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SPACES OF LINEAR DIFFERENTIAL EQUATIONS,
AND FLAG MANIFOLDS
UDC 517.926.4

B. Z. SHAPIRO

ABsTRACT. The author studies the connection between the properties of a linear or-

dinary differential equation and the associated curve in the space of complete flags.

Sturm’s classical alternation theorem is generalized to equations of arbitrary order.
Bibliography: 21 titles.

§1. Introduction

Let us consider a linear homogeneous differential equation of nth order given on
a segment / of the time axis ¢:

-1
Lx]1=x" +a/(nx""

+--+a,()x=0, (1)
where a,(1) € C*[1].

MAaIN DErFINITION. Equation (1) is said to be nonoscillatory on I if any nonzero
solution has less than » roots on I, counted with their multiplicity. Otherwise, the
equation is called osciflatory.

In this paper we study the connection between the oscillation properties of (1)
and the behavior of the left-invariant flow induced by this equation on the space
of complete flags. The trajectories of this flow are tangent to the standard Cartan
distribution (see §3 and {1]). Moreover, the space of complete flags is endowed with
the following very rigid structure. Each point is the vertex of the standard Schubert
cell decomposition constructed from it. This Cartan distribution has very specific
properties with respect to the family of Schubert decompositions, some of which are
studied below.

We construct a Sturm alternation theory for linear equations of arbitrary order,
including the classical case of second order equations, and an analogous Sturm theory
for Hamiltonian systems. Unlike the ordinary alternation theory (see, for instance,
[2] and [3]), here we compare not the behavior of individual solutions but rather
that of various ordered fundamental systems of solutions ¢,, ..., ¢,, and instead
of the zeros we consider the zeros of the Wronskians of the arrays ¢, ..., ¢, forall
i=1,...,n (the transversality instants). A particular feature of this theory is the
fact that not the modulus of the difference of the number of “zeros” of two solutions
is bounded by a constant, but rather their ratio (if both these numbers are positive).
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184 B. Z. SHAPIRO

We study the singularities of the boundary of nonoscillatory equations in the func-
tional space of all ordinary differential equations. These singularities are also closely
related with the geometry of the Schubert decomposition (see §6).

There is an extensive bibliography devoted to criteria of (non-) oscillation (see [4]-
[11]). From comparatively recent work we must particularly mention the monograph
[12] and the papers [13] and [14], continuing research to which Kondrat'ev [2] made
a substantial contribution. The problem of studying the singularities of the boundary
of nonoscillation was posed by Arnol'd in [15]. The author is deeply grateful to him
for posing the problem and for his constant interest in this work. (Part of these
results was announced by Professor Arnol'd in his survey report [16].)

§2, Main results

2.1. DerFNITION. Let F, be the manifold of complete flags in the space ¥V of
solutions of equation (1). By a flag curve of (1) we meana map f:7 — F, associating
to each instant ¢ € I the complete flag in the space V' whose i-dimensional space
consists of solutions having a root of multiplicity > »# —i at ¢.

2.2. DEFINITION. An array of complete flags in R” is said to be generic if for every
set of linear subspaces belonging to distinct flags the codimension of théir intersection
is equal to the minimum of n and the sum of their codimensions.

We shall say that two complete flags are transversal if they form a general array,
and nontransversal otherwise. The set of complete flags that are nontransversal to a
given flag o will be called its train Trn (a).® The train consists of all the cells of
positive codimension of the standard Schubert cell decomposition of F, constructed
from «.

We state below the main results of this paper.

THEOREM A. The following three assertions are equivalent.

a) Equation (1) is oscillatory on I = [0, 1].

b) There is an instant t € (0, 1] such that the flag of the equation at t is non-
transversal to the flag of the equation at 0.

c) The flag curve of (1) intersects the train of any flag.

THEOREM B. The total sum over all the nontransversality instants of the dimensions
of the intersection of the i-dimensional subspace of a flag curve of any nonoscillatory
equation with an (n — i)-dimensional subspace of an arbitrary flag o € F, does not
exceed i(n—1i).

CoroLLARY C (generalized Sturm alternation theorem). If the sum over all the
nontransversality instants of the dimensions of the intersection of an i-dimensional
subspace of a flag curve of the equation with an (n — i)-dimensional subspace of a flag
a € F, on a certain segment exceeds i(n— i), then on this time interval the flag curve
intersects the train of any flag.

THEOREM D (cf. [11], Theorem 1). Equation (1) belongs to the boundary of the
nonoscillatory equations on 1 if and only if the starting point and the endpoint are
the only pair of nontransversal flags of its flag curve.

