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ABsTRACT. In this short note we extend the results of Lyashko, Looijenga, and
Arnold on the number of nonequivalent rational functions on the sphere with 1 or
2 poles and simple finite branching points to several other cases. In particular, we
calculate the number of meromorphic functions on the torus with the same properties.

0. INTRODUCTION

Let M be a Riemann surface of genus g, S? be a Riemann sphere with a fixed
infinity, f: M — S? be a meromorphic function of degree n with [ poles of orders
ny =Mng = -+ =Ny, 22:1 n; = n. Such a function is said to be primitive if all its
finite critical values are pairwise distinct and in a neighborhood of each critical point
with a finite critical value it is equivalent to a quadratic function. Two primitive
functions f and f’ are said to be equivalent if there exists a homeomorphism 7 of
M such that f’ = fon. We are interested in finding the number ug of pairwise
nonequivalent primitive meromorphic functions, where v is the partition of n defined
by the orders of the poles.

Our problem can be considered as a particular case of a more general problem,
which belongs to Hurwitz [H] and consists in counting all nonequivalent ramified
coverings of a Riemann surface NV by another Riemann surface M having a given set
of ramification orders. Reference [M1] contains a solution to the Hurwitz problem;
however, the expression for the number of coverings presented there is extremely
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difficult to use. It involves complicated multiple sums and products, and substantial
efforts are needed to derive more suitable formulas even for simplest particular cases
[M2].

On the other hand, several particular cases of the Hurwitz problem were studied
recently in the conformal field theory [CT, D, GT]. Some of the results obtained
there are apparently new, while the others are just rediscoveries of classic formulas.
What is most surprising, is the simplicity of the answers obtained in the case g = 0.
Reformulating the main theorem of [GJ] one gets the following nice multiplicative
formula for the number of primitive rational functions on the sphere:
the number 1% of nonequivalent primitive rational functions of degree n on the
sphere with | poles of orders ny,...,n; is equal to
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ny n;

il il 1
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pd =nt"3(n +1-2)!

where p1,...,pq are the cardinalities of the groups of pairwise equal numbers among
n;’s.

A possible reason for such a simple multiplicative form of the answer was ex-
plained by Arnold in [A2]. He started from the observation that in the simplest case
of polynomials on S? the number in question (that is, p,(()n)) coincides, up to factor
n, with the multiplicity of the Lyashko—Looijenga map [A1, L], which assigns to a
polynomial of degree n + 1 an unordered collection of its critical values. This map
turns out to be quasihomogeneous in appropriate coordinates in the source and the
target and has an isolated singularity at the origin; thus, its multiplicity is obtained
easily (in a multiplicative form!) from the Bezout theorem. Similar ideas, though
in a far more complicated situation, were used in [A2] to get a nice multiplicative
formula for the number u((]n_ o.k) of nonequivalent meromorphic functions from 52

to S2 with two poles of given orders.

Arnold then exploits the connection between meromorphic functions and edge—
ordered graphs to derive certain purely combinatorial statements about such graphs.
The simplest result of this kind is a famous Cayley theorem on the number of la-
beled trees, which corresponds to the case of polynomials on S2. In this note we
go in the opposite direction, and find pd in several particular cases starting from
a purely combinatorial setting. Some of the answers below are no longer multi-
plicative, and apparently there is no way to obtain them via a properly constructed
quasihomogeneous map. However, those which are multiplicative deserve special
attention, and though we failed to extend the Arnold’s construction to these cases,
we are almost sure that such a construction should exist.

The problem, along with several conjectures concerning the values of g for cer-
tain g and v, was communicated to the authors by V. Arnold in summer, 1995.
Later we had several stimulating discussions with him on various aspects of the
problem. We cannot overestimate the role of T. Ekedahl, who explained to us the
essence of the classic approach, and taught us several useful facts in the represen-
tation theory of the symmetric group. We are also grateful to S. Natanzon, who
pointed out the references [M1, M2].

1. EDGE-ORDERED GRAPHS

Let G = (V, FE) be a multigraph without loops, |V| = n, |E| = m. To each edge
e € E we assign a mapping m.: V — V that transposes the ends of e. Assume
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now that the edges of G are ordered (say, labeled by the numbers 1,...,m). We
then define a mapping mg: V — V as the product of the transpositions 7. in
the increasing order of labels. To represent mg as an element of the symmetric
group Sj,, one have to choose a numbering of the elements of V. Evidently, all the
permutations obtained in such a way for different numberings of the same graph
belong to the same conjugacy class, and thus have the same cycle type. This cycle
type is said to be the cycle type of the edge-ordered multigraph G. In the same
way we define the cycle partition of G. Finally, if v = (ny,...,n;) - n is the cycle
partition of an edge—ordered multigraph G, then the number of its parts [ is said
to be the cycle length of G.

