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1. Introduction and main results

Let R[x] denote the ring of univariate polynomials with real coefficients and denote
by Rn[x] its linear subspace consisting of all polynomials of degree less than or
equal to n.

In what follows we will discuss the following five important types of univariate
polynomials:

Definition 1.1. A polynomial p(x) ∈ R[x] is called
• hyperbolic if all its roots are real;
• elliptic if it does not have real roots;
• positive if p(x) > 0 for all x ∈ R;
• non-negative if p(x) ≥ 0 for all x ∈ R;
• a sum of squares if there is a positive integer k and p1(x), . . . , pk(x) ∈ R[x]

such that p(x) = p2
1(x) + · · ·+ p2

k(x).

Note that the term “elliptic” is sometimes used to define other types of
polynomials: see, e.g., [9, 12]. The set of non-negative polynomials is classically
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compared with the set of sums of squares which is a subset of the latter. Moreover,
a well-known result states that in the univariate case these two classes coincide
(see, e.g., [17, p. 132]).

Proposition 1.2. A polynomial p(x) ∈ R[x] is non-negative if and only if there exist
p1(x), p2(x) ∈ R[x] such that p(x) = p2

1(x) + p2
2(x).

Remark 1.3. Note that the situation is quite different for polynomials in several
variables. In particular, even in two variables not all non-negative polynomials can
be represented as sums of squares. One of the simplest examples of this kind is
the polynomial p(x, y) = x2y2(x2 + y2 − 3) + 1 which is non-negative but cannot
be represented as the sum of squares (see [10] for details). In general, this topic is
related to the Hilbert 17-th problem (see [15]).

Definition 1.4. Let V denote either Rn[x] or R[x]. We say that a map Φ : V → V
preserves a certain set M ⊂ V if for any polynomial p ∈M its image Φ(p) belongs
to M .

In this paper we study linear operators on R[x] or Rn[x] which preserve one
of the classes of polynomials introduced above. Namely, we call a linear operator
acting on R[x] or Rn[x] a hyperbolicity-, ellipticity-, positivity-, or non-negativity-
preserver if it preserves the respective set of polynomials. The classical case of
(linear) hyperbolicity-preservers which are diagonal in the monomial basis of R[x]
was thoroughly studied about a century ago by Pólya and Schur [13].

Following the set-up of [13] we concentrate below on the remaining three
classes of preservers. In short, it turns out that there are much fewer such linear
operators than those preserving hyperbolicity. More precisely, our two main results
are as follows.

Theorem A. Let UQ : R[x] → R[x] be a linear ordinary differential operator of
order k ≥ 1 with polynomial coefficients Q = (q0(x), q1(x), . . . , qk(x)), qi(x) ∈
R[x], i = 0, . . . , k, qk(x) 6≡ 0, i.e.,

UQ = q0(x) + q1(x)
d

dx
+ q2(x)

d2

dx2
+ · · ·+ qk(x)

dk

dxk
. (1)

Then UQ does not preserve the set of non-negative (resp., positive or elliptic)
polynomials of degree 2k.

Corollary. There are no linear ordinary differential operators of positive finite
order which preserve the set of non-negative (resp., positive or elliptic) polynomials
in R[x].

Remark 1.5. Notice that, by contrast, there are many hyperbolicity-preservers
which are finite order linear differential operators with polynomial coefficients.
In fact, such examples exist even among operators with constant coefficients (see
Remark 1.6).
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Remark 1.6. Any linear operator on R[x] and C[x] can be represented as a linear
ordinary differential operator of, in general, infinite order, i.e., as a formal power
series in d/dx with polynomial coefficients. Thus the subclass of finite order linear
differential operators, i.e., those belonging to the Weyl algebra A1 is a natural
object of study. Note that unlike the case of finite order operators there exist
plenty of linear differential operators of infinite order which preserve positivity.
Apparently, the simplest example of this kind is(

1− d

dx

)−1

= 1 +
d

dx
+

d2

dx2
+ · · · . (2)

More generally, the inverse of any finite order differential operator with constant
coefficients and positive constant term whose symbol is a hyperbolic polynomial
yields an example of such an operator. Another natural class of such operators
is obtained by taking the convolution (over R) with any positive and sufficiently
rapidly decreasing kernel or, in fact, with any positive measure on R having all
moments finite. (Recall that the k-th moment of a measure µ is by definition
equal to

∫∞
−∞ tk dµ(t).) The latter observation shows that there are more positivity-

preservers which are infinite order differential operators with constant coefficients
than there are inverses of hyperbolicity-preservers with constant coefficients (see
Remark 5.4).

In fact, the latter class coincides with the class of all positivity-preservers given
by infinite order linear differential operators with constant coefficients. Namely,
slightly generalizing a one hundred years old result of Remak [16] and Hurwitz [5]
(see also Problem 38 in [14, Ch. 7]) one obtains the following statement.

Theorem B. Let α = (α0, α1, . . .) be an infinite sequence of real numbers where
not all αk vanish. Consider the infinite order linear ordinary differential operator

Uα = α0 + α1
d

dx
+ α2

d2

dx2
+ · · · (3)

with constant coefficients. Then Uα preserves positivity if and only if it preserves
non-negativity. This is the case if and only if one of the following three equivalent
conditions holds:
(1) For any non-negative polynomial p(x) = akx

k + · · ·+ a1x+ a0,

Uα(p)(0) = a0α0 + a1α1 + 2!a2α2 + · · ·+ k!akαk ≥ 0.

(2) The quadratic form represented by any principal submatrix of the infinite
Hankel matrix

α0 1!α1 2!α2 . . . l!αl . . .
1!α1 2!α2 3!α3 . . . (l + 1)!αl+1 . . .
2!α2 3!α3 4!α4 . . . (l + 2)!αl+2 . . .

...
...

...
. . .

...
...

l!αl (l + 1)!αl+1 (l + 2)!αl+2 . . . (2l)!α2l . . .
. . . . . . . . . . . . . . . . . .


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is positive semidefinite (which implies that all principal minors of the above
matrix are non-negative).

