∈ IR ∪ Z(PQ), then one of the following statements holds:

• α is a point of local type;
• α is a point of global type and for any u ∈ ∆(α), we have that Im(f(u, α))

and Im(R′(α)) have opposite signs (for f defined as in Proposition 2.17).

Proof. The case α ∈ Z(PQ) follows from Corollary 3.4. If α ∈ I∗R \ Z(PQ) and
∆−(α) ̸= ∅, then MT

CH contains both the germ of an integral curve of the field
−R(z)∂z at α and the germ of the root trail tru for some u ∈ ∆−(α). Proposi-
tion 2.18 implies that MT

CH can not be convex at α. Besides, if Γ(α) ̸= ∅, then
MT

CH can not be convex in α either because a germ of an integral curve having
an inflection point at α is contained in MT

CH In the remaining cases, we have
Γ(α) ∪ ∆−(α) = ∅. If ∆+(α) ̸= ∅, this characterizes points of switch type (see
Theorem 1.6). If ∆−(α) = ∅, then we obtain a point of C2-inflection type, α is the
starting point of a local arc and Γ(α) is therefore nonempty (see Proposition 5.5).

Now we consider the case α /∈ IR ∪ Z(PQ). If Γ(α) ̸= ∅ and α is a point of
local type (α can not be a point of extruding type because of Proposition 4.25).
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If Γ(α) = ∅, then it follows from Proposition 4.7 that ∆(α) ̸= ∅. Proposition 2.17
then provides the necessary condition. □

6.2. Case degQ − degP = −1. We have a rational vector field R(z)∂z satisfying
R(z) = λ

z + µ
z2 + o(1/z2) with λ ∈ C∗ and µ ∈ C.

6.2.1. Horizontal locus and special line. We define the following loci.

Definition 6.4. The horizontal locus HR is the closure in C of the set formed by

points z /∈ Z(PQ), for which σ(z) = arg(λ)±π
2 .

We also denote by LR the special line formed by points z given by the equation
Im(z/λ) = Im(µ/λ2).

For the sake of simplicity, the vector field R(z)∂z is normalized by an affine
change of variable as R(z) = − 1

z + o(z−2) (λ = −1 and µ = 0). The line HR then
coincides with the real axis R.

Lemma 6.5. HR is a real plane algebraic curve of degree at most degP + degQ.
It has two asymptotic infinite branches. The line LR is the asymptotic line for both
of them.

Proof. Curve HR can be seen as the pull back of the real axis under the mapping
R(z) : CP1 → CP1. We have R(∞) = 0 and ∞ is a simple root of R(z). Therefore,
HR is smooth near ∞.

It remains to show that the tangent line to HR at infinity coincides with the real
axis. Actually the tangent line is the line at which the linearization of R(z) at ∞
attains real zeroes. Since this linearization is exactly − 1

z , the result follows. □

Corollary 6.6. The closure MT
CH of the minimal set in the extended plane contains

asymptotic directions 0 and π. Besides, curve HR is contained in the minimal set
MT

CH .

Proof. Looking at separatrices of the vector field R(z)∂z and using Proposition 2.10

we get that the closure MT
CH in the extended plane contains asymptotic directions

0 and π. The associated rays of points of HR are thus asymptotically tangent to
MT

CH and HR is contained in the minimal set. □

Proposition 6.7. Consider a linear differential operator T given by (1.1) such
that degQ − degP = −1. Then the minimal convex Hutchinson invariant set
Conv(MT

CH) is a bi-infinite strip (domain bounded by two parallel lines).
More precisely, Conv(MT

CH) is the smallest strip containing HR ∪ Z(PQ).

Proof. The minimal convex Hutchinson invariant set Conv(MT
CH) is the comple-

ment of the union of every open half-plane disjoint from MT
CH . Since HR is con-

tained in MT
CH (Corollary 6.6), these open half-planes have to be disjoint from HR.

Conversely, any open half-plane H disjoint from HR is such that Im(R(z)) is either
positive or negative for every z ∈ H. Therefore, provided H does not contain any
zero or pole of R(z), one can conclude that it can be removed from any Hutchinson
invariant set. In other words, Conv(MT

CH) is the complement to the union of all
half-planes disjoint from HR ∪ Z(PQ). Since HR has asymptotically horizontal
infinite branches, the boundary line of every half-plane disjoint from HR has to be
horizontal.

It remains to prove that such half-planes exist. It follows from the asymptotic
description of HR in Lemma 6.5 that |Im(z)| is bounded on HR. Therefore we
can find two (disjoint) open half-planes that are also disjoint from HR. These
half-planes contain half-planes which, in addition, are disjoint from Z(PQ). □
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6.2.2. Asymptotic geometry of the minimal set. Following Proposition 6.7, Conv(MT
CH)

is the smallest horizontal strip containing the curve HR ∪ Z(PQ). The projection
of Conv(MT

CH) on the vertical axis is an interval [y−, y+] where y− ≤ 0 ≤ y+.