Connected edge-ordered multigraphs arise naturally in the study of meromorphic
functions on Riemann surfaces. The following statement is a reformulation of the
main result of §2 in [A2].

Theorem 1. Let M be a Riemann surface of genus g, v = (ni,na,...,n;) be a
partition of n. Then the number of pairwise nonequivalent primitive meromorphic
functions on M of degree n with [ poles of orders ni,ne,...,n; s equal to the

number of connected edge—ordered multigraphs with n vertices, n+ 2g +1 — 2 edges,
and cycle partition v.

Theorem 1 provides a reduction of our initial problem to a purely combinatorial
one: find the number of connected edge-ordered multigraphs with n vertices, m
edges, and cycle partition v. and a given cycle partition. In what follows we denote
this number by N.(n,m,v).

General edge—ordered multigraphs (not necessarily connected) possess a natural
interpretation in the representation theory of the symmetric group. To formulate
the corresponding statement, we recall some standard notation. Let p,0 = n be
partitions of n. By f? we denote the multiplicity of the irreducible representation
of S, labeled by p, by C, the conjugacy class of .S,, with cycle partition o, and by

? the value of the character of the irreducible representation labeled by p on the
class C.

Theorem 2. The number N(n,m,v) of edge—ordered multigraphs with n vertices,
m edges, and cycle partition v is given by the following expression:

(1) N(n,m,v) =

s S () = )"

pkn

where h(p) =Y (i — 1)p; and p’ is the partition conjugate to p.

Proof. Let Z denote the center of the group algebra of the symmetric group. It is
well known that 7, as an algebra, is generated by the conjugacy classes of S,, (or,
more exactly, by the sums of all the elements of a conjugacy class). Therefore, for
each z € Z one can define §(z) as the coefficient of the unity in the decomposition
of z in a weighted sum of conjugacy classes. The following proposition is an easy
consequence of the above definitions.

Proposition 3. The number N(n,m,v) satisfies the following relation:

(2) N(n,m,v) = %5(2/312«,,),



4 B. SHAPIRO, M. SHAPIRO, AND A. VAINSHTEIN

where z9 1s a transposition and z, belongs to the conjugacy class C,,.

To evaluate the right hand side of (2) we use several results in the representation
theory of the symmetric group. As follows from the main theorem of this theory,

Q 5(2) = - S (2),

pkn

where 1f is the central character of the irreducible representation labeled by .
Observe that central characters are multiplicative; thus from (2) and (3) one gets

@ Nin,m,v) = ﬁ S ()2 (WP (Ca)) ™,

pkEn

where (5 stands for the conjugacy class of transpositions. Recall now that central
characters satisfy the relation ffyf = |C,|x%, and in particular,

2)X’(C2)
wp(c2) = (2) fp :
By a Frobenius theorem ([Ma, p.64]), the right hand side of the last expression
equals h(p’) — h(p). Substituting this into (4) and taking into account the above
relation for central characters, one gets (1). O

The four numeric parameters of an edge—ordered multigraph, namely, the number
of edges, number of vertices, number of connected components, and cycle length, are
not independent. Relation between these parameters are described by the following
statement.

Theorem 4. Let G be an edge—ordered multigraph with n vertices, m edges, and c
connected components, then its cycle length | can assume an arbitrary value satis-
fying the following conditions:

(5) ¢ <l <min{n,m —n+ 2¢c},
(6) [ =m—mn mod 2.

Proof. First of all, let us introduce some notation. Let us denote by IIg(u) the
orbit of a vertex u under iterations of 7g, that is, llg(u) = {v: 7&(u) = v, k € Z}.

We prove the theorem by induction on the number of edges in G. For an empty
graph, one has ¢ = n, m = 0, and thus the only value of [ satisfying (5) and (6) is
n, which is indeed assumed, since mg in this case is the identity.