(3) There exists a positive measure µα supported on R whose moments satisfy
the relation

∫∞
−∞ tk dµα(t) = k!αk, k = 0, 1, 2, . . . . The operator Uα can be

represented in the form

Uα(p)(x) = p(x) ? µα,

where p(x) ∈ R[x] is an arbitrary polynomial and ? denotes the following
convolution-like integral transform:

Uα(p)(x) =
∫ ∞
−∞

p(t) dµ(t− x).

Remark 1.7. The only difference between the operation ? and the standard con-
volution is the sign of the argument in the second factor. Notice also that any
quadratic form in condition (2) can be positive definite as well, i.e. we assume
above that the set of all positive semidefinite quadratic forms includes the set of
all positive definite forms as a subset.

To illustrate the latter result notice that for the operator (2) above one has
1 = α0 = α1 = α2 = · · · and ∆l =

∏l
j=1(j!)2, l = 0, 1, . . . , where ∆l is the

corresponding (l+ 1)× (l+ 1) principal minor (see [4]). Another good example is
the shift operator

ed/dx = 1 +
d

dx
+

d2

2!dx2
+

d3

3!dx3
+ · · ·

for which all entries of the above Hankel matrix are equal to 1.

Remark 1.8. The major remaining challenge in this area is to classify all positivity-
preservers. We finish our introduction with this question.

Problem 1. Find a complete classification of positivity-preservers. In particular,
describe the semigroup of positivity-preservers which are represented by lower
triangular matrices in the monomial basis in R[x], i.e. which do not increase the
degree of a polynomial they are applied to. This semigroup includes two important
subsemigroups: a) all positivity preserving differential operators with constant
coefficients; b) λ-sequences discussed in §3. Strangely enough, it is by no means
obvious that the latter two subsemigroups generate the former semigroup.

Problem 2. Is there an analog of Theorem B in the multivariate case? In other
words, is every positivity-preserver which is represented by a linear differential
operator with constant coefficients given by convolution with a positive measure?

2. Some preliminaries on classes of preservers

Below we discuss the relationships between the classes of ellipticity-, positivity-,
and non-negativity-preservers. As we mentioned in the introduction, the set of all
univariate non-negative polynomials coincides with the set of sums of squares and
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therefore linear preservers of the latter set do not require separate consideration.
On the other hand, it is obvious that the sets of elliptic, positive, and non-negative
polynomials are distinct. In this section we investigate the distinctions between the
corresponding sets of ellipticity-, positivity- and non-negativity-preservers, respec-
tively (see Theorems 2.5 and 2.6 below).

We start with the following lemma showing that the assumption that a linear
operator Φ is a non-negativity-preserver is quite strong.

Lemma 2.1. Let Φ : R[x] → R[x] be a linear operator preserving the set of non-
negative polynomials and assume that Φ(1) ≡ 0. Then Φ ≡ 0.

Proof. First we show that for any polynomial p(x) = anx
n + · · · of even degree

n = 2m, if an > 0 then Φ(p) is non-negative and if an < 0 then Φ(p) is non-
positive. Indeed, if n is even and an > 0 then p(x) has a global minimum, say M .
Thus p(x) + |M | ≥ 0 for all x ∈ R. Therefore, Φ(p + |M |)(x) ≥ 0 for all x ∈ R.
However, by linearity and the assumption Φ(1) ≡ 0 we get

Φ(p)(x) = Φ(p)(x) + |M | · 0 = Φ(p)(x) + |M |Φ(1)(x) = Φ(p+ |M |)(x) ≥ 0

for all x ∈ R. For an < 0 the result follows by linearity.
Now suppose that Φ 6≡ 0 and let q(x) be a polynomial such that Φ(q)(x) =

anx
n + · · · + aix

i with the smallest possible non-negative value of i such that
ai 6= 0. Let p(x) be a monic real polynomial of even degree satisfying the condition
deg(q(x)) < deg(p(x)). Thus p(x) + µq(x) is monic for any µ ∈ R. The above
argument shows that the polynomial Φ(p + µq) is non-negative for all µ ∈ R.
Notice that our choice of q(x) implies that the polynomial Φ(p) has vanishing
coefficients of degrees 0, . . . , i−1. Hence Φ(p)(x) = blx

l+· · ·+bixi for some positive
integer l and some coefficients bl, . . . , bi ∈ R. Then for any given µ there exists
gµ(x) ∈ R[x] such that Φ(p)(x)+µΦ(q)(x) = xigµ(x). Obviously, the constant term
of gµ(x) equals bi + µai. Since ai 6= 0 there exists µ0 ∈ R such that bi + µ0ai =
gµ0(0) < 0 and by continuity there exists a neighborhood N(0) of the origin such
that gµ0(x) < 0 for all x ∈ N(0). Therefore, there exists 0 6= x0 ∈ N(0) such
that xi0 > 0, hence xi0gµ0(x0) < 0. This contradicts the assumption that Φ is a
non-negativity-preserver. �

Remark 2.2. Notice that the conclusion of Lemma 2.1 is false if we consider a linear
non-negativity preserver in finite degree, i.e. Φ : Rn[x]→ Rn[x]. A simple example
is obtained by requiring Φ(1) = Φ(x) = · · · = Φ(xn−1) ≡ 0 and Φ(xn) = xn where
n is an even integer.

Theorem 2.3. Let Φ : R[x]→ R[x] be a linear operator. Then the following condi-
tions are equivalent:
(1) Φ preserves the set of elliptic polynomials.
(2) Either Φ or −Φ preserves the set of positive polynomials.

Also each of these conditions implies that
(3) either Φ or −Φ preserves the set of non-negative polynomials.
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Proof. Note that the identically zero operator satisfies neither (1) nor (2). There-
fore, we will assume that Φ 6≡ 0.

