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Abstract The purpose of this note is to recall the theory of the (homogenized) spectral
problem for Schrödinger equation with a polynomial potential and its relation with
quadratic differentials. We derive from results of this theory that the accumulation
rays of the eigenvalues of the latter problem are in 1 − 1-correspondence with the
short geodesics of the singular planar metrics induced by the corresponding quadratic
differential. We prove that for a polynomial potential of degree d, the number of such
accumulation rays can be any positive integer between (d − 1) and

(d
2

)
.

Keywords Spectral asymptotics · Quadratic differentials · Singular planar metric ·
Geodesics
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1 Introduction

This paper is motivated by a recent progress in the study of the spectral discriminant,
[1,5,6]. We start by explaining some important results scattered through [7,9] §6 in
ch. III of [8] and [20].

Consider a differential equation of the form

− y′′ + P(z)y = 0 (1.1)

where P(z) = a0zd + a1zd−1 +· · ·+ ad , a0 �= 0 is an arbitrary complex polynomial
potential of degree d. Setting φ0 = arg a0, we define (open) Stokes sectors S j , j =
0, . . . , d + 1 of (1.1) as given by the condition:.

B. Shapiro (B)
Department of Mathematics, Stockholm University, 106 91 Stockholm, Sweden
e-mail: shapiro@math.su.se

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s13324-014-0092-y&domain=pdf


172 B. Shapiro

S j =
{
z :

∣
∣∣∣arg z − φ0

d
− 2π j

d + 2

∣
∣∣∣ <

π

d + 2

}
.

Observe that S j , j = 0, . . . , d + 1 are cyclicly ordered on C, i.e. Sd+1 is neighboring
to Sd+2 and S0. Notice that for an arbitrary P(z), the definition of its Stokes sectors
depends only on φ0 since the multiplication of P(z) by a positive number preserves
the set of the Stokes sectors.

It is well-known, see [13,19], that for each open sector S j there exists a unique up
to a scalar factor non-trivial solution Y j of (1.1) which is exponentially decreasing
along any ray within this sector. Such Y j is called subdominant in S j . It is convenient
to think of Y j ’s as points on CP

1 where the latter space is the projectivization of the
linear space of solutions of (1.1). For a generic P(z), all its Y j , j = 0, . . . , d + 1
are distinct. Moreover, all conditions defining the set of all possible configurations of
subdominant solutions considered as degree d + 2 divisors on CP1 were described by
Nevanlinna [16]. These restrictions are as follows:

(i) this divisor has at least three geometrically distinct points;
(ii) the multiplicity of each point of this divisor does not exceed

[ d+2
2

]
.

The above restrictions have a strong and so far unexplained resemblance with the
notion of stability in the geometric invariant theory, see e.g. [15].

An important object of study is the following complex analytic hypersurface (and
its restrictions to different linear subspaces).

Definition 1 The (extended) spectral discriminant Spcd ⊂ Cd is the set of all
potentials P(z) of degree d such that (1.1) possesses a solution subdominant in (at
least) two different Stokes sectors. Here Cd � C

∗ × C
d stands for the set of all

coefficients (a0, a1, ldots, ad), a0 �= 0.

For any fixed ã0, the restriction of Spcd to the subspace (̃a0,Cd) where C
d is

spanned by coordinates (a1, . . . ad) is given by an entire function of the latter coor-
dinates. A description of the behavior of the spectrum when ã0 → 0 can be found
in [6]. The group of affine coordinate transformations acts on the space of potentials
preserving Spcd . The space Cd also carries the obvious free action of C∗ by multipli-
cation of an arbitrary polynomial of degree d by a non-vanishing complex number.
This action however does not preserve Spcd .

The main goal of this paper is to present some results about the restriction of
Spcd onto the orbits of the latter action. In other words, we consider the following
(homogenized) spectral problem.

