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ELEMENTS OF PÓLYA-SCHUR THEORY
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(Communicated by Walter Van Assche)

Abstract. The Pólya-Schur theory describes the class of hyperbolicity pre-
servers, i.e., the class of linear operators acting on univariate polynomials and
preserving real-rootedness. We attempt to develop an analog of Pólya-Schur
theory in the setting of linear finite difference operators. We study the class of
linear finite difference operators preserving the set of real-rooted polynomials
whose mesh (i.e., the minimal distance between the roots) is at least one. In
particular, we prove a finite difference version of the classical Hermite-Poulain
theorem and several results about discrete multiplier sequences.

1. Introduction

The systematic study of linear operators acting on R[x] and sending real-rooted
polynomials to real-rooted polynomials was initiated in the 1870s by C. Hermite
and later continued by E. Laguerre. Its classical period culminated in 1914 with the
publication of the outstanding paper [20], where G. Pólya and I. Schur completely
characterized all such linear operators acting diagonally on the standard monomial
basis 1, x, x2, . . . of R[x]. This article generated a substantial amount of related
literature with contributions by N. Obreschkov, S. Karlin, B. Ya. Levin, G. Csordas,
T. Craven, A. Iserles, S. P. Nørsett, E. B. Saff, and, recently by the first author
together with the late J. Borcea.

Although several variations of the original set-up have been considered over the
years (including complex zero decreasing sequences, real-rooted polynomials on
finite intervals, stable polynomials, etc.), it seems that its natural finite difference
analog discussed below has so far escaped the attention of the specialists in the
area. An exception is [11, §§8.7–8.9].

Denote by HP ⊂ R[x] the set of all real-rooted (also referred to as hyperbolic)
polynomials. (We consider all constant polynomials to be real-rooted.) A linear
operator T : R[x] → R[x] is called a real-rootedness preserver or a hyperbolicity
preserver if it preserves HP. Given a real-rooted polynomial p(x) ∈ HP, denote
by mesh(p) its mesh, i.e., the minimal distance between its roots. If a real-rooted
p(x) has a multiple root, then mesh(p) := 0. Polynomials of degree at most 1
are defined to have mesh equal to +∞. Denote by HP≥α ⊂ HP the set of all
real-rooted polynomials whose mesh is at least α ≥ 0. Let HP+

≥α ⊂ HP≥α be the
subset of such polynomials with only non-negative zeros.
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4832 P. BRÄNDÉN, I. KRASIKOV, AND B. SHAPIRO

−1 1 2 3 4 5

−10

−5

5

10

Figure 1. Roots of Δ(p(x)) = p(x)−p(x−1) are the x-coordinates
of the intersection points between the graphs of p(x) and p(x− 1).

One of rather few known results about linear operators not decreasing the mesh
was due originally to M. Riesz and deserves to be better known; see e.g. Corollary
8.48 of [11] and [22].

Theorem 1. For any hyperbolic polynomial p and any real λ,

mesh(p− λp′) ≥ mesh(p).

(To be exact, as was pointed out by one of the anonymous referees, Theorem 1
is stated in [22] without a complete proof. In fact this result was rediscovered and
strengthened at least twice; see [24, 27, 28] and also [10].)

Recall that the well-known Hermite-Poulain theorem [17, p. 4] claims that a
finite order linear differential operator T = a0 + a1d/dx + · · · + akd

k/dxk with
constant coefficients is hyperbolicity preserving if and only if its symbol polynomial
QT (t) = a0 + a1t + · · · + akt

k is hyperbolic. Thus Theorem 1 combined with the
Hermite-Poulain theorem imply the following statement.

Corollary 1. A hyperbolicity preserving differential operator with constant coeffi-
cients does not decrease the mesh of hyperbolic polynomials.

In the remainder of the introduction we will formulate our main results whose
proofs are postponed until §§2-3.