Lemma 6.8. For 0 < y < y0, denote by Mt the intersection point between the
associated ray r(t + iy) and the horizontal line Im(z) = y0. Then the following
statements hold:

• for t −→ +∞, Re(Mt) −→ −∞ if y < y0

2 ;
• for t −→ +∞, Re(Mt) −→ +∞ if y0

2 < y < y0.

Analogous statements hold for t −→ −∞ or y0 < y < 0.

Proof. For large values of t, we have Re(R(z)) = − 1
t + o(t−1) and Im(R(z)) =

y
t2 + o(t−2). Provided t is large enough, Im(R(z)) is positive and the associated ray
r(z) intersects the line Im(z) = y0. Then the real part of the intersection point

equals t− (y0− y) t
y + o(t). After simplification, we obtain (2y−y0)t

y + o(t). The sign

of the main term is then determined by the sign of 2y − y0. □

Proposition 6.9. The minimal set MT
CH is connected in C.

Proof. Plane curve HR (contained in MT
CH by Corollary 6.6) splits C into connected

domains in which Im(R(z)) is either positive or negative. Following the proof of
Proposition 6.7, two such domains contain a half-plane. These half-planes belong to
the complement (MT

CH)c of MT
CH in C. Thus we know that the complement (MT

CH)c

has at least two connected components. Since each such connected component
contains associated rays, they have at least one topological end.

Proving that MT
CH is connected in C amounts to showing that the two ends of

(MT
CH)c containing the asymptotic directions ]0, π[ and ]π, 0[ are the only ends of

(MT
CH)c. We will call them the main ends. We assume by contradiction that there

is another topological end κ.
For any sequence {zn} of points in (MT

CH)c approaching κ, we have (up to
taking a subsequence) the sequence {arg(zn)} converging either to 0 or to π (since
otherwise, κ would not be distinct from the two main ends). Let’s assume without
loss of generality that it is 0. Again, we can assume that {Im(zn)} converges to
some value ye ∈ [y−, y+].

If ye > 0, then Lemma 6.8, shows that for any horizontal line Lf with yf ∈
]ye, 2ye[, the associated rays of the points in MT

CH
c
converging to the end κ sweep

out points of Lf whose real part is arbitrarily close to +∞. Assuming that ye is
the maximal possible limit value, we deduce that no infinite component of MT

CH

can separate κ from the upper main end containing asymptotic directions of ]0, π[.
A similar statement holds for ye < 0.

Now, for a sequence {zn} of points in (MT
CH)c approaching κ, the only accumu-

lation value of {Im(zn)} is 0. In this case, the associated rays r(zn) accumulate
onto the R-axis which is therefore disjoint from the interior of MT

CH . Since for any
x ∈ R, the associated ray r(x) can not cross the interior of MT

CH , we get that for
every x ∈ R, Im(R(x)) keeps the same sign or is equal to zero. Without loss of
generality, we will assume that Im(R(x)) ≥ 0 for any x ∈ R. It is immediate that
no point of HR is contained in the open upper half-plane. Therefore, the open
upper half-plane is contained in (MT

CH)c and contains the associated rays r(zn)
accumulating to the R-axis. In this situation, no infinite connected component of
MT

CH can separate κ from the upper main end containing the asymptotic directions
in ]0, π[. □
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Corollary 6.10. For any ϵ < min(−y−,y+)
2 , denote by Sϵ the horizontal strip char-

acterized by y− + ϵ < 2 Im(z) < y+ − ϵ. Then there exists a compact set Kϵ such
that Sϵ ∩Kc

ϵ ⊂ MT
CH ∩Kc

ϵ .

Proof. We argue by contradiction. Consider a path γ joining a point of MT
CH with

the y-coordinate equal to y+ to the end of asymptotic direction π (inside MT
CH).

Following Lemma 6.8, for any ϵ > 0, there is constant Mϵ such that for any z

satisfying |t| > Mϵ and 0 < y < y+−ϵ
2 , associated ray r(z) crosses γ (Proposition 6.9

proves that the associated ray can not be below γ all the time).
A similar reasoning works for the negative values of y, the case y = 0 follows

from the fact that MT
CH is a closed set. □

Proposition 6.11. There is a compact set K and a positive constant B > 0 such
that the intersection MT

CH∩Kc is contained in the domain bounded by the hyperbolas

given by y = y±

2 (1 + B
±x ).

Proof. By Lemma 6.5 for any y in J = [y− y−

2 [∪]y
+

2 , y+], there is a positive constant
A > 0 the union of the two semi-infinite horizontal strips characterized by Im(z) ∈ J
and |Re(z)| > A is disjoint from HR.

Consider some positive number B > A and introduce the domain DB character-
ized by the inequalities:

• Im(z) > y+ if Re(z) ∈ [−B,B];

• Im(z) > g(t) where g(t) = y+

2
|t|+B
|t| if t = Re(z) /∈ [−B,B].