Problem 1 For a given polynomial P(z) of degree d, find the set of all non-vanishing
λ ∈ C

∗ for which the equation

− y′′ + λ2P(z)y = 0, (1.2)

has a solution subdominant in at least two distinct Stokes sectors.

This problem was consider in the writings of M. Fedoryuk (some of them joint)
with M. Evgrafov as well as by Y. Sibuya, F. W. J. Olver and even in the PhD thesis of
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G. D. Birkhoff from 1914 [3]. The spectrum of this problem is always discrete. The
main results about the latter problem are:

(*) the description of the condition determining the accumulation rays of the spec-
trum, see Theorem 6.2, [9];

(**) the description of the asymptotic density of the eigenvalues along such an accu-
mulation ray, see Theorem 6.3, [9].

Topresent these results in details,weneed to recall the notionof theStokes graph and
of the Stokes complexes of equation (1.1), see [7,22] (Belowwe follow the terminology
of M. Fedoryuk which apparently is not quite standard).

Notation. Each root of P(z) is called a turning point of (1.1). A Stokes line of (1.1)
is a containing at most two turning points maximal under inclusion smooth segment
of the real analytic curve solving the equation:

Re ξz0(z) = 0 where ξz0(z) =
∫ z

z0

√
P(u)du, (1.3)

with respect to the variable z, z0 being a turning point of (1.1) (A Stokes line can be
either bounded or unbounded in C).

The Stokes graph ST P of Eq. (1.1) is the union of all its Stokes lines. Connected
components ofST P will be referred to asStokes complexes and connected components
of C\ST P will be called admissible domains.

One can distinguish between two natural types of admissible domains. Namely, we
say that an admissible domain is of the half-plane type if the function ξ(z) maps it
either to Re ξ(z) > a or to Re ξ(z) < a for some real a. Analogously, we say that an
admissible domain is of the strip type if the function ξ(z) maps it to a < Re ξ(z) < b
for some real a < b. For polynomial potentials P(z), all admissible domains belong
to one of these two types (which is no longer true for entire or rational potentials).

A Stokes complex is called simple if it contains exactly one turning point and non-
simple otherwise. Note that the existence of a non-simple Stokes complex in the Stokes
graph of P(z) is equivalent to the existence of a Stokes line connecting two turning
points. Such Stokes lines will be called short.

In Fig. 1, the Stokes graph of z2 + 1 + I (left picture) consists of two simple
Stokes complexes. The narrow region in the middle is the strip type domain. The
remaining four connected components are of the half-plane type. The Stokes graph of
z2 −1 (central picture) is a non-simple Stokes complex. It contains a short Stokes line

Fig. 1 Stokes graphs for potentials z2 + 1 + I , z2 − 1, and z6 − 1 resp
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174 B. Shapiro

between its turning points ±1. Finally, the Stokes graph of z6 − 1 consists of three
nonsimple Stokes complexes since each of them contains a short Stokes line. This
potential is not Fedoryuk-generic, see the next definition.

Given a polynomial P(z), consider the family Pt (z) = e2t
√−1P(z), t ∈ [0, π).

Let us briefly discuss how the Stokes graph changes in this family. Theorem 6.1 of [9]
claims that, for any P(z) with at least two distinct roots, there exist only finitely many
values of t for which Pt (z) has a non-simple Stokes complex. We call a polynomial
P(z) Fedoryuk-generic if it satisfies the following three conditions:

(a) all its roots are simple;
(b) all non-simple complexes arising in the family Pt (z) contain exactly two turning

points;
(c) for any value of t , the Stokes graph of Pt (z) has either none or exactly one non-

simple Stokes complex.

A slight generalization and reformulation of Theorem 6.2 of [9] adjusted to our
context reads as follows.Given aFedoryuk-generic potential P(z),denote by t1, . . . , tk
the values of the parameter t ∈ [0, π) forwhich theStokes graphof Pt (z)has (a unique)
non-simple Stokes complex.