Our first goal is to find an analog of Corollary 1 in the finite difference con-
text. We consider the action on C[x] of linear finite difference operators T with
polynomial coefficients; i.e., operators of the form

(1) T (p)(x) = q0(x)p(x) + q1(x)p(x− 1) + · · ·+ qk(x)p(x− k),

where q0(x), . . . , qk(x) are fixed complex- or real-valued polynomials. If qk(x) �≡ 0
we say that T has order k. Although no non-trivial T as in (1) preserves HP (see
Lemma 8 below), it can nevertheless preserve HP≥1. The simplest example of such
an operator is

Δ(p(x)) = p(x)− p(x− 1),

which is a discrete analog of d/dx; see Figure 1.

Definition 1. A linear finite difference operator (1) is called a discrete hyper-
bolicity preserver if it preserves HP≥1.

Obviously, the set of all discrete hyperbolicity preservers is a semigroup with
respect to composition.
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We start with a finite difference analog of Theorem 1. (A similar result was
proved by S. Fisk in [11, Lemma 8.27].)

Theorem 2. For positive real numbers α and λ, define an operator T by

T (p)(x) = p(x)− λp(x− α).

Then for any hyperbolic polynomial p ∈ HP≥α,

mesh(T (p)) ≥ mesh(p).

Moreover if λ ≥ 1, then T preserves the set HP+
≥α.

Theorem 2 settles Conjecture 2.19 from a recent paper [8]. Our next result is a
natural finite difference analog of the Hermite-Poulain theorem.

Theorem 3. A linear finite difference operator T with constant coefficients of the
form

(2) T (p(x)) = a0p(x) + a1p(x− 1) + · · ·+ akp(x− k)

is a discrete hyperbolicity preserver if and only if all zeros of its symbol polynomial
QT (t) := a0 + a1t+ · · ·+ akt

k are real and non-negative.

As we mentioned above, a famous class of hyperbolicity preservers is the class of
multiplier sequences introduced and studied by G. Pólya and I. Schur in [20]. Let
us recall this notion and introduce its finite difference analog.

Definition 2. Given a sequence A = {αi}∞i=0 of real numbers, we denote by TA
the linear operator

TA(x
i) = αix

i

acting diagonally with respect to the monomial basis of R[x]. We refer to TA as
the diagonal operator corresponding to the sequence A.

Notice that any diagonal operator T as above can also be written as a formal
linear differential operator of (in general) infinite order

T =
∞∑
i=0

aix
i di

dxi
.

The relation between the sequences A = {αi}∞i=0 and A = {ai}∞i=0 representing the
same diagonal operator T is of triangular form and given by

αi = a0 + ia1 + i(i− 1)a2 + · · ·+ i!ai, i = 0, 1, 2, . . . .

Definition 3. We call a sequence A = {αi}∞i=0 of real numbers a multiplier se-
quence if its diagonal operator TA preservesHP, i.e., sends an arbitrary hyperbolic
polynomial to a hyperbolic polynomial.

The main results of [20] are explicit criteria describing when a given sequence
A = {αi}∞i=0 represents a multiplier sequence.

Theorem 4. Let A = {αi}∞i=0 be a sequence of real numbers, let TA : R[x] → R[x]
be the corresponding linear operator, and define Φ(x) to be the formal power series

Φ(x) =
∞∑
k=0

αk

k!
xk.
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4834 P. BRÄNDÉN, I. KRASIKOV, AND B. SHAPIRO

The following assertions are equivalent:

(a) A is a multiplier sequence.
(b) The formal power series Φ(x) defines an entire function which is the limit,

uniformly on compacts, of polynomials with only real zeros of the same sign.
(c) The formal power series Φ(x) or Φ(−x) is an entire function which can be

written as

Φ(x) = Cxneax
∞∏
k=1

(1 + βkx),

where n ∈ N, C ∈ R and a, βk ≥ 0 for all k ∈ N, and
∑∞

k=0 βk < ∞.
(d) For all non-negative integers n, the polynomial T [(x − 1)n] is hyperbolic

with all zeros of the same sign.