CorOLLARY E. The singularities of the boundary of the domain of nonoscillatory
equations encountered in typical k-parameter families are diffeomorphic to the singu-
larities of the typical k-parameter section of the train.

* Editor’s note. The Russian word for “train” (in the present context) is “[nettd”; the abbreviation
“IO” in the original is here rendered as “Trn”.
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REMARK. The term “typical k-parameter family of equations” means that the
family belongs to an open dense set in the space of families, and the term “typical
k-parameter section” means transversality of the Schubert stratification of the train
[12].

TueoreM F. a) The singularities of typical sections of the train do not change (up
to a diffeomorphism of a neighborhoad of a section point) along the cells of a Schubert
decomposition of the train.

b) The list of the typical singularities of the train is finite for any k (it does not have
moduli).

c) The lists of singularities of typical k-parameter sections of trains increase as the
dimension of the space increases, and are stabilized at dimension 2k .

d) In typical two-parameter sections of the trains of any dimension one encounters
a unique singularity (up to a diffeomorphism). It is given by the equation

xy =0;
for 3 parameters we encounter two singularities:
xyz=0 and z(z-xy)=0;
and for 4 parameters we encounter three singularities:
xyzu=0, xu(xu—zy)=0, zu(z — xy) = 0.

§3. Curves of differential equations
and Cartan distribution on the flag manifold

3.1. DEFINITION. Let P(V*) be the projectivization of the space V" dual to the
space V of solutions of (1). By the projective curve of equation (1) we mean the map
p:I — P(V") associating to the instant ¢ € I the hyperplane of solutions having a
root at 7.

Let us give another definition of the curve p.

3.2. DEFINITION. We construct a curve a:I — V", which we shall call an affine
curve of (1), by putting

(a(t), o) = 0(1),
where ¢ is any solution of (1).

The vector a for any ¢ annihilates the hyperplane of solutions of (1) having a
root at ¢. Therefore, the projectivization of the curve a coincides with the curve
p . For any fundamental system of solutions ¢,, ..., ¢, of (1) the components of
a(t) in the basis dual to the chosen fundamental system are ¢,(¢), ..., ¢,(1).

3.3, Let us introduce the following identification of the linear spaces of solutions
of equations of the type (1) given on I = [0, 1]. Two solutions of distinct equations
are considered identical if and only if their values at 0 and the values of all the
derivatives up to the (n — 1)st inclusive are the same. This identification induces
an identification of the dual spaces, their projectivizations, etc. Let us choose in
the identified dual space a basis of #n linear functions such that the /th function
computes the value of the (i—1)st derivative of the solution at 0. In this basis, by the
components of a curve a(¢) of the differential equation (1) we mean a fundamental
system of solutions ¢, ..., ¢, satisfying the relations

p0)=6,, i=1,...,n,j=0,....,n-1 (2)

3.4. DEFINITION. A point of the curve y in P" is said to be a nonplanar point if
in a neighborhood of this point we can choose affine coordinates such that the germ
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of the curve is given as follows: (£ +---, £+ ,..., " +---), A projective curve
is said to be nonplanar if all its points are nonplanar points.

3.5. Remark. Since the Wronskian of a fundamental system of solutions of (1)
is nonzero, its projective curve is nonplanar.

3.6. REMARK. At each nonplanar point of a projective curve the complete mov-
ing flag, consisting of the tangent subspaces of all dimensions at the point under
consideration, is uniquely defined.

3.7. REMARK. The points of the flag curve defined in 2.1 are moving flags of the
projective curve of the equation.

3.8. REMARK. A natural map arises from the space of linear nth order equations
of the form (1) into the space of nonplanar curves in P” having a specified moving
flag at the starting point.

39, Let a = {a,, ..., «,_,} beacomplete flag in R". We define in F, an array
of n—1 smooth curves /,, ..., _, passing through o and determined by

,={o¢q,C--Caq,_ CL;Ca,,C--Ca,_,}, i=1,...,n-1,

where L; ranges through the set of all /-dimensional subspaces satisfying these in-
clusions. '

The tangent lines to /;,...,/,_, at a are linearly independent. Let us consider
the (n — 1)-dimensional tangent plane ?a C TF, spanned by these lines, and let us
remove from _C_a all the (n —~ 2)-dimensional planes C_ js j=1,...,n—-1, where

the plane C, i is spanned by all the tangent lines except the jth one.
DerFINiTION. The Cartan distribution on the space F, is the distribution C, =

C.\ U};,l C,-

3.10. LemMA. An immersed curve f:1 —F, is a flag curve of equation (1) if and
only if it is everywhere tangent to the distribution C,.