(1)⇒(2). Assume that Φ preserves the set of elliptic polynomials and that
neither Φ nor −Φ preserves positivity. In other words, since Φ is an ellipticity-
preserver this means that there exist positive polynomials p(x), q(x) ∈ R[x] such
that Φ(p)(x) > 0 and Φ(q)(x) < 0 for all x ∈ R. Note that no elliptic polynomial
can be annihilated by Φ since 0 is not an elliptic polynomial. We consider the
following two subcases:

A. There exist two positive polynomials p(x), q(x) as above such that deg Φ(p)
6= deg Φ(q). We can assume that deg Φ(p) > deg Φ(q). Since Φ(p) is a positive
polynomial it has even degree and positive leading coefficient. Thus for any µ ∈ R
the polynomial Φ(p) + µΦ(q) has the same properties, i.e., is of even degree and
has positive leading coefficient. Hence there exists x0(µ) ∈ R such that Φ(p)(x) +
µΦ(q)(x) > 0 for all x with |x| > x0(µ).

Now set y0 := Φ(p)(0) and z0 := Φ(q)(0). Obviously, y0 > 0 and z0 < 0 since
Φ(p) is positive and Φ(q) is negative. Let µ0 = 2y0/(−z0) > 0. Then p(x)+µ0q(x) is
positive since it is the sum of two positive polynomials. Moreover, Φ(p+µ0q)(x) > 0
for x > x0(µ0). However, at the origin one has

Φ(p+ µ0q)(0) = y0 +
2y0
−z0

z0 = y0 − 2y0 = −y0 < 0,

so by continuity Φ(p+µ0q)(x) must have at least one real zero, which is a contra-
diction.

B. It remains to consider the case when the images of all positive polynomials
have the same degree, say m. Let Φ(p)(x) = amx

m + · · · , Φ(q)(x) = bmx
m + · · · .

Since Φ(p)(x) > 0 it follows that am > 0, and since Φ(q)(x) < 0 one has bm < 0.
Thus the polynomial −bmp(x)+amq(x) is positive. However, its image is of degree
less than m, which is a contradiction.

(2)⇒(1). If Φ is a positivity-preserver then by linearity Φ is also a negativity-
preserver, and thus Φ preserves the set of elliptic polynomials as well.

(2)⇒(3). Assume that Φ preserves positivity. Take p(x) ∈ R[x], p(x) ≥ 0.
Then for any ε > 0, p(x) + ε > 0. Thus Φ(p)(x) + εΦ(1)(x) = Φ(p + ε)(x) > 0.
Taking the limit as ε→ 0 we get Φ(p) ≥ 0. �

The following example shows that, in general, (3) does not imply (1) and (2).

Example 2.4. Let Φ : R[x] → R[x] be a linear operator defined on the basis as
follows: Φ(1) = x2 and Φ(xi) = 0 for all i > 0. Obviously, Φ preserves the set
of non-negative polynomials but does not preserve the set of positive polynomials
since 1 is mapped to x2 which is only non-negative.

We are now going to show that in fact this example is in some sense the only
possibility, i.e., it essentially describes the whole distinction between positivity-
and non-negativity-preservers.
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Theorem 2.5. Let Φ : R[x]→ R[x] be a linear non-negativity-preserver. Then either
Φ is a positivity-preserver (and therefore an ellipticity-preserver as well) or Φ(1)
is a polynomial which is only non-negative but not positive. Moreover, in the latter
case for any positive polynomial p(x) ∈ R[x] the zero locus of Φ(p) is a subset of
the zero locus of Φ(1).

Proof. Assume that Φ 6≡ 0. Then Φ sends positive polynomials to non-negative
ones. Suppose that p(x) ∈ R[x] is positive but Φ(p)(x) has real zeros. Since p(x)
is positive there exists ε > 0 such that p(x)− ε > 0 for all x. Thus

Φ(p− ε)(x) = Φ(p)(x)− εΦ(1)(x) ≥ 0.

Set g(x) := Φ(p)(x), f(x) := Φ(p − ε)(x), and h(x) := Φ(1)(x). Since all three
polynomials are non-negative and g(x) = εh(x) + f(x), it follows that for any
x0 such that g(x0) = 0 one has f(x0) = h(x0) = 0. Since h(x) is a polynomial,
either h(x) ≡ 0 or h(x) has a finite number of zeros. However, the first possibility
is ruled out by Lemma 2.1, since h(x) = Φ(1). The second possibility implies
that all positive polynomials whose images are non-negative but not positive have
altogether only a finite number of zeros belonging to the zero locus of Φ(1)(x). �

Corollary 2.6. Let Φ : R[x] → R[x] be a linear operator such that the polynomial
Φ(1) is positive. Then conditions (1)–(3) of Theorem 2.3 are equivalent.

In exactly the same way we can show the following.

Theorem 2.7. Let Φ : Rn[x]→ Rn[x] be a linear operator with Φ(1) > 0. Then the
following conditions are equivalent:

(1) Φ preserves the set of elliptic polynomials of degree ≤ n.
(2) Either Φ or −Φ preserves the set of positive polynomials of degree ≤ n.
(3) Either Φ or −Φ preserves the set of non-negative polynomials of degree ≤ n.

Remark 2.8. Corollary 2.6 and Theorem 2.7 will allow us to reduce the investi-
gation of non-negativity-, positivity-, and ellipticity-preservers (both in the finite-
dimensional and infinite-dimensional cases) to just one of these three classes of
preservers.

For the sake of completeness notice that for non-linear operators the situation
is different, as the following simple examples show.

Example 2.9. 1. The bijective map Φ1 : R[x]→ R[x] defined by

Φ1(p)(x) = p(x) + c,

where c is a positive constant, preserves both positivity and non-negativity
but does not preserve ellipticity.
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2. The bijective map Φ2 : R[x]→ R[x] defined by

Φ2(p)(x) =


p(x) if p(x) ∈ R[x] \ {x2 + 1,−x2 − 1},
−x2 − 1 if p(x) = x2 + 1,
x2 + 1 if p(x) = −x2 − 1,

preserves ellipticity, but does not preserve positivity and non-negativity.
3. The bijective map Φ3 : R[x]→ R[x] defined by

Φ3(p)(x) =


p(x) if p(x) ∈ R[x] \ {±x2},
−x2 if p(x) = x2,

x2 if p(x) = −x2,

preserves ellipticity and positivity, but does not preserve non-negativity.