Let us now describe a finite difference version of multiplier sequences. Natural
analogs of monomials in the finite difference setting are the (backwards) Pochham-
mer polynomials {[x]i}∞i=0 defined by

(3) [x]0 = 1, [x]i = x(x− 1) · · · (x− i+ 1), i ≥ 1.

Definition 4. A finite difference operator T as in (1) is called diagonal if it acts
diagonally with respect to the Pochhammer basis {[x]i}∞i=0.

Analogously to the above case of the usual diagonal operators we can associate
to any sequence A = {αi}∞i=0 of real numbers the corresponding diagonal finite
difference operator TA (in general, of infinite order) by assigning

(4) TA([x]i) = αi[x]i, i = 0, 1, 2, . . . .

Observe that a finite difference analog xΔ of the Euler operator x d
dx given by

xΔ = x(p(x)− p(x− 1))

acts diagonally in this basis, namely, xΔ([x]i) = i[x]i. Moreover any diagonal finite
difference operator T (of finite or infinite order) can be represented as a formal
series

T =
∞∑
i=0

ai[x]iΔ
i.

Definition 5. We say that a sequence A = {αi}∞i=0 is a discrete multiplier
sequence if the corresponding diagonal operator TA given by (4) preserves HP+

≥1.
In this case TA itself is called a discrete multiplier operator.

Our next result is as follows.

Theorem 5. An operator U given by

U(p(x)) = αp(x) + βxΔ(p(x)) = αp(x) + βx(p(x)− p(x− 1))

is a discrete multiplier operator if α and β are real numbers of the same sign.

Remark 1. Observe that, in general, the above operator U is not mesh-increasing.
Therefore, Theorem 5 is not a complete analog of Theorem 2. A simple example of
this phenomenon is U(p(x)) = p(x)+ (3/4)x(p(x)− p(x− 1)), i.e., α = 1, β = 3/4.
When p(x) = (x− 1)(x− 4)(x− 7), then U(p(x)) has three positive roots which are
approximately equal to 0.433167, 3.12467, 6.36524 and its mesh is smaller than 3.

Proposition 6. If A = {αi}∞i=0 is a discrete multiplier sequence, then it is a
multiplier sequence in the classical sense.
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Remark 2. Notice that the converse to Proposition 6 fails since the ordinary mul-
tiplier sequence {ρi}∞i=0, where 0 < ρ < 1, is not a a discrete multiplier sequence
(see Proposition 12).

Denote by L−P+ the positive subclass in the Laguerre-Pólya class; i.e., real entire
functions which are the uniform limits, on compact subsets of the complex plane,
of polynomials with only real non–positive zeros.

Corollary 2. If φ(x) ∈ L−P+, then the sequence {φ(i)}∞i=0 is a discrete multiplier
sequence.

Remark 3. Corollary 2 may be seen as a discrete version of Laguerre’s theorem
stating that if φ(x) is a function in the Laguerre-Pólya class and φ(x) has no positive
zero, then the sequence {φ(k)}∞k=0 is a multiplier sequence (and even a complex zero
decreasing sequence); see e.g., [7], Theorem 4.1. However Corollary 2 cannot be
extended to a complete analog of Laguerre’s theorem since if φ(x) = e−x, then the
sequence {φ(k)}∞k=0 is not a discrete multiplier sequence by Remark 2 above.

A sequence A = {αi}∞i=0 is said to be trivial if αi �= 0 for at most two indices i.
Trivial discrete multiplier sequences are simple to describe.

Proposition 7. A trivial sequence A = {αi}∞i=0 is a discrete multiplier sequence
if and only if there is an integer m ≥ 0 such that αmαm+1 ≥ 0 and αi = 0 unless
i ∈ {m,m+ 1}.

We conjecture the following tantalizing characterization of non-trivial discrete
multiplier sequences, which would be a discrete analog of the classical result of
Pólya and Schur [20].