Proor. A flag curve of the differential equation is tangent to the distribution ?a R
since an infinitesimal motion of the i-dimensional subspace of the moving flag of
the projective curve occurs in an (i + 1)-dimensional subspace. Since the curve is
nonplanar, the velocity vector of the motion of the /-dimensional subspace does not
lie in itself, which precisely means the tangency of the flag curve with the distribution
C .

“3.11. REMARK. There arises a map from the space 2, of linear differential equa-
tion of nth order of the form (1) into the space of flag curves in F, that are tangent
to the distribution C, and have a fixed initial point and a fixed velocity vector.

3.12. DEFINITION. By the end map =,:?, — F, we mean the map associating to
each equation the endpoint of its flag curve.

3.13. LEMMA. For every equation (1) there is an n(n — 1)/2-parameter germ of its
deformations in the space 2, that has a nondegenerate projection onto a neighborhood
of the image of its end map.

ProoF. We shall give this germ explicitly. Let ¢,,..., ¢, be a fundamental
system of solutions of (1) satisfying conditions (2). Let us define the kth function
of the fundamental system of solutions of the equations belonging to the germ by

@, &) = 9 + PO At = 111,
j=k
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where p(t) € C*°[0, 1], 0< p <1, and p vanishes in a neighborhood of 0 and is
equal to 1 in a neighborhood of 1.

3.14. LeMMA. The map =, isonto F, .

Proor. The attainability domain for an arbitrary distribution of velocities is the
same as for its convex hull, by Filippov’s lemma [13]. The convex hull of the distri-
bution C, is a nonholonomic distribution of linear subspaces in TF, . Therefore,
the attainability domain for C, coincides with F, , by the Chow-Rashevskii theorem
[14].

§4. Trains

By the train Trn, of a complete flag o we mean the set of all nontransversal
flags to «. In the space F, we construct a Schubert cell decomposition from each
complete flag, whose cells are constituted by flags such that the dimensions of their
intersection with the subspaces of the given flag are specified. The train of the flag is
formed by the union of all the cells of positive codimension of the Schubert partition
constructed from this flag. Consequently, it is a stratified algebraic hypersurface.
The train is reducible and consists of n — 1 irreducible components A, ..., A, |,
where A; consists of flags whose (n — i)-dimensional subspaces are not transversal
to the i-dimensional subspace of the given flag; A, and A,_; are diffeomorphic via
duality. The following bijection holds between the cells of the Schubert partition in
F, and the permutation group S, ; S, acts on the linear space by permutation of
the coordinates, and in each cell of the partition there is precisely one element in the
orbit of the initial flag oo. The dimension of the cell corresponding to the desired
permutation is equal to the number of its inversions, i.e., the number of pairs (i, j),
where i appears before j in the permutation and j <.

4.1. DEFINITION. Let 5, and s, be two permutations such that the length of s,
is 1 less than that of s,. (The length of a permuation is the length of its minimal
decomposition into a product of transpositions.) We shall say that s, < s, according
to Bruhat if s, is obtained from s, either by one transposition or by the permutation
of a pair (j, j+1). Extending this relation by transitivity, we obtain Bruhat’s partial
order on S, .

42.let ¢,,...,e, beabasisin R".

DeFNITION. The standard flag of the basis e, , ..., e, is the flag whose i-dimen-
sional space is spanned by ¢, , ..., ¢, forall i, and the inverse flag is the flag whose
i-dimensional space is spanned by ¢,,...,¢,_;.

The set of flags that are transversal to the inverse flag of the basis e,, ..., e, (the
leading cell of the Schubert decomposition constructed from this flag) is identified
with the group T, of upper triangular matrices in the basis ¢, , ..., e, with unit diag-
onal. Under this identification the i-dimensional subspace of the flag corresponding
to the given matrix is spanned by its first / rows.

Using this identification, the condition for a flag given by the matrix X to belong
to the (n — i)th component of the train of the flag given by the matrix Y is written
as

det[X;, ¥, ,1=0,
where [X,, Y,_,] is the n x n matrix formed by the first i rows of X and the first
n—-irowsof Y.

4.3. ReEMARK. If Y = E, the equation of the components of its train has a
particularly simple form:

A =0, (3)
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where A; is the minor of X' formed from the first / rows and the last i columns.
Thus, the general equation of the train is given by

Tm:A---A,_;=0. (4)

By the transitivity of the action of the groupn GL, on the space F, the local
study of the train of any flag is equivalent to the study of Trn,. Equation (3) is
invariant with respect to the action of the torus (R\0)” on T, (n > 2), where the
ith component of this torus acts on a triangular matrix by multiplication of the ith
row by a nonzero number A and the ith column by A~!. This torus contains the
subgroup G = (Z,!)"_1 of transformations consisting in the change of the signs of
the rows and the columns.