Proposition 1 In the above notation, for any ε > 0, all eigenvalues of problem (1.2)
except finitely many lie in the ε-neighborhood of the union of k rays with the slopes
tan t1, . . . , tan tk . Moreover, near each such ray (called the accumulation ray of (1.2))
lie countably many such eigenvalues.

Generalizing Theorem 6.3 of [9], we can describe the asymptotic density of the
eigenvalues. In the notation of Proposition 1, let t j be one the values of the parameter
t ∈ [0, π) for which the Stokes graph of Pt (z) has (a unique) non-simple Stokes
complex. Fixing a sufficiently small ε > 0, let λ( j)

1 , λ
( j)
2 , . . . λ

( j)
n , . . . be the sequence

of the eigenvalues of (1.2) non-strictly ordered by their absolute values and lying
ε-close to the j th ray. By definition, the j th ray has the slope tan t j .

Proposition 2 When |λ| → ∞, then

λ
( j)
n

∫

C

√
P(ξ)dξ ∼ 2πn + π +

∞∑

i=1

1
(
λ

( j)
n

)i

∫

C
αi (ξ)dξ. (1.4)

Here C is a simple closed curve containing the corresponding short Stokes line and
no other turning points in its interior. The sequence {αi (z)}∞i=0 of functions is defined
by:

α0(z) = − p′(z)
4p(z)

, αi (z) = −
(∑i−1

m=0 αm(z)αi−m−1(z) + α′
i−1(z)

)

2
√
p(z)

, j =1, 2, . . . .

(1.5)

Let us now reformulate the above statements in terms of quadratic differentials.
Basic references for quadratic differentials are [21] and [14].
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Definition 2 A meromorphic quadratic differential � on a (compact) Riemann sur-
face 	 is a meromorphic section of the square (T ∗

C
	)⊗2 of the holomorphic cotangent

bundle T ∗
C
	. The zeros and poles of � are called its critical points. The set of all

critical points of � on 	 is denoted by Crit� .

An equivalent down-to-earth definition of a quadratic differential � on 	 is as
follows, see Def. 4.1. in [21]. If the conformal structure on the Riemann surface 	 is
given by the family {(Uν, hν)}, then a meromorphic quadratic differential � on 	 is
a system of meromorphic function elements φν in the local parameter zν = hν(p) for
which the transformation law

φν(zν)dz
2
ν = φμ(zμ)dz2μ, dzμ = dzμ

dzν
dzν

holdswhenever zμ and zν are parameter values corresponding to the same point p ∈ 	.

Definition 3 Given a meromorphic quadratic differential � on 	 we define two dis-
tinct foliations on 	\Crit� as follows. At each non-critical point there are exactly
two directions at which � attains positive and negative values respectively. Integral
curves of these direction fields are called horizontal and vertical trajectories of �

respectively.

Obviously, these direction fields are orthogonal at each non-critical point. In what
follows by a trajectory we mean a horizontal trajectory.

Definition 4 (comp. Definition 20.1 in [21]) A trajectory of � is called critical if it
starts or ends at a critical point.

Definition 5 The canonical length element on 	 associated with a quadratic differ-
ential � given locally as � = f (z)(dz)2 is defined by

|dw| = | f (z)| 12 |dz|.

(Local) minimizers of the latter length element are called geodesics of the quadratic
differential �. Geodesics whose both endpoints are critical points are called short.

Definition 6 The distinguished or canonical parameter associated with a quadratic
differential � = f (z)(dz)2 is defined as

W =
∫ √

f (z)dz

for some branch of the square root.

Notice that geodesics are (locally) straight lines in the canonical parameter and
short Stokes lines in the family Pt (z) connecting the turning points are exactly the
short geodesics of the quadratic differential P(z)dz2. Thus, the following result holds.
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Corollary 1 For aFedoryuk-generic polynomial P(z), the accumulation rays of prob-
lem (1.2) are in 1 − 1-correspondence with short geodesics of P(z)dz2.