For any point z such that Im(z) > y+, the associated ray r(z) remains in DB . Now
we assume that z = t+ iy satisfies the conditions

|t| > B and
y+

2

|t|+B

|t|
< |y| ≤ y+.

Without loss of generality, we assume that t < −B.
In order to prove that the associated ray r(z) remains in DB , we have to show

that for any t < −B and any s ∈ [t,−B], we get Im(R(z))
Re(R(z)) > g(s)−g(t)

s−t ≥ By+

2st ≥ −y+

2t .

In our case Re(R(z)) = − 1
t + o(t−2) and Im(R(z)) = y

t2 + o(t−3) implying that

Im(R(z))

Re(R(z))
= −y

t
+ o(t−2).

Since y − y+

2 > B
t , the inequality holds provided B is large enough.

By replacing y+ by y−, we get an analogous result for the lower part of the
complement to MT

CH . □

Proposition 6.12. The complement C\MT
CH has two connected components, each

bounded by a unique curve contained in ∂MT
CH . Unless such a curve coincides with

the special line, it contains exactly two infinite global arcs.

Proof. It follows from the topology of MT
CH that its complement has two connected

components, each of them having a unique boundary component (see Proposi-
tions 6.7 and 6.9).

Assuming that one of these boundary components does not coincide with the
special line, Theorem 1.6 proves that it is formed by finitely many arcs. Each of
such curves is a local arc, a global arc, or a portion of straight line contained in the
curve of inflections. There are two infinite arcs (unless they coincide) and they are
asymptotically horizontal. We consider one such infinite arc α.

The curve of inflections has only two infinite branches. If the asymptotically
horizontal infinite branch contains a straight segment, then this branch has to be a
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horizontal line. Moreover near infinity it coincides with HR and thus has to be the
special line R. This case has already been ruled out. Therefore α is either a global
or a local arc. UNCLEAR???

If α is a local arc, then it has to start at infinity. Close to infinity, the integral
curves look like hyperbolas and therefore their curvature has the wrong sign to form
a convex boundary of MT

CH (see Proposition 4.11). Therefore α has to be a global
arc.

The two infinite global arcs have the associated rays that form the direct and
indirect support lines for MT

CH . Thus they do not belong to the same inflection
domain. Instead, they are two distinct infinite arcs. □

6.2.3. Examples. Consider a family of operators of the form Tα = Q(z) d
dz + P (z)

where Q(z) = (z−α)k and P (z) = z(α−z)k with the common root α ∈ C of degree
k ∈ N∗.

The family Tα provides a rich assortment of examples. We have R(z) = − 1
z .

The special line is the real axis R which coincides with the horizontal locus HR.
Besides, the integral curves of R(z)∂z are hyperbolas (level sets of xy).

Proposition 6.13. If α ∈ R, then the minimal set MT
CH of operator Tα coincides

with the real axis R.

Proof. Follows immediately from Proposition 6.7. □

If α does not belong to the real axis, we get different pictures depending on
whether or not α belongs to the imaginary axis. Without loss of generality, we will
assume that Im(α) > 0.

Proposition 6.14. If α is of the form y0i with y0 > 0, then the minimal set MT
CH

is the union of the segment [y0

2 i, y0i] with the horizontal strip formed by points z
satisfying 0 ≤ Im(z) ≤ y0

2 .

Proof. From Proposition 6.7 it follows immediately that the convex hull of MT
CH is

contained in the strip bounded by R and the horizontal line Im(z) = Im(y0). For
any point of segment [0, y0i], the associated ray contains α so [0, y0i] ⊂ MT

CH .
For any point of the horizontal strip given by the inequalities 0 ≤ Im(z) ≤ y0

2 ,
a simple computation proves that its associated ray intersects the segment [0, y0i].

Finally, for any point z such that Im(z) > y0

2 and Re(z) ̸= 0, the associated
ray is disjoint from the segment [0, y0i]. This completely characterizes the minimal
set. □

The latter case provides an example of a partially irregular minimal set whose
irregularity locus is contained in a R-invariant line (the imaginary axis in this case).

In the general case, the boundary of MT
CH is more complicated. Up to conjuga-

tion, we can restrict us to the case when Re(α), Im(α) > 0.

Proposition 6.15. If α is of the form x0 + y0i with x0, y0 > 0, then the minimal
set MT

CH of Tα is bounded by the following arcs:

• the real R-axis ;
• global arc (t, f1(t)) where f1(t) =

y0t
2t−x0

for t ∈ [x0,+∞[;

• local arc (t, f2(t)) where f2(t) =
x0y0

t for t ∈ [x0, xe];

• global arc (t, f3(t) where f3(t) =
x0y0t

(2
√
x0t+x0)2

for t ∈ [0, xe];

• global arc (t, f4(t)) where f4(t) =
y0t

2t−x0
for t ∈]−∞, 0].