Suppose now that the statement of the theorem holds for all multigraphs G with
m edges, and we add a new edge (u,v) labeled by m + 1 to obtain a multigraph G’.
We than have the following three possibilities:

1) w and v lie in distinct connected components of G;

2) w and v lie in the same connected component of G, and Ilg(u) # Hg(v);

3) v and v lie in the same connected component of G, and Ilg(u) = g (v).

In the first case, one gets from the definitions ¢’ = ¢—1 and m’ = m+1. Besides,
it is easy to see that I/ (u) = Mg/ (v) = Hg(u) UTlg(v), and thus I’ =1 —1. We
therefore see that conditions (5) and (6) for the numbers ¢/, m’, and I’ are yielded by
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the same conditions for the numbers ¢, r, and [, which are satisfied by the inductive
hypothesis. Moreover, any [’ satisfying these conditions can be obtained in such a
way from the corresponding [, and thus can be realized as the cycle length of an
edge-labeled multigraph with m + 1 edges.

In the second and the third cases, one has ¢/ = ¢ and m’ = m + 1. Besides,
in the second case again Ilg/(u) = g (v) = lg(u) Ullg(v), and thus I' =1 —1,
while in the third case, to the contrary, llg(u) = Hg(v) = g/ (u) U g (v), and
thus I’ = [ 4+ 1. Assume first that ¢ < [ < n. In this case there exists a connected
component of G that contains at least two orbits, and there exists an orbit that
contains at least two vertices. Hence, both cases 2) and 3) can be realized, and
we can thus obtain any [’ satisfying conditions (5) and (6) with ¢/ and m’. The
remaining cases [ = ¢ and | = n do not add anything new. Indeed, if c = < n, then
each connected component is an orbit, and there exists an orbit with at least two
vertices. Thus, only case 3) is possible, and we get I’ = ¢/ +1 < min{n, m’'—n+2¢'}.
If ¢ < I = n, the each orbit contains only one vertex, and there exists a connected
component containing at least two orbits. Thus, only case 2) is possible, and we
get ¢ <n—1=1" Finally, if c =1 = n, then G is an empty graph, and thus both
cases 2) and 3) are impossible. [

2. ENUMERATION

A typical expression one encounters while trying to evaluate the right hand side
of (1) is

m

RS (1) mp

m=0
where p,t € N, a € R. Let us introduce the generating function

oo

P
E(tv Oz;.T) = O-(tvp7a)_|'
p!
p=0
Then the following proposition holds.
Proposition 5.
(7) N(t, ;) = e (1 — e )L,

Proof. Indeed, one has

S(t, 0 1) = i i <;>(_1)mw _ i: <;>(_1)m6m(a—m)

p=0 m=0

O

It is easy to see that X(¢, a;x) has a zero of order t at the origin. Thus, intro-
ducing coefficients Af (a) by

00 1_ et t

ZAZ(a)ajq:eam <7e ) )
T

q=0
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we can rewrite (7) as
(8) o(t,p,a) = plA,_(a).

Now we are ready to start computing N.(n,m,v) for several simple cases. The
simplest situation occurs when [ = 1 and v = (n), which corresponds to primitive
meromorphic functions with one pole. In this case the permutation mg is a cycle,
and thus graph G is forced to be connected. Thus, N.(n,m, (n)) = N(n,m, (n)).
As an immediate consequence of Theorem 4 we get N(n,n + 2g,(n)) = 0 for g =
0,1,...; so we are now interested only in N(n,n+2g—1,(n)), g =0,1,..., which,
by Theorem 1, are just u?n).

Theorem 6. The number of pairwise nonequivalent primitive meromorphic func-
tions of degree n > 3 with one pole on a Riemann surface of genus g is equal
to

n+2g—2 (TL + 29 - 1)' n

g _
Hipy =1 ! 2g°

where 65, = Agg_l("T_l) satisfy
00 . n—1
n 29 _ sinhx/2
(9) > op,a (T 7 :

Proof. 1t follows from the Murnaghan—Nakayama rule (see e.g. [Ma, p.64]) that an)
vanishes if p is not a hook. For the hook p,, with the leg of length m, 0 < m < n—1,
one gets easily

n—1

o = (—1)m, fpm:< - ) hp),) = (”;m), h(pm) = (”g“).

Besides, |C,)| = (n — 1)!. Thus, Theorems 1 and 2 imply the following formula:

An equivalent statement was actually proved in [J] by similar representation— the-
oretic methods as above (see also [G] for a direct combinatorial proof). However,
both [J] and [G] do not mention the interpretation of the right-hand side of the
above formula in terms of meromorphic functions.