The main result of this note is as follows.

Theorem 1 For any polynomial P(z) of degree d, the number of short geodesics of
the quadratic differential P(z)dz2 can be an arbitrary integer between d − 1 and

(d
2

)
.

Remark When a preliminary version of the present paper was posted on arXiv, the
author was informed that Theorem 1 was formulated earlier in the physics literature,
see §5.1 of [17], and proven there on the physics level of rigorousness. But, in my
opinion, the connection of this result to the spectral theory of the Schrödinger equation
is very important and it motivates the present publication.

2 Proofs

Definition 7 Let � be a quadratic differential on CP1. A �-polygon is a simple
closed curve consisting of a finite number of (possibly critical) geodesics of finite
length.

Given a �-polygon 	 with an interior domain D, assume that z j are the critical
points on � having orders n j and that ξi are the critical points inside D having orders
ni . Finally, denote by θ j , 0 ≤ θ j ≤ 2π the interior angles at the vertices of 	. The
following result can be found in e.g. Theorem 14.1 of [21].

Theorem 2 (Teichmüller’s lemma) In the above notation,

∑

j

(
1 − (n j + 2)θ j

2π

)
= 2 +

∑

i

ni . (2.1)

Consider now a quadratic differential � = P(z)dz2 on CP1 where P(z) is a
polynomial of degree d.Wewant to count the total number of unbroken short geodesics
connecting pairs of roots of P(z) (By ‘an unbroken’ short geodesic we mean a short
geodesic not passing through other roots of P(z) except its two endpoints).

Lemma 1 For any given pair of roots of P(z), there exists at most one unbroken short
geodesic connecting them.

Proof Follows straightforwardly from Teichmüller’s lemma. Indeed, if there were
two such short geodesics then they will form a �-polygon 	 splitting CP1 into two
connected domains. Let D be the “bounded domain”, i.e. D is the component of
CP1\	 not containing ∞ ∈ CP1. By assumption there are exactly two critical points
on 	 and so the left-hand side of (2.1) is smaller than two, whereas the right-hand side
is clearly at least two, a contradiction. ��

This lemma immediately implies the inequalities in Theorem 1. Namely,

Corollary 2 A arbitrary quadratic differential � = P(z)dz2, deg P(z) = d has at
least d − 1 and at most

(d
2

)
unbroken short geodesics.
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Proof The upper bound
(d
2

)
is provided by the latter lemma. Moreover, it is clear that

the set formed by all short unbroken geodesics is compact and connected. Indeed,
any two roots of P(z) are connected by at least one geodesic (broken or unbroken).
Assuming that all d roots of P(z) are distinct, one needs at least d − 1 unbroken short
geodesics to guarantee that this set is connected. The latter situation can be realized
for instance by taking P(z) with all real and distinct roots. ��

Let us now show that there exist polynomials P(z) having an arbitrary number of
unbroken short geodesics between d−1 and

(d
2

)
. We will use the known interpretation

of a quadratic differential P(z)dz2 in terms of pairs of weighted chord diagrams on
d + 2 vertices, see § 4 of [2]. Here P(z) is a monic polynomial of degree d with the
vanishing sum of its roots.

Indeed, given� = P(z)dz2 as above, take its Stokes graphST P and its anti-Stokes
graph AST P . (The anti-Stokes graph of P(z)dz2 is, by definition, the Stokes graph
of −P(z)dz2.) Unbounded Stokes lines of ST P tend at ∞ ∈ CP

1 to d + 2 standard
directions called the Stokes rays. Analogously unbounded anti-Stokes lines ofAST P

tend at ∞ ∈ CP
1 to d + 2 standard directions called the anti-Stokes rays. The set of

all Stokes and anti-Stokes rays can be naturally considered as the sets of vertices of
two regular (d + 2)-gons which are rotated w.r.t. each other by the angle π

d+2 .
Recall that admissible domains, i.e. connected components of CP1\ST P (resp.