4.4. DEFINITION. We shall say that a matrix is completely nonnegative if all its
nonzero minors are positive. A matrix is said to the completely positive if all its
minors are positive.

DEFINITION. By a completely positive upper triangular matrix we mean an upper
triangular matrix such that all its minors that do not contain a row or column lying
below the main diagonal are positive.

THEOREM. The semigroup T of completely positive upper triangular matrices is
one of the contractible components in T)\Tr, .

The proof is preceded by two assertions from matrix theory (see [7], Chapter II,
§6, Theorem 8 and Chapter V, §2, Theorem 5).
DEFINITION. Let us denote by A(;: ::::j!') the minor of the quadratic matrix 4
consisting of the intersection of the rows with indices /| < --- </, and the columns
with indices j,, ..., j;. By the row nondensity x we mean the sum Z:n=1(im —

in_y — 1), and by the column nondensity we mean p = Z:n:l(jm ~Jp— DA

minor for which ¥ = g = 0 will be called dense.

ProrosiTiON 1. For any completely nonnegative matrix A and for any numbers
p=1,...,n,

detA < detA(]:2) x detA(2H] 7). (5)

PROPOSITION 2. For any n x (n+ 1) matrix A,

A(D Y X Ay onh ) F A3 ) X AT

v ntl
= A(1 et ) X A7) (6)

n
Let us proceed with the proof of the theorem. We shall show that if a completely
nonnegtive upper triangular matrix has a zero minor not containing a row (or column)

lying below the main diagonal, then at least one of the A, is also equal to zero. Let

us first show that if a dense minor A( j‘f::: ’ ;j_‘l equals zero, then A, _ i = 0.

Indeed, using (5) and the nonnegativity of the matrix A, we have

0=A(bB0ysxda(bop! Y2 A7) =0
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Further, applying (5) again, we obtain

0=A(}_,.i.,i+1 ) xA(i+l,...,n~j+l) Z A =0.

gy JHL J+l,...n n—j+i

Let A(j'-' 'J’l ) be a zero nondense minor of minimal dimension for which u (or
[ RS

K ) is positive. Let us show that there is a nonzero minor of the same dimension with
smaller u (k). _

To fix ideas, we consider the case 4 > 0. Letusaddto A{}"'}) the intersection
of the last column of A not figuring in the minor with the rows #,,..., ;. Let
us apply to this / x (/ + 1) matrix the identity (6). Since by assumption all the
minors of dimension < / are positive and right-hand side of (6) is zero, the denser
minor, obtained by replacing the jth column by the chosen addition, is also zero.
Applying this procedure several times, we obtain A(;: ::::j-’,) = 0 and, therefore,
An—jl+:‘+1 = 0, by the first part of the proof.

4.5. DEFINITION. A semigroup consisting of the e¢lements inverse to those of a
given semigroup will be called the inverse semigroup.

[

CoroLLaRY. T \Tr, contains 2" components obtained by the action on the

semigroup T~ of completely positive upper triangular matrices of the group G by
changing the signs of the rows and the columns. These components are also semigroups
and are decomposed into pairs of mutually inverse semigroups.

Proor. Since T'r, is invariant under the action of G, the orbit of any component
of the complement in T,\Tr, is the union of components of the complement in

T\Tr,. It is easy to see that the orbit GT* of the semigroup 7" consists of 2"~

elements. By the commutativity of the action of G and the multiplication in T,
the images g7 € GT* are also semigroups. Any matrix belonging to G7* has the
property that all the minors not containing a row (a column) below the main diagonal
are nonzero. It is easy to see that this property holds also for the inverse matrices.
This means that the inverse semigroup to any g7 € GT" also belongs to GT™ .

4.6. LEMMA. The flags corresponding to matrices from mutually inverse semigroups
are transversal to each other.

Proor. The family of trains constructed at all points of the group 7 is invariant
under the action of 7, on itself by left multiplication. For the semigroups under
consideration the image of the left shift of the semigroup by any element is contained
strictly inside the semigroup. To prove this, one should consider the semigroup 7
and use the formula for the minors of the product of matrices (see also [7], Chapter
II, §2). We obtain that the left shift of the semigroup by an element in the inverse
semigroup strictly contains the initial semigroup. This means that the semigroup
does not intersect the train of any matrix from the inverse semigroup.

4.7. REMARK. The total number and the structure of the components of the com-
plement are unknown to the author. For n =2, 3, and 4 the number of components
is 2, 6, and 20 respectively.