3. The case of diagonal transformations

The aim of this section is twofold. First we want to recall what was previously
known about positivity- and non-negativity-preservers in the classical case of linear
operators acting diagonally in the standard monomial basis of R[x] and secondly
we want to point out some (known to specialists [2], [3]) mistakes in Ch. 4 of the
important treatise [6]. The main source of correct results is Ch. 3 of [17].

3.1. Known correct results

Let T∞ : R[x]→ R[x] be a linear operator defined by

T∞(xi) = λix
i for i = 0, 1, . . . (4)

and, analogously, let Tn : Rn[x]→ Rn[x] be a linear operator defined by

Tn(xi) = λix
i for i = 0, 1, . . . , n. (5)

Denote them by {λi}∞i=0 and {λi}ni=0, respectively. We will refer to such opera-
tors as diagonal transformations or diagonal sequences. Diagonal transformations
preserving the set of positive polynomials are referred to as λ-sequences in the
literature (see [6, p. 110], and [2, 3, 8]). Reserving the symbol Φ for general linear
operators we use in this section the notation T ∈ Λ to indicate that T is a diagonal
transformation preserving positivity.

Remark 3.1. Notice that in the finite-dimensional case we only need to consider
transformations acting on Rn[x] for n even since there are no positive polynomials
of odd degree and a sequence {λi}2k+1

i=0 preserves the set of positive polynomials in
R2k+1[x] if and only if {λi}2ki=0 preserves the set of positive polynomials in R2k[x].

Let us establish some immediate consequences of the fact that a diagonal
transformation T is a positivity-preserver.
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Lemma 3.2. Assume that a transformation Tα = {λi}αi=0, α ∈ N∪ {∞}, preserves
positivity. Then
(1) λi ≥ 0 for any even i;
(2) λ2

i ≤ λ0λ2i for any i.

Proof. To settle (1) consider the polynomial p(x) = xi + 1 which is positive if i is
even. Thus T (p) = λix

i + λ0 should be positive as well. Since λ0 > 0, the result
follows.

To prove (2) consider the polynomial p(x) = x2i+axi+b with a2 < 4b. Then
p(x) is positive together with its image q(x) := T (p)(x) = λ2ix

2i+aλix
i+ bλ0. If i

is odd then the positivity of q(x) is equivalent to the negativity of its discriminant,
i.e., Dq := a2λ2

i − 4bλ0λ2i < 0, which implies λ2
i ≤ λ0λ2i since a2 < 4b. Finally,

if i is even then q(x) is positive iff either Dq < 0 or Dq > 0 and if additionally
both roots of the quadratic polynomial λ2iz

2 + aλiz + bλ0 are negative. In the
first subcase one has λ2

i ≤ λ0λ2i as for i odd. In the second subcase we find that
the positive polynomial x2i − axi + b is transformed to the polynomial λ2ix

2i −
aλix

i + bλ0 which has some real roots. To check this notice that the roots of
λ2iz

2 − aλiz + bλ0 are opposite to those of λ2iz
2 + aλiz + bλ0 and are therefore

positive. Thus taking their i-th root one will get some positive roots as well. This
shows that the inequality λ2

i ≤ λ0λ2i is necessary for positivity-preservation. �

We will need the following class of sequences of real numbers (see [17, p.
127]). (The terminology does not seem to be satisfactory but we preserve it to
avoid further confusion.)

Definition 3.3. A sequence {λi}αi=0 is called positive if for any non-negative poly-
nomial p(x) = xn + an−1x

n−1 + · · ·+ a1x+ a0 ∈ Rα[x] one has λn + an−1λn−1 +
· · ·+ a1λ1 + a0λ0 ≥ 0, i.e., Tα(p)(1) ≥ 0.

In the infinite-dimensional case the following characterizations of the set of
diagonal positivity-preservers, i.e. λ-sequences is attributed to Iliev who in his turn
refers to [11, p. 453] in the very first lines of [6, §4.3]. Iliev’s statement is slightly
wrong as mentioned in [2], [3, Theorem 1.7] (see also §3.2 below). The correct
statement is as follows.

Theorem 3.4. Let {λk}∞k=0 be a sequence of real numbers, not all vanishing. Then
the following conditions are equivalent:
(1) The transformation T : R[x]→ R[x] generated by the sequence {λk}∞k=0 as in

formula (4) preserves the set of non-negative polynomials.
(2) {λk}∞k=0 is a positive sequence.
(3) For any non-negative integer k the quadratic form given by the Hankel matrix

(λi+j) =


λ0 λ1 . . . λk
λ1 λ2 . . . λk+1

...
...

. . .
...

λk λk+1 . . . λ2k


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is positive semidefinite. (Recall that we assume that any positive definite qua-
dratic form is also positive semidefinite by definition.)

(4) There exists a non-decreasing function µ(t) such that for all k = 0, 1, 2, . . . ,

λk =
∫ ∞
−∞

tk dµ(t).

Proof. The equivalences (2)⇔(3)⇔(4) are proved in [17, p. 129, Theorem 10 and
p. 133, Theorem 11] independently of condition (1) above. Since (1)⇒(2) is evident
we only have to concentrate on (2)⇒(1). Take a non-negative polynomial g(x) =
alx

l + · · ·+ a1x+ a0 and set

q(x) := T (g)(x) =
l∑
i=0

λiaix
i.

We want to show that q(x) ≥ 0 for all real x.
By (4), λi =

∫∞
−∞ ti dµ(t), where µ(t) is a non-decreasing function. Hence

q(x) =
l∑
i=0

(∫ ∞
−∞

ti dµ(t)
)
xi =

∫ ∞
−∞

l∑
i=0

ait
ixi dµ(t) =

∫ ∞
−∞

g(xt) dµ(t) ≥ 0

since g(xt) ≥ 0 for all t. Notice that the above integrals are convergent for any
fixed value of x. Thus q(x) ≥ 0 and the theorem follows. �

The set of all positive sequences is naturally divided into two subsets: positive
definite sequences and positive semidefinite sequences.