The statement of the Theorem follows immediately from the above formula and
Proposition 5. [

Theorem 6 yields very simple expressions for the number of nonequivalent primi-
tive meromorphic functions with one pole for surfaces of small genus. In particular,
for g =0, 1, 2 we get the following
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Corollary 7. Let n > 3, then

p,((]n) =n"3, (Lyashko—Looijenga)
T n"(n? —1)

Pn) = 24 ’

2= n"*t2(n? —1)(n+3)(n +2)(5n — 7)
(n) — :

5760

Let us now consider the case when the cycle length of g equals 2, which cor-
responds to primitive meromorphic functions having two poles. Let v = (n — r,r),
r < n/2. From Theorem 4 we immediately get N.(n,n+2g—1,v) =0,9=0,1,....
For the case of an odd cyclomatic number one gets the following result.

Proposition 8. Letv=(n—r,r),0<r <n—r. Then
N(n,n+2g,v) = Ne(n,n +2g,v)+

g+1 n+ 2
E ( g >N(r,r+23—1,(7"))N(n—r,n—1"+2g—2s+1,(n—7")).
—\r+ 25 —1

In the case r = n —r the sum in the right hand side of the above expression should

- 1
be taken over s varying from 0 to L%J

Proof. Indeed, by Theorem 4, G is either connected, or contains exactly two con-
nected components. In the latter case one of the components has r vertices, and
the other one has n — r vertices, and the cycle length of each component is exactly
one. Moreover, the difference between the numbers of edges and vertices in each
component is even by (6), which gives the desired result. O

Taking into account Theorems 1 and 6, we get the following

Theorem 9. The number of pairwise nonequivalent primitive meromorphic func-
tions of degree n > 3 with two poles of orders n —r and r on a Riemann surface of
genus g is equal to

2g)!
(10) Mg—r,r = N(n,n+2g,(n—r,r)) — (n) MT’"_2(” e,

r n!
g+1 r 2s
n—r
ZO (n—r) £S52g—|—2—257 0<7“<n—7“,
Ss=

where (%k are defined by (9). In the case r = n — r the sum in the right hand side
of the above expression should be taken over s varying from 0 to L"THJ

The formula for 4, ., given in Theorem 9 is still very complicated. However,
when the genus of the surface M is small, it is possible to simplify it substantially.
For the case of the sphere (¢ = 0) we get the following result.

Corollary 10 (see also [A2]). The number of pairwise nonequivalent primitive
meromorphic functions of degree n > 3 with two poles of orders n —r and r on the
sphere is equal to

0 n\r'(n—r)""
Mg = (r)#’ 0O<r<n-r,

0 _ 2r\ r2r—1
N’r,r r 4 *
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Proof. Let 0 < r <n —r. Then from (10) we get

W, = N(n,n, (n—rr)) — <"> P2 — ) (53—’“ + ( 4 >255>.

r n—r

Since 65 = =L by (9), we have just to find N(n,n, (n —r,r)). To do that, we use
(1) and apply the Murnaghan—Nakayama rule, as in the proof of Theorem 6. It
turns out that in this case the character x# vanishes on all diagrams p that cannot
be expressed as a union of at most two hooks. As a result of lengthy calculations
we get an expression for N(n,n,(n — r,r)) as a linear combinations of the sums
o(t,p,a) for « = (n —7)/2, (n —5)/2, (n—1)/2, (n+ 1)/2. We than apply
Proposition 5 to get the desired formula. U

Remark. Corollary 10 follows also from the result of Goulden and Jackson men-
tioned in the introduction.

Observe that an expression for the total number of connected edge-ordered
graphs on n vertices and n edges, that is, for Zf:_ll N.(n,n,(n —r,7)), was ob-
tained earlier in [AFPR]. Comparing the two results we get the following identity.

Corollary 11.

For the case of the torus, the calculations become more involved. Using a similar
technique as above, we get the following partial results.
cycle the same

Proposition 12. The number of pairwise nonequivalent primitive meromorphic
functions of degree n on the torus with two poles of orders n —r and r is equal to

2
M?ll—r,r = (n N ) (TL - T)n—rrrpr (TL),

r+1
where
3
n
P = —
1(n) = 73
n—1)(n%2—-3n+14
Pyf) = =D =D,
n—2Yn?—4n+9
Py = (020 )
meromorphic two poles of
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