UNIMODAL DECOMPOSITIONS OF PROBABILITY
DISTRIBUTIONS AND MAXWELL’S CONJECTURE
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ABSTRACT. We discuss several problems related to representation of a prob-
ability distribution as a positive linear combination (mixture) of unimodal
probability distributions.

1. INTRODUCTION

In statistics one often considers mixtures of standard distributions for mod-
elling of various sets of empirical data, see e.g. [?]. Gaussian mixtures are of
special importance and frequently used. In particular, in recent years several pa-
pers discussing the possible number of modes, i.e. the number of local maxima of
the density function for Gaussian mixtures appeared, see [?, 7, 7, ?]. One of the
observations made about 2 decades ago is that although a Gaussian distribution
is a unimodal function, already in two dimensions the mixture of ¢ Gaussians can
have substantially more maxima than ¢. If we consider other classes of unimodal
distributions the question about of the maximal possible number of modes of their
mixture becomes non-trivial already in dimension one. In particular, for any posi-
tive integer N there exist pairs of positive unimodal functions in one variable whose
sum has N local maxima.

Below we formulate two natural problems (direct and inverse) in this area closely
related to factor analysis. Both of them seem quite difficult, but having substantial
interest for applications.

Consider a collection Fy(x1,...,x,) of unimodal continuous densities of prob-
ability distributions depending on parameter o and supported on some open con-
tractible domain 2 C R™. (The parameter « can be discrete or continuous, one- or
multidimensional.)

1.1. Direct problem.

Problem 1.1. Given a collection F,(x1,...,x,) of probability densities as above
and a positive integer ¢, find/estimate the maximal number of local minima which
can occur in non-negative combinations of ¢ densities from F,(z1,...,2n).

An interesting modification of Problem ?7 is as follows.

Definition 1.2. A collection F,(z1,...,x,) of probability densities as above is
called strongly unimodal if for any positive integer ¢, any positive linear combination
of ¢ densities from this collection has at most £ modes (i.e. local maxima) in 2.

Problem 1.3. Find interesting examples of strongly unimodal collections F, (z1, . . .
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Examples of strongly unimodal collections include Gaussian distribution with
fixed ... in every dimension R"™. Interestingly, in the 1-dimensional case, the proof
of the fact that the positive linear combination of £ Gaussian densities has at most
¢ modes goes back to Joseph Fourier, see [?, ?].

Our interest in Problem ?? comes from the following (rather unexpected) source.
In Section 113 of [?] J. C. Maxwell claims that any configuration of £ point charges
in R3 such that all critical points of its electrostatic potential are non-degenerate
has at most (£ — 1)? such points (i.e. points of equilibrium of its electrostatic field.
He provides it with an incomplete proof which contains a serious gap.

In [?] and some further publications including a recent advance [?] one can
find several weaker upper bounds of the number of points of equilibrium than in
the original Maxwell claim and its generalizations. In particular, in [?] (based on a
more general claim of [?]) the following 1-dimensional version of (relative) Maxwell’s
conjecture has been formulated.

Conjecture 1.4. Let (x1,y1), (x2,Y2), - - -, (x4, ye) be any collection of points in R?,
&1,&a,...,& be arbitrary real charges, and o > 1/2. Then the real rational function
¢

\Il(x)zz<( 3 zeR

x— ;)% +y;)

has at most 20— 1 real critical points. (If all £;’s are positive then ¥(z) has at most
¢ local mazima on R).

Remark 1.5. Notice that for positive {;’s, Conjecture ?7 is equivalent to the claim
that the 2-dimensional family of functions

1
((x —20)? +y3)*
is strongly unimodal for every fixed o > 1/2 with (xg,yo) being parameters of the

family. (If « > %, the positive function ®,(z) is integrable over R and its scaled
version is a probability density.)

Py (z) =

(1.1)

In [?] Conjecture ?? is proven for fixed &;’s, x;’s and y;’s and all sufficiently large
«. But unfortunately, it is still open already in the simplest case when £ = 3, = 1,
and unit charges.