Definition 3.5. A sequence {λi}∞i=0 is called positive definite if for any non-negative
polynomial p(x) = xn+an−1x

n−1+· · ·+a1x+a0 ∈ R[x] which is not identically zero
one has λn+an−1λn−1+· · ·+a1λ1+a0λ0 > 0; and it is called positive semidefinite if
there exists a non-negative polynomial p(x) = xn+an−1x

n−1+· · ·+a1x+a0 ∈ R[x]
which is not identically zero and λn + an−1λn−1 + · · ·+ a1λ1 + a0λ0 = 0.

A nice characterization of these two subclasses is given in [17, p. 134, Theorem
12a].

Theorem 3.6. A sequence {λi}∞i=0 is positive definite (resp. semidefinite) if and
only if there exists a non-decreasing function µ(t) with infinitely many points of in-
crease (resp. with finitely many points of increase) such that for all k = 0, 1, 2, . . . ,

λk =
∫ ∞
−∞

tk dµ(t).

Remark 3.7. Notice that for a positive definite sequence every quadratic form given
in (3) of Theorem 3.4 is positive definite, which is equivalent to the positivity of
all principal minors of the corresponding Hankel matrix. In the case of a positive
semidefinite sequence the corresponding minors are non-negative but if one has
a Hankel matrix with all principal minors non-negative one cannot conclude that
the corresponding quadratic form is positive semidefinite (see [17, p. 136]).
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Remark 3.8. Notice that by Lemma 2.1 any non-trivial positive sequence {λi}∞i=0

has to have λ0 > 0 and then it is also a positivity preserver.

3.2. Known wrong results

L. Iliev claims at the beginning of §4.3 of [6] that the class of λ-sequences coincides
with the class of positive definite sequences, which is immediately disproved by
the sequence with all entries 1, i.e. by the identity operator.

To present some further erroneous results from [6] and the corresponding
counterexamples we need to introduce the following classes of diagonal transfor-
mations.

Definition 3.9. We say that Tα, α ∈ N∪∞, or equivalently, the sequence {λi}αi=0,
is a hyperbolicity-preserver if for any hyperbolic p(x) ∈ Rα[x] its image Tα(p)(x)
is hyperbolic. We denote this class of transformations by Hα or H and the class
of all λ-sequences by Λ.

Clearly, Hα is the restriction of the earlier defined class of hyperbolicity-
preservers to diagonal transformations.

Theorem 4.6.14 of [6] claims that T ∈ Λ if and only if T−1 ∈ H. We will now
show that this statement is wrong in both directions.

Proposition 3.10. There exist

(i) T ∈ Λ such that T−1 /∈ H;
(ii) T ∈ H such that T−1 /∈ Λ.

Proof. We give three concrete examples validating the above statements. To illus-
trate (i) consider the diagonal transformation T4 : R4[x] → R4[x] defined by the
sequence

(λ0, λ1, λ2, λ3, λ4) =
(

1
29
,

1
68
,

1
123

,
1

200
,

1
305

)
.

Similar to the proof of (2)⇒(1) in Theorem 3.4 it can be shown that the operator
T4 preserves positivity. However, one can check that its inverse sends the non-
negative polynomial (x+1)4 to the polynomial (x+1)(305x3 +495x2 +243x+29)
possessing two real and two complex roots.

This example shows that in the finite-dimensional case there is a diagonal
transformation which preserves positivity, but whose inverse does not preserve hy-
perbolicity. We can extend this example to the infinite-dimensional case as follows.

By [2, Proposition 3.5] there exists an infinite sequence {λi}∞i=0 ∈ Λ such
that the sequence of inverses {1/λi}∞i=1 is not in H. As an explicit example one
can take λi = 1/(i3 + 5i2 + 33i+ 29).

An example illustrating (ii) is given in [2, p. 520] (see also [3, Example 1.8]).
Namely, the sequence {1 + i + i2}∞i=0 corresponds to a diagonal transformation
preserving hyperbolicity. However, the sequence of inverses {1/(1 + i + i2)}∞i=0

leads to a diagonal transformation which is not a positivity-preserver. �
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Definition 3.11. We say that a diagonal transformation Tα, α ∈ N ∪ ∞, defined
by the sequence {λi}αi=0 is a complex zero decreasing sequence (CZDS for short) if
for any polynomial p(x) ∈ Rα[x] the polynomial T (p) has no more non-real roots
(counted with multiplicities) than p. We denote the set of all CZDS by R.

Remark 3.12. Obviously, any CZDS preserves hyperbolicity, i.e., R ⊂ H. For a
while it was believed that R = H until Craven and Csordas found a counterex-
ample [2]. Additionally, one can see directly from the definition that the inverse
of any positive CZDS is a λ-sequence, that is, a diagonal positivity-preserver.

Finally, Theorem 4.6.13 of [6] claims that T ∈ Λ if and only if T−1 ∈ R,
which we disprove below.

Proposition 3.13. There exist T ∈ Λ such that T−1 /∈ R.

Proof. Use the first two counterexamples from the proof of Proposition 3.10. �

4. Linear ordinary differential operators of finite order

Our aim in this section is to prove Theorem A, i.e., to show that there are no
positivity-, non-negativity-, and ellipticity-preservers which are linear differential
operators of finite positive order. In fact, we are going to show that for any linear
differential operator U of order k ≥ 1 there exists an integer n such that U :
Rn[x] → Rn[x] is not a non-negativity preserver. Moreover, we show that one
can always choose n = 2k. Since any positivity-preserver is automatically a non-
negativity-preserver and any ellipticity-preserver is a positivity-preserver up to a
sign change, we will get Theorem A in its complete generality from the above
statement.

Denote by Sym[s1, . . . , sk] the ring of symmetric polynomials with real coeffi-
cients in the variables s1, . . . , sk. Let σl be the l-th elementary symmetric function,
i.e.,

σl =
∑

j1<···<jl

sj1 · · · sjl ∈ Sym[s1, . . . , sk], l = 1, . . . , k.

We will need the following technical fact.