4.8. LEMMA. Assume that the germ of a flag curve of equation (1) intersects at zero
a flag o.. Then the parts of the germs before and afier the intersection lie in mutually
inverse semigroups.
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Proor. It suffices to consider the case of a flag curve of the canonical equation
x™ = 0. The coordinates of the flag curve f(z) of this equation in T, have the
form o

G =i forj>i,

f,-,—(t)={0 for j < i.

In this case, when 7 changes sign the matrix f(¢) is transformed into f(—1).
Thus, f(—t) = f~'(¢). The proof is complete.

4.9. LEMMA. The multiplicity of the intersection of a germ f:[—&, €]l —F, of the
flag curve with train T, (the degree of the restriction of the divisor to the curve)
depends only on the cells of the Schubert decomposition constructed from o contain-
ing the intersection point, and is computed as follows. By the flag o we construct the
Schubert cell decompositions of all the Grassmannians G, k=1, ... ,n—1. Then
the multiplicity #, of the intersection of the germ of the flag curve f with the kth
component of the train Tr_ is equal to the codimension of the cell of the partition con-
taining the k-dimensional plane of the flag of the germ at the nontransversality instant.
The multiplicities #, for the permutation matrix (i, ..., i) of the corresponding
cell in Tr, containing the intersection point are equal to

n

#k=max(0, Z (im—(n—m—l)).

m=n-k+1

ProoF. Let a be the germ of an affine curve of equation (1) (see 3.2) such that

its flag curve is nontransversal for ¢ = 0 to the complete flag a = (a,, ..., a,_,).
We say that a basis ¢,,..., ¢, in R" is adapted to the flag o if for all i the space
; is spanned by e,, ..., ¢;. For any germ a of an affine curve of (1) there is a

unique adapted basis such that the coordinates of a in this basis are
a,(t)=1"/il+ - a,=t"fi 1+,

where (i,,...,,) is a permutation corresponding to the cell of the Schubert de-
composition of F, constructed from « containing the flag f(0). Let us consider
the Wronsky matrix W (¢) of the fundamental system of solutions a,(¢), ..., a,(t).
The multiplicity of the intersection of the flag curve f with Tr_ is equal to the

multiplicity of the intersection of W(t) with v_ 1( Tr,), where v is the projection
in the bundle GL % F, associating with each nondegenerate matrix the complete

flag whose i-dimensional space is spanned by the first i columns. Let us write down
the expansion in ¢ of the entries of the jth row of W (¢);

Wj(t)={tif/ij!+--- ,tii-l/(l'j_vl)!.’,.... ,ore s 04,04} (D)

The equation of the kth component of V‘I(Tra) in this system of coordinates
has the form A, = 0, where A, is the minor consisting of the & last rows and
the first k columns of W (r). Let us find the multiplicity of the intersection of A,
with W(?), restricting A, to W(¢}. To this end we must compute the lowest term
of the expansion in ¢ of the corresponding minor. From the explicit form of the
expansion (7) we obtain that for every k the order of the zeros depends only on the
permutation (i, ..., {,), and is computed as follows. We compare the permutation
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(i,, ..., 1) with the identity permutation and compute the total excess of the first
k terms of this permutation over the identity. It is equal to

> (- (n-m+1)).

m=n—k+1

This total excess is also equal to the area of the part of the Young diagram, which co-
incides with the codimension of the corresponding cell of the Schubert decomposition
in the Grassmannian G, .

§5. (Non-) oscillation criteria and Sturm’s generalized
alternation theorem for a higher-order linear equation

5.1. LemMA. Equation (1) is nonoscillatory in the segment I if and only if an
arbitrary collection of pairwise different points of its flag curves is generic.

Proor. The following is one of the classical criteria of (non-) oscillation [5]. Equa-
tion (1) is nonoscillatory if and only if there is a unique solution of any multipoint
problem of the form

xNy=x,;,  nel,  j=0,..,m, Y (m+1l)=n,

This condition is equivalent to the genericity of the collection of points f(¢,), ...,
S(t;) of the flag curve f.

5.2. The proof of Theorem A is carried out in the following sequence: b) = a) >
c)=Db).

b) = a). Let f be a flag curve of (1) given on [0, 1]. Assume that the k-
dimensional subspace of the flag f(0) is not in general position with the (n — k)-
dimensional subspace of the flag f(¢), where ¢ € (0, 1]. This pair can always be
chosen if f(0) and f(t) are nontransversal. The direct sum of these subspaces
belongs to a hyperplane in ¥V*, where V is the linear space of solutions of the
equation. This hyperplane determines a nonzero solution of the equation having a
root of multiplicity > n — k at 0 and a root of multiplicity > k& at ¢. Therefore,
this equation is oscillatory by definition.

a) = c¢). The proof is by induction on the dimension (the induction basis is
n = 2). In this case F, = S' and the train of any flag coincides with the flag itself.