Here, (xe, ye) is a point of extruding type. Its coordinates are xe = (3 + 2
√
2)x0

and ye =
y0

3+2
√
2
.
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Proof. The convex hull of MT
CH is contained in the strip bounded by R and the hor-

izontal line Im(z) = Im(y0), see Proposition 6.7. The arcs (t, f1(t)) and (t, f4(t))
are characterized by the fact that the associated rays starting from their points
contain x0 + iy0 (this can be checked by a direct computation). In particular, they
belong to two distinct branches of the same hyperbola. Besides, the domain D
between R− and arc (t, f4(t)) is automatically contained in MT

CH .
Following Proposition 2.10, the backward trajectory of the vector field R(z)∂z

starting at x0 + y0i is contained in MT
CH . The domain between this portion of the

integral curve and the arc (t, f1(t)) is also contained in MT
CH .

We denote by D′ the domain in the open right upper quadrant where the asso-
ciated ray intersects the domain D. At each point (t, γ(t)) of the upper boundary
of D′, the associated ray is tangent to the branch of hyperbola (s, f4(s)) for some
s ≤ 0. Since R(z) = − 1

z , the argument of t+ iγ(t) equals the negative of the slope

of (s, f4(s)) at s. Since
df4
ds (s) = − x0y0

(2s−x0)2
, we get

γ(t)

t
=

x0y0
(2s− x0)2

.

Since the tangent line has to intersect the imaginary axis at 2γ(t)i, we obtain the
following equation:

f4(s)− 2γ(t)

s
= − x0y0

(2s− x0)2
.

Replacing γ(t) by x0y0t
(2s−z0)2

, we get t = s2

x0
.

Since s is the negative square root of x0t, we deduce that γ(t) = x0y0t
(2

√
x0t+x0)2

. In

particular, for s = −x0, we get t = x0 and γ(x0) =
y0

9 .
The arc γ and the backward trajectory starting at x0 + iy0 (which is a branch

of hyperbola) intersect each other at some point xe + iye. From a computation, we

obtain xe = (3 + 2
√
2)x0 and therefore ye =

y0

3+2
√
2
.

It is then geometrically clear that for any point z above the curve formed by arcs
defined by functions f1, f2, f3, f4, the associated ray can not intersect any of these
arcs. □

The latter example provides a remarkable illustration of a point of extruding
type. Since the boundary arcs are explicit algebraic curves, we can obtain the
exact picture shown in Figure 6.

6.3. Case degQ − degP = 0. For the sake of simplicity, we normalize the vector
field R(z)∂z by an affine change of variable so that R(z) = 1 + µ

zκ + o(z−κ−1) for
some µ ∈ C∗ and κ ≥ 1. (The case of a constant vector field is already treated in
Section 2.3 of [AHN+22].)

Remark 6.16. For degQ − degP = 0, the starting point of a local arc can be at
infinity (opposite to the case degQ − degP = 1 when the minimal set is compact
or the case degQ− degP = −1, see Proposition 6.12). In this situation the point
at infinity has to be of the form ϕ∞ + π (π in our current normalization). Indeed,
any other point is ruled out by Proposition 2.24).

Under the genericity assumptions Im(µ) ̸= 0 and κ = 1, we are going to prove
that the minimal set MT

CH is connected. Firstly we show that MT
CH is regular and

disjoint from the curve of inflections IR outside a compact set.

Lemma 6.17. Assuming that Im(µ)(−1)κ > 0, there is a cone C and a compact
set K such that:

• for any z ∈ C, Im(R(z)) > 0 and Im(R′(z)) > 0;
• MT

CH ⊂ C ∩K.
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Figure 6. The case when α = 1 + 0.8i.

Besides, MT
CH is a regular subset of C.

Proof. It follows from Proposition 2.24 and the fact that asymptotic directions of
infinite branches of algebraic curves defined by equations Im(R) = 0 and Im(R′) = 0
are not horizontal. UNCLEAR WHAT?? Computing R(t) and R′(t) for a negative
real number t, we obtain that R(t) = 1 + µ

tκ + o(t−κ − 1) and thus Im(R(t)) ∼
Im(µ)t−κ. The sign of the latter is the sign of Im(µ)(−1)κ. Similarly we obtain
that it is also the sign of Im(R′(t)) for t close enough to infinity.

Any R-invariant line (see Definition 2.5) has to be horizontal and therefore it
intersects the cone C. Thus some points of anyR-invariant line Λ have the associated
rays that are not contained in Λ. Therefore, there are no R-invariant lines for such a
vector fieldR(z)∂z. The minimal set MT

CH has no tails and Theorem 2.22 guarantees
that MT

CH is regular. □

Corollary 6.18. Assuming that Im(µ)(−1)κ > 0, consider a sequence (αn)n∈N of
points of ∂MT

CH such that |αn| → +∞ and ∆(αn) ̸= ∅ for any n ∈ N. Then there
exists a subsequence (αf(n))n∈N such that:

• there is a line Ly0 given by Im(z) = y0 which is the indirect support of MT
CH

at some point;
• the line Ly0

is disjoint from the interior of MT
CH ;

• Re(αf(n)) → −∞;
• Im(αf(n)) ≤ y0 for any n ∈ N.