Proposition 4.1. Let p(x) = (x−x1)2 · · · (x−xk)2 ∈ R[x, x1, . . . , xk]. Consider the
following two families of rational functions:

wl = wl(x, x1, . . . , xk) =
p(l)(x)
p(x)

, l = 1, . . . , k;

ul = σl

(
1

x− x1
, . . . ,

1
x− xk

)
, l = 1, . . . , k. (6)

Then

• wl ∈ S
[

1
x− x1

, . . . ,
1

x− xk

]
, l = 1, . . . , k.
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• For any l = 1, . . . , k,

wl = 2l!ul + gl(u1, . . . , ul−1),

where gl ∈ R[y1, . . . , yl−1], l = 1, . . . , k, are certain polynomials (that can be found
explicitly but we will not need their explicit form; in particular, g1 ≡ 0).

Proof. Set p1(x) = (x− x1) · · · (x− xk). Then one can immediately check that

p
(i)
1 (x)
p1(x)

= i!ui

for all i = 1, . . . , k. Using the Leibniz rule we get

p(l)(x) = (p2
1(x))(l) = 2p(l)

1 (x)p1(x) +
∑

i,j≥1, i+j=l

ci,jp
(i)
1 (x)p(j)

1 (x),

where ci,j ≥ 0 are certain binomial coefficients. Thus

wl =
p(l)(x)
p(x)

= 2
p
(l)
1 (x)
p1(x)

+
∑

i,j≥1, i+j=l

ci,j
p
(i)
1 (x)
p1(x)

·p
(j)
1 (x)
p1(x)

= 2l!ul+
∑

i,j≥1, i+j=l

ci,juiuj .

The result follows. �

We are now ready to prove the first main result of this paper.

Theorem 4.2. Let UQ : R[x]→ R[x] be a linear ordinary differential operator of or-
der k ≥ 1 of the form (1) with polynomial coefficients Q = (q0(x), q1(x), . . . , qk(x)),
qi ∈ R[x], qk(x) 6≡ 0. Then UQ does not preserve the set of non-negative polyno-
mials of degree 2k.

Proof. We assume that UQ 6≡ 0. Suppose that UQ preserves non-negativity. Then
UQ(1) = q0(x) is a non-negative polynomial. Moreover, q0(x) does not vanish
identically by Lemma 2.1.

We will now construct a non-negative polynomial

p(x) := px1,...,xk
(x) = (x− x1)2(x− x2)2 · · · (x− xk)2 ∈ R[x, x1, . . . , xk]

whose image under UQ attains negative values. For this we define

R(x, x1, . . . , xk) =
UQ(p)(x)
p(x)

= q0(x)+q1(x)
p′(x)
p(x)

+q2(x)
p′′(x)
p(x)

+· · ·+qk(x)
p(k)(x)
p(x)

.

Then in the notation of Proposition 4.1 we have R(x, x1, . . . , xk) = q0(x) +
q1(x)w1 + · · · + qk(x)wk. Let us fix x0 ∈ R such that x0 6= 0 and for any
i = 0, 1, . . . , k either qi(x) ≡ 0 or qi(x0) 6= 0. Set αi = qi(x0), i = 1, . . . , k, and
r(x1, . . . , xk) = R(x0, x1, . . . , xk). Then r(x1, . . . , xk) is a linear form in w′1, . . . , w

′
k,

where w′i = wi(x0). Thus there exist a1, . . . , ak ∈ R such that q0(x0) +
∑k
i=1 αiai

< 0. (Notice that one has q0(x0) > 0 by our choice of x0.)
Let now b1, . . . , bk ∈ R be defined by

b1 = a1, bi =
1

2i!
(ai − gi(b1, . . . , bi−1)), i = 2, . . . , k, (7)
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where gi are defined in Proposition 4.1. Consider the system of equations

bi = σi

(
1

x0 − t1
, . . . ,

1
x0 − tk

)
, i = 1, . . . , k, (8)

with unknowns t1, . . . , tk. It follows from the Viète theorem that the k-tuple
(t1, . . . , tk) solves system (8) if and only if 1

x0−t1 , . . . ,
1

x0−tk are the roots of the
equation

zk − b1zk−1 + b2z
k−2 − · · · ± bk−1z ∓ bk = 0.

Note that since bi ∈ R the roots of the latter equation are either real or complex
conjugate. We can assume that they are so ordered that z1 = z2, . . . , z2i−1 =
z2i ∈ C, z2i+1, . . . , zk ∈ R. Thus the k-tuple (t1, . . . , tk), where ti = x0 − 1/zi, i =
1, . . . , k, solves system (8). Obviously, t1 = t2, . . . , t2i−1 = t2i ∈ C and t2i+1, . . . , tk
∈ R.

Let us substitute x = x0, xi = ti, i = 1, . . . , k, in the functions wl, l =
1, . . . , k, defined in Proposition 4.1. By the definition of the ui’s and using the fact
that the ti’s solve (8) we find that ui(x0, t1, . . . , tk) = bi, i = 1, . . . , k. Thus (7)
implies that

wi(x0, t1, . . . , tk) = ai, i = 1, . . . , k.
Hence R(x0, t1, . . . , tk) < 0 by the choice of the ai’s. Thus UQ(pt1,...,tk)(x0) < 0
since px1,...,xk

(x) ≥ 0 for all x ∈ R and all xi, i = 1, . . . , k. �

As we mentioned above, Theorem 4.2 together with the results of §2 implies
Theorem A.

We are now going to strengthen Theorem 4.2 by showing that wide subclasses
of linear ordinary differential operators of finite order k do not preserve non-
negativity even in degrees much smaller than 2k. In particular, the next statement
shows that no linear differential operator of odd order k preserves the set of non-
negative polynomials in Rk+1[x].

Proposition 4.3. Let UQ : R[x]→ R[x] be a linear differential operator of odd order
k ≥ 1 of the form (1) with polynomial coefficients Q = (q0(x), q1(x), . . . , qk(x)),
qi(x) ∈ R[x], i = 1, . . . , k, qk(x) 6≡ 0. Then UQ does not preserve the set of non-
negative polynomials of degree smaller than or equal to k + 1.