Conjecture 1. Let A = {αi}∞i=0 be a non-trivial sequence such that αi > 0 for some
i. Then it is a discrete multiplier sequence if and only if it is a weakly increasing
multiplier sequence, that is, 0 ≤ α1 ≤ α2 ≤ · · · .

Below we almost prove one direction of Conjecture 1. Namely we show that any
discrete multiplier sequence with infinitely many non-zero entries and at least one
positive entry is weakly increasing; see Proposition 12.

2. Discrete Hermite-Poulain theorem

The following lemma emphasizes the distinction between ordinary and discrete
hyperbolicity preservers.

Lemma 8. A finite difference operator T given by (1) is hyperbolicity preserving
in the classical sense if and only if qi(x) �≡ 0 for at most one i, and this qi(x) is
hyperbolic.

Proof. If T satisfies the conditions of Lemma 8, then T is trivially a hyperbolicity
preserver.

To prove the converse, consider the bivariate symbol

GT (x, y) = T (e−xy) =

k∑
j=0

qj(x)e
−(x−j)y = e−xy

k∑
j=0

qj(x)e
jy.

Note that the image of T is infinite dimensional in R[x]. Hence, if T is a hyperbol-
icity preserver, then by [1, Theorem 5], GT (x, y) or GT (x,−y) is the uniform limit
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on compact subsets of C of bivariate polynomials that are non-vanishing whenever
Im x > 0 and Im y > 0. It follows that, for each x0 ∈ R, the function

k∑
j=0

qj(x0)e
±(x0−j)y

is in the Laguerre–Pólya class. However this is the case only if qj(x0) �= 0 for at
most one j as follows: if qj(x0) �= 0 for at least two values of j, then the polynomial∑k

j=0 qj(x0)z
j has a non-zero root of the form z = ey for some y ∈ C. But then the

numbers ey+2πim for m ∈ Z are also roots, and hence the function does not belong
to the Laguerre-Pólya class, a contradiction. �

Before we present a proof of Theorem 2, we need to recall some notation and
well-known results about hyperbolic polynomials. Let γ1 ≤ γ2 ≤ · · · ≤ γn and
δ1 ≤ δ2 ≤ · · · ≤ δm be the zeros of two hyperbolic polynomials p and q. These
zeros interlace if either γ1 ≤ δ1 ≤ γ2 ≤ δ2 ≤ · · · or δ1 ≤ γ1 ≤ δ2 ≤ γ2 ≤ · · · . A pair
of hyperbolic polynomials (p, q) are in proper position, written p 
 q, if their zeros
interlace and W [p, q](x) = p(x)q′(x)− p′(x)q(x) ≥ 0 for all x ∈ R. Note that if the
zeros of two hyperbolic polynomials p and q interlace, then either p 
 q or q 
 p.
By convention we set 0 
 p and p 
 0 for any hyperbolic polynomial p, and p 
 q
whenever p and q have degree at most one and W [p, q](x) ≥ 0 for all x ∈ R. Recall
that the Hermite–Biehler theorem asserts that p 
 q if and only if either p ≡ q ≡ 0
or the polynomial q+ ip, where i =

√
−1, has no zero with positive imaginary part;

see e.g. [21, Theorem 6.3.4].

Lemma 9.
(a) Let p be a hyperbolic polynomial. Then the sets

{q ∈ R[x] : q 
 p} and {q ∈ R[x] : p 
 q}
are convex cones.

(b) If p 
 q, then p 
 q + αp and p+ αq 
 q for all α ∈ R.