CP1\AST P ), are of two types: the half-plane type and the strip type. Function ξ(z)
defined by (1.3) maps the half-plane type components into half-planes and the strip
type components to strips. ForCP1\ST P these image half-planes and image strips are
bounded by the vertical lines and forCP1\AST P they are bounded by the horizontal
lines.

Each strip type domain is topologically an infinite strip bounded by two curves.
Moreover, the two pairs of ends of its boundary approach two distinct and non-
neighboring Stokes rays. Thus, one can interprete a strip type domain as a path con-
necting two vertices of the Stokes (d + 2)-gon and represent it by a corresponding
chord (i.e. side or diagonal connecting these two vertices) in the Stokes (d + 2)-gon.
Analogously, strip type domains for the anti-Stokes graph connect pairs of vertices of
the anti-Stokes (d + 2)-gon.

Moreover, we can assign to each strip type domain a positive weight coinciding
by definition with the width of its image under the map ξ(z). These weights are the
absolute values of the real and imaginary parts of the integrals

∫ √
P(t)dt taken over

certain paths connecting pairs of roots of P(z). They are closely related to the periods
of y2 = P(z).

For a generic polynomial P(z), the number of its strip-type domains for ST P and
AST P equals d − 1 which means that one gets weighted triangulations of both the
Stokes and anti-Stokes polygons. In other words, one obtains a pair of weighted chord
diagrams of the Stokes and anti-Stokes (d + 2)-gons. The following statement can be
found in §4 of [2].

Proposition 3 The above procedure gives a 1− 1-correspondence between the set of
all quadratic differentials of the form P(z)dz2 with P(z) = zd +a1zd−2 +· · ·+ad−1
and the set of ordered pairs of weighted chord diagrams.
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178 B. Shapiro

Fig. 2 A chopped strip and the
same strip with its short
geodesics

To find quadratic differentials P(z)dz2 with a given number k of short geodesics
satisfying the inequality d − 1 ≤ k ≤ (d

2

)
, it suffices to use only a special class of

quadratic differentials.

Definition 8 A quadratic differential P(z)dz2, deg P(z) = d is called very flat if (a)
all roots of P(z) are simple; (b) the number of its horizontal strip-type domains equals
d − 1; (c) each root of P(z) lies in the closure of at most two strip-type domains.

Notice that condition c) above is equivalent to the property that each domain
obtained by removing a chord from either of the two chord diagram of the differ-
ential has at most two neighboring domains.

To each very flat quadratic differential we can naturally associate the following
object whose versions earlier appeared in e.g. [19], p. 269.

Definition 9 A chopped vertical strip is a set of complex numbers z1, z2, . . . ., zd
(called nodes) with distinct real and imaginary parts ordered by their real parts together
with vertical rays going either up or down from each z j , j = 2, . . . , d −1, see Fig. 2.
These rays are called cuts of the strip.

The map associating to a very flat quadratic differential its chopped vertical strip
is actually the same map ξ(z) introduced earlier whose domain is restricted to
CP1\⋃d+2

j=1 Oj each Oj being the closed half-plane type domain. (It is usually con-
venient to assign the base point of integration in the definition of ξ(z) to the inverse
image of z1 which implies z1 = 0).

Lemma 2 For any chopped strip there exists a (non-unique) very flat quadratic dif-
ferential P(z)dz2 mapped by its ξ(z) to this strip. Its short geodesics are in 1 − 1-
correspondence with the straight segments connecting pairs of vertices of the strip
and not intersecting its cuts.
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Proof Just throw away all half-plane domains and use ξ(z). ��

The following statement finishes the proof of Theorem 1.

Proposition 4 There exist chopped strips with d − 2 cuts and an arbitrary number k
of unbroken short geodesics satisfying the inequality d − 1 ≤ k ≤ (d

2

)
.