Proof. Up to taking a subsequence, we can also assume that every an belongs to
the cone C defined in Lemma 6.17. Lemma 4.13 implies that for any n, points of
∆(α(tn)) belong to I−, IR or Z(PQ). Therefore, following Lemma 6.17, points of
∆(α(n)) accumulate in a compact set as n → ∞. We denote by z0 one of their
accumulation points and by Ly0 the horizontal line containing z0 (here y0 = Im(z0)).

Thus, (up to taking a subsequence of α), we get a sequence (yn)n∈N such that
yn → y and yn ∈ ∆(αn) for any n ∈ N. Therefore the associated rays r(αn)
accumulate on Ly0

. Thus the line Ly0
is disjoint from the interior of MT

CH . Besides,
since αn ∈ C for any n ∈ N, Im(R(αn)) > 0 and therefore Im(αn) ≤ y0. □
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Lemma 6.19. Provided thatt Im(µ) ̸= 0 and κ = 1, no integral curve has a
horizontal asymptotic line at infinity.

Proof. Since R(z) = 1 + µ
z + o(z−2), the integral curve γ(t) satisfies Re(γ(t)) ∼ t

as t → ±∞. Then Im(γ′(t)) = Im(µ)
t + o(t−1). We obtain that Im(γ(t)) has

logarithmic growth as t → ±∞ and therefore the integral curve has no asymptotic
lines at infinity. □

Corollary 6.20. Provided that Im(µ) ̸= 0 and κ = 1, the minimal set MT
CH is

connected in C. Besides, ∂MT
CH has exactly two infinite arcs: one is a local arc

starting at infinity while the other is a global arc ending at infinity.

Proof. Without loss of generality, we can assume that Im(µ) > 0. Proposition 2.19
shows that there are finitely many connected components of MT

CH . Moreover they
are attached to the point π ∈ S1 at infinity in some cyclic order. We refer to these
components of MT

CH as X1, . . . , Xk where X1 is the lowest component while Xk

is the highest component. Besides the boundary ∂Xi of any component Xi has
exactly two topological ends. We call them the lower end ∂X−

i and the upper end
∂X+

i .
Since ∂MT

CH ∩ IR is contained in a compact set (see Lemma 6.17), points of
∂X that are close enough to infinity are either of local, global or of extruding
types. Besides, we know from Proposition 4.11 that in I+ local arcs have the
same orientation as ∂MT

CH . Proposition 4.12 proves that every local arc has an
endpoint in IR ∪ Z(PQ). Thus the ends of ∂X are represented either by a local
arc starting at infinity or by a global arc. Besides, the orientation constraint shows
that only the upper end is represented by a local arc if Im(µ) > 0 (the lower end if
Im(µ) < 0 respectively). Otherwise, the local arc would have the point at infinity
as its endpoint. For the same reason, any lower end ∂X−

i has to be represented by
an infinite global arc ending at infinity (see Lemma 4.19).

For any component Xi, the lower end ∂X−
i of its boundary is arbitrary close to

the points that are not of local type. Applying Corollary 6.18 to a sequence of such
points we prove the existence of a horizontal line Li lying below the component Xi

and disjoint from the interior of MT
CH . Thus no component of MT

CH lying below
the line Li can contain an infinite local arc because the latter has no asymptotic
line at infinity (see Lemma 6.19). Consequently, among the ends of ∂MT

CH , only
∂X+

k can be represented by a local arc.
It remains to prove that MT

CH has only one connected component. Assuming
there are several of them, we consider the upper end ∂X+

1 . We already know that it
can be approached by points (αn)n∈N which are not of local type. Applying Corol-
lary 6.18, we prove the existence of a line L disjoint from the interior of MT

CH , direct
support of MT

CH at some point z0 and such that points of (αn)n∈N lie above the line
L. Since z0 has to belong to some component Xi, line L automatically intersects
the interior of component Xi. This is a contradiction, so MT

CH is connected. Its
upper end is a local arc while its lower end is a global arc. □

6.4. Case degQ−degP = 1. In [AHN+22] we found that necessary and sufficient
condition for the compactness of MT

CH in case degQ − degP = 1 is Re(λ) ≥ 0.
(One has to exclude a rather trivial case degP = 0, degQ = 1.) Moreover in case
Re(λ) < 0, we get MT

CH = C.
We will describe MT

CH for Re(λ) = 0. Unfortunately, in the most interesting
situation Re(λ) > 0, we do not have a general description of MT

CH , but we provide
a number of partial results, observations and examples.

6.4.1. Re(λ) = 0. In this case a complete characterization of ∂MT
CH can be carried

out.
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Theorem 6.21. Consider a linear differential operator T given by (1.1) such that
degQ − degP = 1 and Re(λ) = 0. In this case, the neighborhood of infinity is
foliated by a family C of closed integral curves of the vector field R(z)∂z.