1.2. Inverse problem. A natural inverse problem originally suggested by Y. Barysh-
nikov and R. Ghrist can be stated as follows, see [?, ?] and also [?].

Problem 1.6. Given a smooth probability density function f in R* (or an open
contractible domain  C R¥), find/estimate the minimal number ¢ such that f can
be represented as

4
= (1.2)
=1

where each f; is a smooth, non-negative and unimodal function. The minimal
number ¢ (if finite) will be called the unimodal category of f and denoted by ucat(f).

We will call expression (??) positive unimodal decomposition of f. Problem ?7?
asks to find a minimal positive unimodal decomposition. In [?] Y. Baryshnikov
and R. Ghrist provided an algorithm for finding a minimal positive unimodal de-
composition in one-dimensional case, see Fig. 7?7 which they later extended to the
case when the support of densities is a tree, see [?]. Some related results can be
found in the writings of G. Govc, see [?, ?]. However already for densities on R?
Problem 77 seems to be widely open.
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FIGURE 1. Algorithm of finding ucat for smooth univariate densities.

Remark 1.7. Observe that the unimodality property of a function is preserved under
the action of diffeomorphisms on its (contractible) domain of definition. The orbit
of a function under the action of the group of diffeomorphisms of the domain of
definition can be often identified with functions Reeb graph (which contains finite
topological information) whose vertices correspond to the critical points of f and
each vertex is labelled by the respective critical value. In other words, Problem 7?7
is (more or less) topological.

We this note we present some results related to Problems 7?7 and ?7.
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2. REsSuULTS

2.1. Around direct problem. Below we provide necessary condition for a collec-
tion of univariate probability distributions to be strongly unimodal.

Definition 2.1. A positive continuous integrable unimodal function f(z) defined
in some interval I C R is called cusp-like if it is (non-strictly) convex everywhere
outside its (unique) maximum z™** € I.

Remark 2.2. Obviously any cusp-like function is not differentiable at its maximum.
Theorem 2.3. Any collection of cusp-like functions is strongly unimodal.
Proof. Indeed, consider a mixture

F(r) = oy fi(z) + aafo(x) + - - + agfo(z),

where each f;(z) is cusp-like and «; > 0. The second derivative F"'(x) is non-
negative except at the finite number of points 7", z5"**, ... 27"** where z7"**
is the maximum of f;(x). (At these points F" is typically a scaled é-function.)
Thus the first derivative is (non-strictly) increasing everywhere except at at most
¢ points where it drops and can intersect the real axis. Thus at such points F'(z)
might have a local maximum and their number its at most £. O

Remark 2.4. Observe that a strongly unimodal collection does not necessarily con-
sist of cusp-like functions. In particular, for univariate Gaussians the second deriv-
ative is negative on an interval.
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Lemma 2.5 (Guess 7). If the intervals of negativity for the second derivatives of
potentials of individual (positive) charges are disjoint then Mazwell’s conjecture is
true.

Proof. Similar to the proof of Theorem 77. O

However in the case known to us the k-th derivative of functions in a strongly
unimodal family seems to have at most k real roots for each k. One wonders if this
property is relevant for the strong unimodality. Is there criterion/representation of
such densities? (Something like totally-positive functions? Lieb?)

IS THERE A SIMILAR NOTION IN SEVERAL DIMENSIONS?

2.2. Around inverse problem. Let us give a crude upper bound for the number
¢ of summands in a minimal positive unimodal decomposition of a given positive
smooth function.

Theorem 2.6. Any positive smooth density with finitely many isolated local max-
ima has a positive unimodal decomposition into K unimodal density functions where
K is the number of latter local mazima.

Remark 2.7. Proof of Theorem ?7 will be a consequence of the following statement.

In this case, associate to any local maximum m € S™ of f the subset C,, C S™.

Take a small disk around m and consider the union C2, of all trajectories of —grad(f)
on S” starting in the latter disk. Set C,, be the closure of Cg,.