Proof. Consider the polynomial pt(x) = (x − t)k+1. It is non-negative since k is
odd. Note that

rQ(x, t) :=
UQ(pt)(x)
pt(x)

= q0(x) + (k + 1)q1(x)
1

x− t
+ · · ·+ (k + 1)!qk(x)

1
(x− t)k

and set u := 1
x−t . Then the function

g(x, u) := q0(x) + (k + 1)q1(x)u+ · · ·+ (k + 1)!qk(x)uk

is a polynomial in u. Fixing x0 such that qk(x0) 6= 0 we see that g(x0, u) is a
polynomial in u of odd degree. Hence there exists u0 such that g(x0, u0) < 0. Now
for t0 = x0−1/u0 we see that rQ(x0, t0) < 0. Thus UQ(pt0)(x0) < 0 since pt(x) ≥ 0
for all (x, t). �
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The next result shows that there is also a large class of linear differential
operators of even order k which does not preserve non-negativity in Rk[x].

Proposition 4.4. Let UQ : R[x] → R[x] be a linear differential operator of even
order k of the form (1) with polynomial coefficients Q = (q0(x), q1(x), . . . , qk(x)),
qi(x) ∈ R[x], i = 1, . . . , k, qk(x) 6≡ 0. Assume in addition that either there exists
x0 ∈ R such that qk(x0) < 0 or there exists x0 ∈ R such that qk(x0) = 0 and
qk−1(x0) 6= 0. Then UQ does not preserve the set of non-negative polynomials of
degree smaller than or equal to k.

Proof. The polynomial pt(x) = (x− t)k is non-negative since k is even. Similar to
the above one has

rQ(x, t) :=
UQ(pt)(x)
pt(x)

= q0(x) + kq1(x)
1

x− t
+ · · ·+ k!qk(x)

1
(x− t)k

.

As before we set u := 1
x−t and consider the function

g(x, u) := q0(x) + kq1(x)u+ · · ·+ k!qk(x)uk,

which is a polynomial in u. If there exists x0 such that qk(x0) < 0 then g(x0, u) is
a polynomial in u which is negative for sufficiently large values of u. If qk(x0) = 0
then g(x0, u) is a polynomial in u of odd degree. In both cases there exists u0

such that g(x0, u0) < 0. Now for t0 = x0 − 1/u0 we see that rQ(x0, t0) < 0. Thus
UQ(pt0)(x0) < 0 since pt(x) ≥ 0 for all (x, t). �

Corollary 4.5. Let UQ : R[x] → R[x] be a linear differential operator of order k
of the form (1) with polynomial coefficients Q = (q0(x), q1(x), . . . , qk(x)), qi(x) ∈
R[x], i = 1, . . . , k, qk(x) 6≡ 0. Assume that there exists an even integer i with
2 ≤ i ≤ k such that either there exists x0 ∈ R such that qi(x0) < 0 or there
exists x0 ∈ R such that qi(x0) = 0 and qi−1(x0) 6= 0. Then UQ does not preserve
non-negativity in Rl[x] for any l ≥ i.

Proof. If l ≥ i and UQ preserves non-negativity in Rl[x] then UQ preserves non-
negativity in Ri[x]. The restriction of UQ to Ri[x] is given by

q0(x) + q1(x)
d

dx
+ q2(x)

d2

dx2
+ · · ·+ qi(x)

di

dxi

and the result follows from Theorem 4.4. �

Remark 4.6. In particular, if i = 2 in Corollary 4.5 then there is no degree l, l 6= 0,
such that UQ : Rl[x]→ Rl[x] preserves non-negativity. Thus for a “generic” linear
differential operator UQ : R[x] → R[x] with non-constant coefficients there is no
l such that UQ preserves non-negativity in Rl[x]. However, the following example
shows that there are linear differential operators with non-constant coefficients
which do preserve positivity on Rk[x] for any even k.
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Example 4.7. Let k be an even positive integer and consider the linear differential
operator of order k given by

Ua,bk = 1 + (axk + b)
dk

dxk
: Rk[x]→ Rk[x].

Then Ua,bk preserves positivity on Rk[x] for any a, b ≥ 0.
Indeed, Ua,bk (p)(x) = p(x) + k!ak(axk + b) ≥ p(x) > 0 for any positive poly-

nomial p(x) = akx
k + · · · ∈ Rk[x].

5. Linear ordinary differential operators with constant coefficients

In this section we will prove Theorem B. Take a sequence α = (α0, α1, . . . , αk) of
real numbers. Denote by Uα the following linear differential operator of order k:

Uα = α0 + α1
d

dx
+ · · ·+ αk

dk

dxk
(9)

with constant coefficients.
By Theorem 4.2 there are no finite order linear differential operators on

R[x] preserving positivity. However, in the case of polynomials of bounded degree,
i.e., belonging to the finite-dimensional space Rk[x], there are such operators (see
Example 4.7).

Theorem B follows easily from a result of Remak [16] and Hurwitz [5] which
we present with its proof for the sake of completeness.

Theorem C. For an even integer k = 2l and a sequence of real numbers α =
(α0, α1, . . . , αk) consider the linear ordinary differential operator (9) with constant
coefficients. Then the operator Uα 6≡ 0 preserves non-negativity in Rk[x] if and
only if one of the following two equivalent conditions holds:

(1) For any non-negative polynomial p(x) = akx
k + · · ·+ a1x+ a0,

Uα(p)(0) = a0α0 + a1α1 + · · ·+ k!akαk ≥ 0;

(2) The (l + 1)× (l + 1) Hankel matrix
α0 1!α1 2!α2 . . . l!αl

1!α1 2!α2 3!α3 . . . (l + 1)!αl+1

2!α2 3!α3 4!α4 . . . (l + 2)!αl+2

...
...

...
. . .

...
l!αl (l + 1)!αl+1 (l + 2)!αl+2 . . . (2l)!α2l


represents a positive semidefinite quadratic form. (Recall again that unlike
positive definite and positive semidefinite sequences we assume by definition
that a positive definite quadratic form is also positive semidefinite.)