Proof We will use induction on d. Assume that for d − 1 one can realize any number
k′ of short geodesics satisfying d − 2 ≤ k′ ≤ (d−1

2

)
. Then it is easy to construct

chopped strips with d nodes having exactly k′ + 1 short geodesics. Indeed, given a
chopped strip with d − 1 nodes and k′ short geodesics, one can easily place the last
node to the right of all other nodes in such a way that all straight segments from the
previous nodes to the new one will intersect the cuts except the one from the (d − 1)st
node which always exists. Thus, we get a chopped strip with d nodes and k′ + 1 short
geodesics.

Therefore, by induction assumption, for d nodes we only need to realize k short
geodesics where

(d−1
2

)+2 ≤ k ≤ (d
2

)
. Let us first realize themaximal number k = (d

2

)
.

To do this assume that the d nodes form the set of vertices of a convex d-gon. Direct
the cut from each node (except the leftmost and the rightmost which lie on the outer
boundary of the chopped strip) so that they do not intersect the latter d-gon. Then,
obviously each side and each diagonal of the d-gon will be a short geodesic giving
totally

(d
2

)
such.

To realize the intermediate number of short geodesics between
(d−1

2

) + 2 and
(d
2

) − 1, consider in the latter convex d-gon the second node from the left. Without
loss of generality, one can assume that it lies above the leftmost node and, therefore,
its cut is directed upwards. The leftmost node in the convex polygon is connected with
all remaining nodes by short geodesics which are the sides and the diagonals of the
d-gon starting at this node. Moving the second node down together with its cut and
keeping the rest of the nodes intact, we can obtain a non-convex d-gon in which an
arbitrary number of diagonals from the leftmost node are forbidden which is exactly
what we need. ��

3 Final remarks

1. The next question is motivated by Theorem 2 of [18] which gives necessary
and sufficient conditions for the usual spectral problem for the Schrödinger equation
with a polynomial potential to have infinitely many real eigenvalues (or, similarly,
eigenvalues lying on a given accumulation ray). This result claims that (under some
simple appropriate assumptions) in order to have infinitely many real eigenvalues, it is
necessary and sufficient that there exists a point z0 ∈ C such that potential P(z − z0)
is PT-symmetric, see details in [18]. All tools used in the latter paper for the standard
spectral problem have their natural counterparts for problem (1.2).

Problem 2 Give necessary and sufficient conditions guaranteeing that spectral prob-
lem (1.2) has infinitely many eigenvalues which belong to some accumulation ray.
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2. Obviously, not every polynomial P(z) gives rise to a very flat differential
P(z)dz2, but in many cases one can obtain a very flat differential by multiplying
P(z) by a constant.

Problem 3 Is it true that for any polynomial P(z) there exists t ∈ [0, 2π) such that
the differential et

√−1P(z)dz2 is very flat?

3. The number of unbroken short geodesics is a interesting invariant of a quadratic
differential P(z)dz2.

Problem 4 Study the decomposition of the space of all monic polynomials of a given
degree according to the number of unbroken short geodesics of their quadratic differ-
entials?

4. It seems important to generalize Evgrafov–Fedoryuk’s theory from the case of
polynomial potentials to the case of rational potentials. In particular, the following
analog of the main problem considered in the present paper looks very tantalizing.

Problem 5 Consider the set of all rational diffentials of the form R(z)dz2 where
R(z) = P(z)

Q(z) with deg Q(z) = n > 0, deg P(z) = n + d, d > 0 and such that all its
turning points are either simple zeros or poles (The pole at infinity is not supposed to
be simple). Find the sharp lower and upper bounds for the number of short trajectories
for such differentials.

Acknowledgments I am grateful to Professors Y. Baryshnikov, A. Zorich and my former Ph.D. student
T. Holst for discussions around this topic. I want to thank the anonymous referee for constructive criticism
which helped to improve the quality of the exposition.
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