Proof. Part (a) is [2, Lemma 2.6]. Part (b) follows from (a) by noting that p 
 αp
and αq 
 q for all real α. �

Proof of Theorem 2. Set T (p)(x) = p(x)− λp(x− α), where α, λ ≥ 0. We want to
prove that, for all β ≥ α, operator T maps HP≥β to itself. First we show it for
β = α. Note that p ∈ HP≥α if and only if p(x) 
 p(x− α). Lemma 9 (b) implies

T (p)(x) 
 p(x) and T (p)(x) 
 p(x− α),

which implies T (p) ∈ HP≥α.
Next we prove that if p, q ∈ HP≥α satisfy p 
 q, then T (p) 
 T (q). This

will prove Theorem 2, since if p ∈ HP≥β ⊆ HP≥α, then p(x) 
 p(x − β). Thus
T (p)(x) 
 T (p)(x − β), which is equivalent to T (p) ∈ HP≥β. We claim that we
may assume that p and q have the same degree. Indeed if p 
 q and deg q > deg p,
then p + εq 
 q for all real ε, by Lemma 9. The claim follows from Hurwitz’
theorem on the continuity of zeros [21, Theorem 1.3.8] by letting ε → 0, since then
T (p) + εT (q) 
 T (q) and thus T (p) + εT (q) 
 T (q). We may also assume that
p and q are monic, since if p(x) 
 q(x) and a and b are the leading coefficients
of p and q, respectively, then either a−1p(x) 
 b−1q(x) or b−1q(x) 
 a−1p(x),
depending on the sign of ab.
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PÓLYA-SCHUR THEORY IN FINITE DIFFERENCE SETTING 4837

To prove that T preserves proper position, we claim that it is enough to show
that

(5) T ((x− a)r) 
 T ((x− b)r) whenever a ≤ b and r ∈ HP≥α.

Proof of the claim. If f and g are hyperbolic polynomials such that f = (x − a)r
and g = (x − b)r, where a ≤ b and r ∈ HP≥α, we write f � g. Now suppose
p, q ∈ HP≥α are monic polynomials that have the same degree and satisfy p 
 q.
Let α1 < · · · < αn and β1 < · · · < βn be the zeros of p and q, respectively. For
0 ≤ k ≤ n, set

pk(x) = (x− β1)(x− β2) · · · (x− βk)(x− αk+1)(x− αk+2) · · · (x− αn),

where p0 = p and pn = q. For 0 ≤ k ≤ n− 1, set

qk(x) = (x− α2)(x− α3) · · · (x− αk+1)(x− βk+1)(x− βk+2) · · · (x− βn),

where q0 = q. By construction,

p = p0 � p1 � · · · � pn = q = q0 � q1 � · · · � qn−1 and p � qn−1.

Hence if (5) is true, then

T (p) 
 T (p1) 
 · · · 
 T (q) 
 T (q1) 
 · · · 
 T (qn−1) and T (p) 
 T (qn−1),

which implies T (p) 
 T (q), by e.g. [25, Prop. 3.3]. This proves the claim.

It remains to prove (5). Since T ((x− b)r) = T ((x− a)r)− (b− a)T (r), it is, by
Lemma 9 (a) and invariance under translation, enough to prove that T (r) 
 T (xr)
for all r ∈ HP≥α. Now

T (xr) = (x− α)T (r) + αr.

Since T (r) 
 r and T (r) 
 (x − α)T (r), Lemma 9 (b) implies that T (r) 

(x− α)T (r) + αr, as desired.

Finally suppose p ∈ HP+
≥α and λ ≥ 1. Write p(x) = A

∏n
i=1(x − θi), where

θi ≥ 0 for all i. Then for y ≥ 0,

p(−y)

p(−y − 1)
=

n∏
i=1

y + θi
y + θi + 1

< 1 ≤ λ.