We start with the following observation.
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Lemma 5.1. The operator Uα : Rk[x]→ Rk[x] of the form (9) commutes with shifts
of the independent variable x. In other words, if p(x) ∈ Rk[x] and q(x) = Uα(p)(x),
then q(x− x0) = Uα(p)(x− x0) for any x0 ∈ R.

Proof. Take any p(x) = alx
l + · · ·+ a0, l ≤ k. Then for any positive integer i we

have

p(i)(x) = al
l!

(l − i)!
xl−i + · · ·+ aii!.

Thus (p(i))(x− x0) = (p(x− x0))(i). Since the coefficients of Uα are constant, the
result follows. �

Proof of Theorem C. The equivalence between conditions (1) and (2) is exactly the
equivalence between (2) and (3) in Theorem 3.4 for λ0 = α0, λi = i!αi, i = 1, . . . , k,
which is valid both in the finite-dimensional and infinite-dimensional cases. What
we need is to show that the assumption that Uα is a non-negativity-preserver in
Rk[x] is equivalent to (1). Indeed, if Uα preserves non-negativity in Rk[x], then
a0α0 + a1α1 + · · · + k!akαk = Uα(p)(0) ≥ 0 for any non-negative p(x) ∈ Rk[x].
Assume now that for any non-negative polynomial p(x) one has a0α0 + a1α1 +
· · · + k!akαk ≥ 0. Set q(x) := Uα(p)(x). By assumption q(0) ≥ 0 and we want
to show that q(x) is non-negative. For any x0 ∈ R consider gx0(x) := q(x + x0).
By Lemma 5.1 we know that gx0(x) = Uα(p)(x + x0). But f(x) := p(x + x0) is a
non-negative polynomial, so by condition (1) one has Uα(f)(0) ≥ 0, i.e.,

q(x0) = gx0(0) = Uα(f)(0) ≥ 0

for any x0 ∈ R. �

Remark 5.2. Theorem C provides the classification of linear differential operators
with constant coefficients of an even order k which preserve non-negativity in
Rk[x]. On the other hand, by Theorems A and 4.2 there are no linear differential
operators with constant coefficients of even order k that preserve positivity in
R2k[x]. Below we bridge this gap between k and 2k for operators with constant
coefficients by showing that there are no such operators of order k that preserve
positivity (or non-negativity, or ellipticity) in Rl[x] for any l > k.

Proposition 5.3. Let k be a positive integer and let α = (α0, α1, . . . , αk) be a
sequence of real numbers. Consider the operator Uα of the form (9). Then for any
l > k the operator Uα : Rl[x]→ Rl[x] does not preserve positivity.

Proof. We can assume that l is even. We can also assume α0 > 0 and at least one
more entry αj in the sequence (α0, α1, . . . , αk) is non-vanishing. (The cases when
either α0 ≤ 0 or only α0 is non-vanishing are trivial.) Take any (not necessarily
positive!) polynomial p(x) = akx

k + · · ·+ a1x+ a0 of degree at most k such that
a0 > 0 and Uα(p)(0) = a0α0 + a1α1 + · · · + k!akαk < 0. Since both α0 and αj
are non-vanishing such a p(x) always exists. Consider now P (x) = Mxl + p(x)
where M is a large positive constant. By our assumptions one can always choose
the constant M so that P (x) becomes positive. At the same time Uα(P )(0) =
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Uα(p)(0) < 0. The latter contradicts condition (1) of Theorem C, implying that
Uα does not preserve positivity in Rl[x]. �

Let us finally deduce Theorem B from Theorem C and Theorem 3.4.

Proof of Theorem B. Observe that for any positive even integer k the action of
the operator Uα of infinite order of the form (3) on the space Rk[x] coincides with
the action of its truncation (9). Moreover, by Lemma 2.1 any such Uα 6≡ 0 of the
form (3) preserves positivity if and only if it preserves non-negativity. Thus the
condition of the theorem is equivalent to (1) and (2). We are now going to prove
that (1) is equivalent to (3).

Condition (1) of Theorem C implies that the sequence {k!αk} is positive.
Therefore by condition (4) of Theorem 3.4 there exists a positive measure µα with
all moments finite such that for any k = 0, 1, 2, . . . one has k!αk =

∫∞
−∞ tk dµ(t),

i.e. k!αk is the k-th moment of µα. Let us show that for any polynomial p(x)
one has Uα(p)(x) = p(x) ? µα =

∫∞
−∞ p(t) dµα(t − x). Let us first check this

at the origin. If p(x) = akx
k + · · · + a1x + a0 then one immediately sees that

Uα(p)(0) =
∫∞
−∞ p(t) dµα(t) = α0a0 + α1a1 + 2!α2a2 + · · · + k!αkak. Further,

since Uα is translation invariant one finds for any real x0 that Uα(p)(x0) =
α0b0 +α1b1 +2!α2b2 + · · ·+k!αkbk where p(x) = b0 +b1(x−x0)+ · · ·+bk(x−x0)k.
At the same time,∫ ∞
−∞

p(t) dµα(t−x0) =
∫ ∞
−∞

p(t̄+x0) dµα(t̄) = α0b0 +α1b1 +2!α2b2 + · · ·+k!αkbk,

since the coefficients of the expansion of the polynomial p(t̄+ x0) with respect to
the variable t̄ are exactly b0, b1, . . . , bk. �

Similar considerations can be found in Ch. 7 of [7].

Remark 5.4. Let us explain why there exist positivity-preservers which are differen-
tial operators with constant coefficients and which are different from the inverses
of hyperbolicity-preservers given by (finite and infinite order) linear differential
operators with constant coefficients. Namely, Theorem 2 of [1] states that the in-
verse of such a hyperbolicity-preserver is either a shift operator ead/dx for some
real a or the convolution (over R) with a Pólya frequency density function. (For
Pólya frequency functions see e.g. Ch. 7 of [7].) It is well-known that any Pólya
frequency density function is unimodular. Therefore the convolution with any non-
unimodular positive and quickly decreasing kernel gives a required example.
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