The flag curve of any equation moves along S ! with nonzero velocity. The existence
of a solution with two roots means that the flag curve hits a point of the space F,
twice and, therefore, makes a complete turn around the circle, intersecting the train
of any flag,

Inductive step. Let p:[0, 1] — P! bea projective curve of the oscillatory
equation, let L be the hyperplane in P""! that p intersects > n times, count-
ing multiplicities (corresponding to an oscillation solution of the equation), and let
a=(eg,...,a,_,) bean arbitrary flag in P"~!. The multiplicity of the intersection
is lower semicontinuous, and consequently it suffices to consider the case when « is
transversal to L. If p intersects «,_,, then the intersection point is the desired
nontransversality instant. If p does not intersect a,_,, then we consider in the

hyperplane o, , = P""? the flag o, obtained by intersection of the flag a with the

hyperplane L. Now let us project the curve p onto o along tangent lines; that is,
to a point of p we associate the point on «,_, obtained by intersecting a,_, with
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! and p does

the tangent line to p at this point. If p is a nonplanar curve in P”
not intersect ,_,, then p, is a nonplanar curve in a,,_, = P2,

Let us now show that the projected curve intersects the plane L, = LNa,_, at
least n — 1 times, counting multiplicities. We consider first the case of multiple
roots. If p intersects L at the instant ¢ with certain multiplicity then (by definition
of the multiplicity as the dimension of the maximal moving subspace lying in the
hyperplane) we obtain that p  intersect L  with the multiplicity reduced by 1. Let
us now take on p two neighboring geometrically distinct roots p(t,) and p(¢;, ;). We
shall show that on the interval (z;, ¢;,,) there is an instant 7; at which the tangent
line at p(z;} intersects the plane L. (The corresponding point will be a root of the
curve p, (see the picture).)

The planes L and a,_, divide the initial space P"! into two half-spaces. The
part of the curve p on the interval (¢, ¢,,,) lies in one of them. Let us choose a
projective chart in which the plane o, _, is improper, and assume that the plane L
is horizontal. Then the point at which the tangent line to p hits «,_, is the point
where the tangent line to p is horizontal.

Let us consider on (f;, ¢,,,) the distance function from p to L. This function
necessarily has a maximum at an interior point, since at the endpoints of the intervals
it is strictly increasing. At this point the tangent line is horizontal, and this concludes
the proof.

c) = b). Condition c) is equivalent to the fact that the union of the trains of the
points in a flag curve of the equation coincides with F,. Assume that there is no
instant ¢ at which f(0) € Tm( 1wy - Ve show that then there is a flag o € F, that is
not contained in the union of the trains of points of the curve f. In our assumptions,
for every 7 on (0, 1] thereis an ¢, such that the union of the trains of points of the
curve on [7, 1] does not meet an ¢ -neighborhood of the flag f(0). On the other
hand, on a small time interval the germ of the flag curve lies in one of the semigroup
components of the train of f(0), and so all its points are transversal to any flag from
the inverse semigroup component, according to Lemma 4.6. An arbitrary flag in this
component lying in an &_-neighborhood of the flag f(0) is transversal to all the flags
of the curve f. This contradiction proves the desired implication.
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5.3. Let us prove Theorem B.

Let ¢,,...,¢, be different nontransversality instants of the points of the flag
curve f of a nonoscillatory equation to some specified flag o, and let #, be the
multiplicity of the intersection of f at f; with the kth component of the train Trn,, .
Let us show that ), #, < k(n—k). By thelemma, the array of flags f(¢,), ..., f(¢,,)
is generic. The Schubert cell decomposition of the Grassmannians constructed from
a generic array of flags has the property of dimensional transversality [15], i.e., the
codimension of the intersection of the cells of these partitions is equal to the sum of
the codimensions. Let us consider the m-cell decompositions of the Grassmannian
G,, constructed from the flags f(z,), ..., f(¢,). By our lemma, the k-dimensional
plane of the flag o lies in the union of the cells of codimension #,_ ki from the ith
cell decomposition of the Grassmannian G,, . By the dimensional transversality, the
sum of the codimensions of the cells whose intersection contains the k-plane of the
flag o does not exceed dim G, = k(n—k). Hence, 3. #, < k(n—k). In particular,
we once again obtain that the number of roots of any solution of a nonoscillatory
equation does not exceed n— 1,

5.4. Let us prove Corollary C.

Indeed, if the multiplicity of the intersection of the flag curve of (1) with the kth
conponent of the train of a flag on some time interval exceeds k(» — k), then the
equation is oscillatory on this segment. Then, by Theorem A, on this time interval
there is a nontransversality instant to the train of any flag.