The boundary ∂MT
CH of the minimal set of T is described as the first closed leaf

of the family C containing a point of Z(PQ) ∪ IR.
If the latter leaf γ contains a point of the curve of inflections IR, then the latter

point is a tangency point between γ and IR. Moreover it is the first leaf that is
non-strictly convex (the curvature at the tangency point vanishes).

In particular, ∂MT
CH is formed by finitely many local arcs. It is real-analytic and

convex (but can fail to be strictly convex). It contains neither zeros nor poles of
R(z)∂z.

Proof. It follows from λ ∈ C∗ and Re(λ) = 0 that Im(λ) ̸= 0. The curve of inflec-
tions IR is therefore compact. The neighborhood of infinity is foliated by a family
C of integral curves of vector field R(z)∂z. The orientation of these integral curves
depends on the sign of Im(λ). By compactness of IR a possibly smaller neighbor-
hood C′ of infinity is foliated by strictly convex integral curves (the curvature of
integral curves vanishes precisely on IR).

We first consider the case when some point α of Z(PQ) belongs to C′. Denoting
by γ the periodic leaf α belongs to, we deduce from Proposition 2.10 that γ belongs
to MT

CH and bounds a strictly convex domain D. Provided the complement of D
does not contain any other point of Z(PQ), we obtain that D coincides with MT

CH .
Since α is disjoint from IR, it follows from Corollary 3.11 that it can not be a zero
or a pole of R(z) (α is a root of both P and Q of the same multiplicity).

In the remaining cases, we can assume that Z(PQ) is disjoint from C′. The
cylinder C is bounded by a singular curve formed by separatrices (integral curves
connecting singularities of R(z)∂z). We denote by Σ the union of these separatrices
and by S the smallest simply connected subset containing Σ. By Proposition 2.10,
Σ and S are contained in MT

CH . For the same reason, a point z of cylinder C is
contained in MT

CH if and only if the periodic integral curve containing z belongs
entirely to MT

CH . Therefore, the boundary of MT
CH coincides with some periodic

integral curve of the cylinder C.
Since the associated rays can not cross the interior of MT

CH , its boundary ∂MT
CH

(which is a periodic integral curve) has to be convex. Therefore, it is contained in
the domain of inflection of infinity (or in its boundary). Since the domain C′ does
not belong to the interior of MT

CH (its complement is clearly a TCH -invariant set),
these conditions characterize the boundary γ of C′ as the boundary of MT

CH .
The curve γ can not cross the curve of inflections because it is convex, not strictly

convex. Thus γ contains has a tangency point with IR. At this point, the curvature
of γ vanishes.

The boundary ∂MT
CH is formed by local arcs joining points of Z(PQ) (with

the same multiplicity of P and Q) and some points of the tangency locus. By
Proposition 4.7, there arcs are strictly convex and real-analytic. □

6.4.2. Re(λ) > 0. As we mentioned above, we do not have a general description of
MT

CH , but only a number of interesting examples. Observe that in this case ∞ is a
sink of R(z)∂z).

A qualitative description of the convex hull Conv(MT
CH) is the best that we can

obtain with our current knowledge.

Proposition 6.22. Consider a linear differential operator T given by (1.1) with
degQ− degP = 1. The boundary ∂Conv(MT

CH) of the convex hull Conv(MT
CH) of

the minimal set is formed by:

• finitely many straight segments;
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• finitely many portions of integral curves of vector field R(z)∂z.

In particular, the latter are strictly convex and belong to local arcs of ∂MT
CH . In

particular, ∂Conv(MT
CH) is piecewise-analytic.

Proof. We denote by S the set of points where the boundary ∂Conv(MT
CH) is

strictly convex. They also belong to ∂MT
CH (these points belong to the support of

the hull). It follows from Theorem 1.6 that outside finitely many points, S is formed
by either local or global arcs of ∂MT

CH . If such a point z belongs to a global arc,
then the line containing the associated ray r(z) is a support line of Conv(MT

CH)
at z and every point of ∆(z). It follows that [z,∆max(z)] is a straight segment
contained in ∂Conv(MT

CH). Consequently any arc of S has to be a portion of local
arc.

We know that ∂Conv(MT
CH) is formed by straight segments and portions of local

arcs. It remains to prove that there are finitely many of them. We consider an arc
α of ∂Conv(MT

CH) contained in a local arc γ of ∂MT
CH . The endpoint of α (with

the orientation defined by R(z)∂z) has at the same time to be the endpoint of γ
(since otherwise the associated rays starting at points of α would intersect MT

CH).
Therefore, the endpoint of every such arc α in ∂Conv(MT

CH) belongs to Z(PQ)∪IR
(see Proposition 4.12). Since there are finitely many such points in S, there are
finitely many such arcs in ∂Conv(MT

CH).
If the boundary of the convex hull is not formed by finitely many straight seg-

ments and portions of integral curves, then there are infinitely many corner points
of angle smaller than π between the pairs of consecutive straight segments of the
boundary. It follows from Corollary 6.2 that these points belong to Z(PQ). There-
fore, we have finitely many corner points and finitely many straight segments. □

In the examples below (including a very interesting family of operators in which
Q(z) has simple roots and P (z) = Q′(z)), Conv(MT

CH) is a polygon.