Hence T (p)(−y) �= 0, which proves that T preserves HP+
≥α. �

Proof of Theorem 3. Theorem 2 implies that if the symbol polynomial QT (t) =
a0 + a1t+ · · ·+ akt

k has only real and non-negative zeros, then the finite difference
operator T (p(x)) = a0p(x)+a1p(x−1)+ · · ·+akp(x−k) is a discrete hyperbolicity
preserver. We need to prove the necessity of the latter condition. Consider the
action of T on the Pochhammer polynomial [x]i. Assuming that i ≥ k, we get

T ([x]i) = (x− k) · · · (x− i+ 1)Ri(x),

where Ri(x) is a hyperbolic polynomial of degree k. Observe that

(6) lim
i→∞

Ri(ix)

ik
= xkQT

(
x− 1

x

)
,

where QT (t) is the above symbol polynomial. Hence if T is a discrete hyperbolicity
preserver, then QT (t) is hyperbolic. We need to show that its zeros are non-
negative. Suppose that QT (y) = 0 for y < 0. The assumption y = (x − 1)/x
implies 0 < x < 1. By (6) and Hurwitz’ theorem on the continuity of zeros it
follows that there are real numbers 0 < a < b < 1 and an integer i0 such that
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Ri(ix) has a zero in the interval (a, b) whenever i > i0. Hence Ri(x) has a zero in
(ia, ib) for all i > i0. If we choose i > i0 large enough so that (ia, ib) ⊂ (k, i), we
see that the mesh of T ([x]i) = (x− k) · · · (x− i+1)Ri(x) is strictly smaller than 1,
which contradicts our assumption. Hence all zeros of QT (t) are non-negative. �

3. Discrete multiplier sequences

Proof of Theorem 5. It suffices to consider the operator

Wλ(p) = p(x) + λxΔ(p(x)) = p(x) + λx (p(x)− p(x− 1)) .

In other words, we need to show that for each λ ≥ 0,

Wλ : HP+
≥1 → HP+

≥1,

i.e., Wλ is a discrete multiplier operator. Take p ∈ HP+
≥1. As in the proof of

Theorem 2, we observe that

p(x)− p(x− 1) 
 p(x) and p(x)− p(x− 1) 
 p(x− 1).

Since the degree of p(x) − p(x − 1) is one less than that of p(x) and since all the
zeros of p(x)− p(x− 1) are non-negative (they interlace those of p),

λx(p(x)− p(x− 1)) 
 p(x) and λx(p(x)− p(x− 1)) 
 p(x− 1).

Since p(x) 
 p(x) and p(x) 
 p(x− 1), Lemma 9 (a) implies

Wλ(p)(x) 
 p(x) and Wλ(p)(x) 
 p(x− 1),

which in turn implies Wλ(p) ∈ HP≥1. Since

HP+
≥1 
 x(p(x)− p(x− 1)) 
 p(x) ∈ HP+

≥1,

these polynomials have the same sign for negative real numbers which implies
Wλ(p) ∈ HP+

≥1. �

The next result is due to F. Brenti [3]. We provide a proof here for completeness.

Lemma 10. Let T : R[x] → R[x] be defined by

T (xi) = [x]i.

If all the zeros of the polynomial p(x) are real and non-negative, then T (p) ∈ HP+
≥1.

Proof. We prove Lemma 10 by induction on n, the degree of p. The cases n = 0
and 1 are trivial. We assume that p(x) is a polynomial of degree n + 1 ≥ 2 and
write

p(x) = (x− α)q(x) = (x− α)

n∑
i=0

γix
i,

where α ≥ 0. By induction we know that Q(x) = T (q) ∈ HP+
≥1. An elementary

manipulation shows that

T (p) = xQ(x− 1)− αQ(x).

Since Q(x) ∈ HP+
≥1,

xQ(x− 1) 
 −Q(x);−αQ(x) 
 −Q(x);

−xQ(x− 1) 
 −Q(x− 1);−αQ(x) 
 −Q(x− 1).
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Thus by Lemma 9 (a),

T (p) 
 −Q(x) and T (p) 
 −Q(x− 1),

which proves T (p) ∈ HP+
≥1. �

Proof of Proposition 6. Suppose that all zeros of a test polynomial p(x) = γ0 +
γ1x+ · · ·+ γnx

n are real and non-negative. By Lemma 10,

n∑
i=0

γiρ
i[x]i ∈ HP+

≥1,

for all ρ > 0. But then
∑n

i=0 γiρ
iαi[x]i ∈ HP+

≥1 and thus
∑n

i=0 γiρ
iαi[x/ρ]i ∈

HP+
≥ρ for all ρ > 0. Letting ρ → 0, we see that

∑n
i=0 γiαix

i ∈ HP+
≥0, and hence

{αi}∞i=0 is an ordinary multiplier sequence by Theorem 4, since we can choose
p(x) = (x− 1)n. �

Proof of Corollary 2. Theorem 5 claims that the sequence {1+λi}∞i=0 is a discrete
multiplier sequence for each λ ≥ 0. Since the set of all discrete multiplier sequences
is a semigroup under composition, all hyperbolic polynomials with negative zeros
give rise to discrete multiplier sequences via p �→ {p(i)}∞i=0. The set L−P+ is the
closure of such polynomials, from which Corollary 2 follows. �

Lemma 11. Suppose p(x) =
∑n

i=0 ai[x]i ∈ HP+
≥1 with an > 0. Then (−1)n−iai ≥

0 for all 0 ≤ i ≤ n.

Proof. Since p(x) has n non-negative zeros and p(x) > 0 for x > 0 large enough, we
have (−1)np(0) = (−1)na0 ≥ 0. As in the proof of Theorem 5, we see that∇(p) 
 p
and ∇(p) ∈ HP+

≥1. Here ∇p(x) = p(x+1)−p(x) is the forward difference operator.
Now

∇(p) =
n−1∑
i=0

(i+ 1)ai+1[x]i,

and Lemma 11 follows by iterating the argument for i = 0. (Observe that ∇p(x) =
Δp(x+ 1).) �

An immediate consequence of Lemma 11 is:

Corollary 3. All non-zero entries of a discrete multiplier sequence have the same
sign.

Next we give the proof of the characterization of trivial discrete multiplier se-
quences.

Proof of Proposition 7. Suppose A = {αi}∞i=0 is a trivial discrete multiplier se-
quence. Then, by Corollary 3, we may assume that all entries are non-negative.
The “only if” direction now follows from the well-known fact that all non-negative
and trivial multiplier sequences are of the desired form.

Assume that A satisfies the conditions in the statement of Proposition 7 with
αmαm+1 ≥ 0. Take p(x) =

∑n
i=0 ai[x]i, and let T be the diagonal finite difference

operator associated to A = {αi}∞i=0. Then

T (p)(x) = αmam[x]m + αm+1am+1[x]m+1 = −a[x]m + b[x]m+1,
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where ab ≥ 0 by Lemma 11. If b = 0 we are done, so assume b > 0. Then

T (p)(x) = b[x]m(x−m− b/a) ∈ HP+
≥1,

as desired. �

Proposition 12. Let A = {αi}∞i=0 be a discrete multiplier sequence. If αm+2 > 0
for some m ≥ 0, then αm ≤ αm+1.

Proof. Take a ≥ 0, and consider

T
(
[x]m(x−m− a)(x− 1−m− a)

)
= [x]m

(
αm+2(x−m)(x−m− 1)− 2aαm+1(x−m) + αma(a+ 1)

)
.

Given A,B,C ≥ 0, a polynomial Ax(x − 1) − 2Bx + C is in HP+
≥1 if and only if

AC ≤ B2 +AB, which yields

0 ≤ a(α2
m+1 − αmαm+2) + αm+2(αm+1 − αm), for all a ≥ 0.

In particular αm+1 ≥ αm. �

Finally, let us present more examples of discrete multiplier sequences.

Example 1. For any non-negative i, the operator [x]iΔ
i is a discrete multiplier

operator, i.e. {(n)i}∞n=0 is a discrete multiplier sequence. It follows from the fact
that if p ∈ HP+

≥1, then Δp(x) 
 p(x − 1), and therefore all zeros of Δp are in

[1,∞).

Example 2. For any non-negative i and any polynomial q with all roots in (−∞, i],
the sequence {p(i)}∞i=0, where

p(x) = [x]iq(x),

is a discrete multiplier sequence.