§6. Boundary of the domain of nonoscillatory equations
and singularities of the sections of the trains

6.1. Let us prove Theorem D. It is a consequence of Theorem A and the following
theorem of Sherman [11] (see §7).

THEOREM. If an nth order linear ordinary differential equation has a solution with
> n zeros on the semi-interval [0, 1), counted with their multiplicities, then it has a
solution with > n simple zeros on (0, 1), and even a solution whose first n zeros are
simple.

The domain of nonoscillatory equations on I = [0, 1] is open. Therefore, the
boundary equations are oscillatory. Let us show that for the boundary equation the
instant at which the point of its flag curve is nontransversal to the flag at the left end
of the curve cannot lie on (0, 1). Indeed, if it did, there would be a solution having
> n zeros on [0, 1| —¢). Then there would be a solution having »n simple zeros
on (0, 1), by Sherman’s theorem. But any sufficiently small perturbation of such an
equation is oscillatory, since simple zeros are preserved under small perturbations.
This contradicts the fact that our equation belongs to the boundary of the oscillatory
ones.

6.2. CorROLLARY. The singularities of the boundary of the domain of nonoscillatory
equations existing in typical families of equations with a specified number of param-
eters are diffeomorphic to the singularities of the sections of the train of the initial
flag of the flag curve of the equation, arising in the endpoint projection of the families
according to Theorem 6.1 and Lemma 3.13.

Thus, the problem of studying the singularities of the boundary of the domains of
nonoscillatory equations reduces to that of studying typical singularities of sections
of trains.
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6.3. Let us prove Theorem F.

Assertion a) follows from the fact that the stabilizer of any flag in the group GL
preserves Schubert’s equation constructed by this flag, and acts transitively at each
of its cells.

In order to prove assertion b) we observe that the singularities of general k-
parameter sections of the train are its restrictions to a transversal section to the
cells of codimension k. Let us construct transversals to all the cells of positive
codimension. We take for each of these cells the corresponding permutation. The
codimension of a cell is the number of successions of this permutation (i.c., the
number of pairs (i, j,), where i > j and k > [). Let us construct the following
deformation of the matrix of the permutation in the group GL. For each pair of its
unit elements (s, , S forming a succession we write the deformation parameter

A;; asthe (i, /) entry.
ExaMPLE. For the matrix
1 00
0 01
010
we have the following deformation:
1 00
Ay 01
Ay 10

Let us consider the bundle GL - F, . We shall prove that the projection of this

deformation of the permutation matrix defines a transversal section to the Schubert
cell corresponding to this permutation. First, the number of parameters is equal to
the codimension of the cell. Let us show that the vectors A/84, ; are not tangent
to the total inverse image of the cell in GL. The total inverse image of the cell
corresponding to a permutation matrix s is the set of matrices T, x s x T,, where
T, and 7, are nondegenerate upper tnangular matrices. The Lie algebra of the group
of nondegenerate upper triangular matrices is the Lie algebra of all upper triangular
matrices. The tangent space to the inverse image of the set 7 x s x T splits into the
sum of the subspaces 7s and s7'. Under the left product of a matrix 1€ T by s
the columns of 7 are permuted by the following rule: the ith column is permuted to
the place where the number i stands in the permutation. Under the right product by
s the rows of 7 are permuted by the following rule: the jth row of 7 is permuted
to the place whose index is equal to the number standing in the jth place in the
permutation. It is easy to see that the sum of these subspaces is the linear space of
matrices with zero entries in all the places forming successions. The equation of the
restriction of the train to the deformation A has the following form:

A--A,_ =0, 8)

where A, is the minor of A formed by the last i rows and the first i/ columns.
Let us prove part ¢). To this end, we construct an embedding of the flag space
F, into F_, with m > n. Identify R” with the n-dimensional subspace L in R™
spanned by the first # vectors of some basis ¢, ..., ¢, . Let us now construct a map
from the open set Q= of transversals to L in Fm s mto F,. Withtheflag f€Q,
we associate the flag f, € F, obtained by intersecting f W1th L. In this way we map

the cell partition constructed from the direct flag of the basis e, ..., e, into the
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cell partition constructed from the direct flag of the basis e, , ..., e, . This map pre-
serves the codimension of the cells and carries transversals to cells into transversals.
Therefore, as n grows, with k fixed, an inclusion arises of the lists of singularities
of typical k-parameter sections of the trains. Let us prove the stabilization property.
Consider the permutation matrix s € S(n) and the deformation A  given above.