Proposition 6.23. Consider a linear differential operator T given by (1.1), such
that every root α of Q(z) is simple and satisfies P (α) ̸= 0 and ϕα = 0.

Then, Conv(MT
CH) coincides with the convex hull of Z(Q).

Proof. The argument is similar to the one used in the proof of the classical Gauss–

Lucas theorem (see [Mor]). If the differential form P (z)dz
Q(z) has all positive residues,

then the roots of P (z) are contained in the convex hull of Z(Q).
The proof is based on consideration of the electrostatic force F created by the

system of point charges placed at the poles of P (z)dz
Q(z) where the value of each charge

equals the residue at the corresponding pole. This electrostatic force F equals the

conjugate of P (z)dz
Q(z) and one can show that if we take any line L not intersecting the

convex hull of Z(Q) then at any point p ∈ L, F points inside the half-plane of C\L
not containing Z(Q). Now recall that the associated ray has the same direction as
the conjugate of P/Q. Thus, the associated ray r(p) does not intersect the convex
hull of Z(Q). □

6.4.3. The first family of examples. Consider a family of operators of the form
Tλ = Q(z) d

dz + P (z) where Q(z) = λ(z − 1)kz and P (z) = (z − 1)k for some
principal coefficient λ ∈ C∗ and some degree k ∈ N∗.

Integral curves of the vector field R(z)∂z are logarithmic spirals parametrized by
γ(t) = γ(0)eλt. In particular, they are concentric circles for Re(λ) = 0.

Depending on the value of λ, the shape of the minimal set MT
CH can change

drastically. Namely,

• if Re(λ) < 0, then MT
CH = C (see Theorem 1.11 of [AHN+22]);

• if Re(λ) = 0, then MT
CH is the closed unit disk (see Theorem 6.21);
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• if Re(λ) > 0 and Im(λ) = 0, then MT
CH is segment [0, 1].

When Re(λ) > 0 and Im(λ) ̸= 0, MT
CH has a more complicated shape we describe

below in terms of local and global arcs. Up to conjugation, we will assume that
Im(λ) > 0.

Proposition 6.24. If λ satisfies Re(λ), Im(λ) > 0, then the minimal set MT
CH of

operator Tλ is bounded by the following arcs:

• local arc γ where γ(t) = e−λt and t ∈]0, t0[;
• global arc α where α(t) = 1

1+λt and t ∈]0, t1[.
These two arcs intersect at 1 and the point γ(t0) = α(t1) of extruding type charac-
terized as the first intersection point between α and γ defined on R>0.

Proof. The backward trajectory of the vector fieldR(z)∂z starting at 1 is parametrized
by γ(t) = e−λt and t ∈ [0,∞). Proposition 2.10 shows that this arc is entirely con-
tained in MT

CH .
Points z for which the associated ray contains 1 are characterized by the condition

1−z
λz ∈ R>0. They form an arc parametrized by α(t) = 1

1+λt for t ∈ [0,+∞[. This

arc is also contained in MT
CH .

Since R(z) = λz, it is geometrically clear that these two arcs bound MT
CH . The

boundary ∂MT
CH is formed by a portion of each of them with two singular points

at 1 (when t = 0) and the first intersection point in the parametrization. There are
different ways to see that such an intersection occurs. One of them is to note that
limt→∞ α(t) = 0 and limt→∞ arg(α′(t)) = limt→∞ = arg( −λ

(1+λt)2 ) exists. Since the

vector field R(z) has residue with positive real and imaginary parts, it follows that
α(t) and γ(t) intersect infinitely many times. The endpoint distinct from 1 common
to α and γ is the first intersection point between the two parametrized arcs defined
on R>0. □

6.4.4. The second family of examples. Consider the family T = z(zk−1) d
dz+(zk+1),

where k is a positive integer. We are going to prove that for any k, the minimal set
MT

CH is the unit disk.

Lemma 6.25. Set f(z) = z + t z(z
k−1)

zk+1
, with t > 0. Then |f(z)| > 1 whenever

|z| > 1.

Proof. We substitute z = r
1
k eiθ with r > 1. After some algebraic manipulations,

we find that

|f(z)|2

|z|2
=

|f(r 1
k eiθ)|2

r2/k
= 1 + t

2r2 − 2 + r2t− 2 cos(θk)rt+ t

r2 + 2 cos(θk)r + 1
. (6.1)

Setting c := cos kθ and rewriting further, we get

|f(r 1
k eiθ)|2

r2/k
= 1 + t

2(r2 − 1) + t
(
(r − c)2 + (1− c2)

)
(r + c)2 + (1− c2)

. (6.2)

Since −1 ≤ c ≤ 1, it follows that

|f(r 1
k eiθ)|2

r2/k
> 1 + t

r2 − 1

(r + 1)2
> 1.