Lemma 2.8. In the above notation, C3, is contractible. The union of Cy, for m
running over the set of all local maxima of f coincides with S™.

Proof. (Should be trivial from the classical Morse theory.) O

Extension 1. The same should hold a) under the assumption that all local maxima
are non-degenerate but the rest of critical points are only finitely many; b) local
maxima can be degenerate but there are finite many critical points all together;

Proof of Theorem ?7?. Sketch for a restricted class of functions. Assume first that
the probability density f is a Morse function which vanishes at the boundary of
its domain Q. Introduce f which is a function on the 1-point compactification of
Q) which is an n-dimensional sphere S™. Assume that f is a Morse non-negative
function on S™.

From the above claim we can produce the decomposition of f into the following
unimodal functions. Associate to each local maximum m the following function

. f(p), forpeC,,
™ = 2.1
Jm(P) {0, otherwise 2.1)
Claim: f = Yom fr almost everywhere.
[HOW TO SMOOTHEN AT THE EDGES? ]
— Boris
O

Extension 2. It would be good to extend the above to certain continuous functions.

Corollary 2.9. For any smooth density f with K > 1 isolated local mazima, its
unimodal category ucat(f) satisfies the condition

2 <wcat(f) < K

both bounds being sharp in some examples.
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Let us now present a construction which deforms a given smooth density f into
a positive function ¢ such that ucat(¢) = 2. Indeed assume that a density f is
given in some bounded contractible domain 2 C R™ with a smooth boundary 0f.
Denote by 092 C R™ the e-neighborhood of 0f2 in some fixed Euclidean metric in
R™. Let xq be the characteristic function of 2. We say that a non-negative smooth
function Y is a boundary e-deformation of xq if X # xq only in 9Q.. Given f in
Q consider the family of positive functions f; := f +¢-X where t > 0 and ¢ is
sufficiently small positive number.

Theorem 2.10. In the above notation, ucat(f;) = 2 for all sufficiently large posi-
tive t.

Proof. BLA O

3. DIFFERENT GUESSES

Lemma 3.1 (Guess 1). Fizx; <23 < ...,z and & > 0,8, >0,...,& > 0. Then
there exists € > 0 such that if each 0 < y; <€, j =1,2,...,L then the potential
U(x) has exactly £ local mazima.

Conjecture 3.2 (Guess 2). Assume that x1 < xo < -+ < xy. Fiz x1 < x4 and the
values of the charges & > 0,&3 > 0,...,& > 0. Then there exists § > 0 such that
Mazwell’s 1D-conjecture holds, i.e. U(x) has at most £ local mazima.

Lemma 3.3 (Guess 3). Fiz a charge configuration (x1,y1), - .. (x¢, ye) with positive
y;’s and the charges & > 0,& > 0,...,& > 0. Then there exists A > 0 such that
if we shift our configuration by a number > A up then U (x) will become unimodal.

Lemma 3.4 (Guess 4). If &g =& ==& and y1 = yo2 = -+ = yp Mazwell’s
1D-conjecture holds.

Lemma 3.5 (Guess 5). If all charges are positive and one moves up then charge
at the maximal height then the number of real critical points can only decrease.

i ivati Y S
Consider the second derivative of ®(x) = (CEEDTER One has
2a(x — x0)
P’ = —
(37) 5((1, o -TO)Q + y%)aJrl
" (z) = _2a£(($ —x0)? +43) — 2(x — x0)*(a + 1) _ —20453/3 — 20+ 1)(z — 20)?

((z = @0)? +yg)>+2 ((z — 20)? +y5)+2
Thus ®”(z) vanishes at exactly two points x = xg + yo/v2a+ 1. We call I =
[0 —yo/V2a + 1,20+ y0/v/2c + 1] the interval of negativity of the 2-nd derivative.

Lemma 3.6 (Guess 6). If we scale the real part x as tx, t > 1, then the number
of critical points can only increase.
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