4. Final remarks

The Hermite-Poulain theorem has the following analog in finite degrees.

Proposition 13. A differential operator T = a0+a1d/dx+· · ·+akd
k/dxk, ak �= 0,

with constant coefficients preserves the set of hyperbolic polynomial of degree at most
m if and only if the polynomial T (xm) is hyperbolic.

Proposition 13 follows immediately from the algebraic characterization of hyper-
bolicity preservers; see Theorem 2 of [1].

In the finite difference setting the monomials {xm} should be substituted by
the Pochhammer polynomials {[x]m}. In particular, Proposition 13 might have the
following conjectural analog in the finite difference setting.

Conjecture 2. A difference operator T (p(x)) = a0p(x)+a1p(x−1)+· · ·+akp(x−k)
with constant coefficients preserves the set of hyperbolic polynomial of degree at most
m whose mesh is at least one if and only if the polynomial T ([x]m) is hyperbolic
and has mesh at least one.

We shall now see that there is an alternative formulation of Conjecture 2 which
is perhaps more attractive. Let ∇p(x) = p(x+ 1)− p(x) be the forward difference
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operator, and consider the following product on the space of polynomials of degree
at most d:

(p • q)(x) =
d∑

k=0

(∇kp)(0) · (∇d−kq)(x).

We claim that Conjecture 2 is equivalent to

Conjecture 3. If p and q are hyperbolic polynomials of degree at most d and of
mesh ≥ 1, then so is p • q.

Indeed, we may equivalently consider “forward” difference operators of the form

T (p(x)) = a0p(x) + a1p(x+ 1) + · · ·+ akp(x+ k),

which in turn may be written as

T =
∞∑
j=0

bj∇j ,

for some real numbers b0, b1, . . ., where we allow infinite sequences (since ∇jf ≡ 0
if the degree of f is smaller than j). Recall that if f is a polynomial of degree d,
then

f(x) =
d∑

j=0

(∇jf)(0)

j!
[x]j .

Let

p(x) := T ([x]m) =
m∑
j=0

bj [m]j [x]m−j .

Then bj = (∇m−jp)(0)/m!, and thus

T (q) =
∞∑
j=0

bj∇j(q) =
1

m!

m∑
j=0

(∇m−jp)(0) · (∇jq) =
(p • q)
m!

.

This proves the equivalence of Conjectures 2 and 3.
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[2] J. Borcea and P. Brändén, Multivariate Pólya-Schur classification problems in the Weyl
algebra, Proc. Lond. Math. Soc. (3) 101 (2010), no. 1, 73–104, DOI 10.1112/plms/pdp049.
MR2661242

[3] Francesco Brenti, Unimodal, log-concave and Pólya frequency sequences in combinatorics,
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PÓLYA-SCHUR THEORY IN FINITE DIFFERENCE SETTING 4843

[27] Peter Walker, Separation of the zeros of polynomials, Amer. Math. Monthly 100 (1993),
no. 3, 272–273, DOI 10.2307/2324460. MR1212834

[28] Peter Walker, Bounds for the separation of real zeros of polynomials, J. Austral. Math. Soc.
Ser. A 59 (1995), no. 3, 330–342. MR1355224

Department of Mathematics, Royal Institute of Technology, SE-100 44 Stockholm,

Sweden

E-mail address: pbranden@kth.se

Department of Mathematical Sciences, Brunel University, Uxbridge UB8 3PH,

United Kingdom

E-mail address: mastiik@brunel.ac.uk

Department of Mathematics, Stockholm University, S-10691, Stockholm, Sweden

E-mail address: shapiro@math.su.se

http://www.ams.org/mathscinet-getitem?mr=1212834
http://www.ams.org/mathscinet-getitem?mr=1355224

	1. Introduction
	2. Discrete Hermite-Poulain theorem
	3. Discrete multiplier sequences
	4. Final remarks
	Acknowledments
	References