Consequently, |f(z)| > |z| whenever |z| > 1 and the statement follows. □

Lemma 6.26. The separatrices of the vector field R(z)∂z = z(zk−1)
zk+1

∂z are the arcs

of the unit circle, connecting roots of P (z) with roots of Q(z).
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Figure 7. Illustration of the boundary of the minimal set when
λ = 1 + 6i in Prop. 6.24.

Proof. Assuming that z is not a root of Q, we have that∫
zk + 1

z(zk − 1)
dz = k−1 log

(
(1− zk)2

zk

)
.

Now for z = eiθ, we find that

Im log((1− zk)2/zk) = arg((1− zk)2/zk) = arg(−2 + eikθ + e−ikθ) = π.

Hence, the unit circle consists of the integral trajectories of R(z)∂z. Since the roots
of P lie on the unit circle, these integral trajectories must be separatrices. □

Corollary 6.27. For T = z(zk − 1) d
dz + (zk + 1), the minimal set MT

CH coincides
with the unit disk.

Proof. By Lemma 6.25, we have that all the associated rays for points lying outside
the unit disk never intersect the unit disk. Therefore, MT

CH is contained in the unit
disk. Since the unit circle consists of separatrices of −R(z)∂z (see Lemma 6.26), it
follows that MT

CH contains the unit circle. The associated ray of any point (distinct
from 0) of the open unit disk intersects the unit circle so MT

CH coincides with the
unit disk. □

Example 6.28. Here we provide a construction for an invariant set in the case
Re(λ) > 0, Im(λ) ̸= 0. In this situation, ∞ is a sink of the vector field R d

dz with
non-real residue. Hence, for any point sufficiently close to ∞, its forward trajectory
circulates around and towards∞. Let S be the set of all points for which its forward
trajectory ends in ∞. Take any z ∈ S and let ϕ(t) be the integral curve of R d

dz
passing through z, defined on its maximal interval of definition. Consider a line
going through ϕ(t0) perpendicular to the associated ray of ϕ(t0). For sufficiently
large t0, on one side of ϕ(t0), the line intersects only ϕ(t) for t > t0. Denote the
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smallest such t by t1 and call the closed line segment between these two points
Lt0 , and denote by Mϕ,t0 the minimal simply connected set containing Lt0 and
ϕ([t0, t1]). Then for sufficiently large t0, Mϕ,t0 is invariant since Mϕ,t0 contains the
zeros of P and Q and all associated rays of points in ∂Mϕ,t0 intersect Mϕ,t0 only
in ∂Mϕ,t0 , since IR is compact in C. This remains true for all t < t0 such that
ϕ(s) does not intersect IR, R(z) is not tangent to Ls for some z ∈ Ls and Ls does
not contain a zero of PQ for s ∈ [t, t0]. We denote by tϕ the maximal t such that
ϕ(t) intersects IR, R(z) is tangent to Ls for some z ∈ Ls or Ls contains a zero
of PQ for s ∈ [t, t0] a zero of PQ, and obtain the invariant set Mϕ,tϕ . This set is
indeed invariant as it may be written as the intersection of invariant sets. We do
this construction for each integral curve ϕ contained in S, and obtain invariant sets
Mϕ,tϕ . As the intersection of invariant sets is again invariant, we find the smallest
invariant set using this construction

M =
⋂
ϕ⊂S

Mϕ,tϕ

6.5. Connected components of minimal sets. Putting together partial results
for the different values of degQ−degP , we are able to state a bound on the number
of connected components of MT

CH in C. It is already known that the closure of MT
CH

in the extended plane C ∪ S1 is always connected.

Proof of Theorem 1.8. For any operator T satisfying |degQ − degP | > 1, it has
been proved in Theorem 1.11 of [AHN+22] that MT

CH = C. Besides, when degQ−
degP = 1, Section 6.3 and Corollary 5.20 of the same paper proves that MT

CH is
connected and contractible. For degQ−degP = −1, it follows from Proposition 6.9.

The only case where there could be several connected components is degQ −
degP = 0. If R(z) is constant, then there are two situations. If P,Q are both
constant, then there is no meaningful notion of minimal set (see Section 2.3.1 in
[AHN+22]). Otherwise, MT

CH is formed by parallel half-lines starting at points of
Z(PQ). Since every point of Z(PQ) is a common root of P and Q (otherwise
R(z) would not be constant) we get that there are at most 1

2 degP + 1
2 degQ such

half-lines.
If R(z) is not constant, then we have R(z) = λ+ µ

zκ + o(z−κ) for some λ, µ ∈ C∗

and κ ∈ N∗. If κ = 1 and Im(µ/λ) ̸= 0, then Corollaries 6.20 proves that MT
CH

is connected. Otherwise, Proposition 2.19 provides an upper bound 1
2 degP +

1
2 degQ. □
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