Assume that some unit element s, of s is not a succession with any of the
unit elements of s. Then necessarily j = n — {. Let us remove the ith row and
the (n — i)th column of s. We obtain a permutation § € S(n — 1) defining in
F,_, a cell of the same codimension, having a diffeomorphic intersection to the
transversal with the train. Thus, a stabilization operation acts on permutations with
a different number of elements, which does not change the codimension of the cells,
the types of singularities, etc. In the study of the singularities of the sections that we
encounter in the typical k-parameter families we need to consider the transversals
to all the cells of codimension k , which is equal to the number of successions of the
corresponding permutation matrices. Any permutation matrix with k successions
is stably equivalent to a permutation acting in no more than 2k elements, which
proves our assertion.

To prove d) one has to enumerate the stable permutations with 2, 3, and 4 succes-
sions, and use (8).

§7. Topologial proof of Theorem 6.1

7.1. DEefFINITION. Let p:[-¢€, €] — P’ be the germ of a nonplanar curve, The

germ of its hyperbolicity domain is the set of points in P’ such that through each of
them there passes a hyperplane having / simple intersections with the germ p of the
curve.

The hyperbolicity domain of the germ of a nonplanar curve p in P’ is diffeomor-
phic to the product of an (/ — 1)-dimensional diagram of a swallowtail by a segment.
The (I - 1)-dimensional pyramid of a swallowtail is defined as the set of polynomials

of the form x' + a]xl—2 +---+a,_, having / simple real roots [12].

7.2. LEMMA. Any hyperplane L intersecting the germ of a nonplanar curve with
any multiplicity, intersects the hyperbolicity domain.

ProoOF. The easy case. If the multiplicity of the intersection of the curve p with
L is odd, i.e., p passes from one side to the other with respect to L, then there is
a germ p of a curve, C Lclose to D, lying entirely in the hyperbolicity domain and
intersecting L. This intersection point is the desired one.

Second case. If the multiplicity of the intersection of p with L is even, then p
lies on one side of L. Let us give the following definitions.

7.3. DEFINITION. The collar of the germ of a nonplanar curve p is defined as the
germ of the smooth two-dimensional surface I" formed by the positive semitangents
to p. A semitangent is said to be positive if it contains the tangent vector. (It is
defined, since p is given as a map.) The rim of the collar is defined as the curve p,
formed by the endpoints of the tangent vectors of length ¢ .

7.4. LEMMA. If the multiplicity of the intersection of p and L is even, then the part
of the rim of the collar corresponding to negative time in the given parametrization
and the curve p itself lie on different sides of L.

ProoF. Indeed, let us choose in a chart of P’ a coordinate system in which the
germ p is parametrized as

p]=t+"': p2=t2/2+'“:"'a t2k=t2k/2k!+"',"', p,=t1/l!+,
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where the dots denote terms of degree higher than /.
Assume that the subspace spanned by the first 2k — 1 coordinates lies in L, and
Py 18 transversal to L. Then locally the coordinate p,, of the curve p is positive.

The rim of the collar is given by p; = p+ ép’, and its 2kth coordinate has the form
Ps. o = 0857 /(2 = 1)+ 24 )R -

For negative ¢ the coordinate Ps % is negative.

From this lemma and from the fact that the collar T" lies in the closure of the
hyperbolicity domain of p it follows that also in the second case there is a curve
lying entirely in the hyperbolicity domain and passing from one side to the other
with respect to L. This concludes the proof of Lemma 7.2.

PrROOF OF THEOREM 6.1. Assume that equation (1) is oscillatory on the semi-
interval [0, 1 —¢). Then there is an oscillatory solution, which we shall denote by
u. Assume that # has a root of multiplicity k at O and a root of multiplicity / at
C < 1, and ] is the maximal multiplicity that the oscillating solutions of (1) can
have at C. We shall prove that there is a solution of (1) having a root of multiplicity
> n—/ atOand / simple roots in a neighborhood of C . Letus consider, in the (/+1)-
dimensional linear space of solutions of the equation having a root of multiplicity
< ! at C, the hyperplane of solutions having a root of multiplicity > n—17 at 0
and a nonplanar curve obtained by projection of the affine curve of (1). By Lemma
7.2, on this hyperplane there is a point from the hyperbolicity domain of this curve,
which is the desired solution with / simple zeros in a neighborhood of C. After
this, by a small perturbation of this solution, we construct a solution having at least
n simple roots on (0, 1).
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