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Abstract
We announce an error in the proof of Theorem 8 of Constr. Approx. 48(2) (2019)
191–226.

Correction to:
Constr Approx (2019) 49:191–226
https://doi.org/10.1007/s00365-017-9408-0

In [3, Eq. (7)], the false equality

〈u, Tn(a)u〉 = 〈 fu, a fu〉γ
has been used in the course of the proof of Theorem 8. If the terms are interpreted
using the notation from [3], the right-hand side equals the integral

1

2π i

∫ π

−π

a(γ (t)) fu(γ (t)) fu(γ ∗(t)) γ̇ (t)

γ (t)
dt,

while the left-hand side coincideswith 〈u, T ∗
n (a)u〉 and canbe expressed as the integral

1

2π i

∫ π

−π

a(γ ∗(t)) fu(γ (t)) fu(γ ∗(t)) γ̇ (t)

γ (t)
dt .

The two integrals do not coincide in general. Unfortunately, this error is an essential
problem for the idea of the proof of Theorem 8, that was based on a contour integral

The original article can be found online at https://doi.org/10.1007/s00365-017-9408-0.
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representation of the quadratic form of a Toeplitz matrix Tn(a), where the integration
path is chosen as the Jordan curve γ on which the symbol a is real-valued.

Recall that [3, Thm. 1], which is the main result of the paper, claims that the
following 3 statements are equivalent:

(i) �(b) ⊂ R,
(ii) b−1(R) contains a Jordan curve,
(iii) spec(Tn(b)) ⊂ R for all n ∈ N,

where b is a Laurent polynomial, Tn(b) the n×n Toeplitzmatrix given by the symbol b,
and�(b) is the set of limit points of eigenvalues of Tn(b), asn → ∞; see [3] for details.
The logic of the proof of Theorem 1 was to establish implications (i)⇒(ii)⇒(iii)⇒(i).
The currently unproven Theorem 8 was used to prove (ii)⇒(iii). As we are not able to
find an alternative proof at the moment, the implication (ii)⇒(iii) remains unproven.

However, we strongly believe that the currently unproven implication, or at least
its weaker form (ii)⇒(i), is true. The implication (ii)⇒(iii) is supported by numerous
numerical experiments that we have performed. Professors Yi Zhang and Hao-Yan
Chen, to whom we are sincerely grateful for noticing the latter error in the proof,
expressed a similar opinion.

Recall, by [3, Def. 2], that the Laurent polynomial b is said to belong to the class
R, i.e. b ∈ R, if and only if �(b) ⊂ R. We list several places in [3], where arguments
based on the claim of [3, Thm. 8] have been used:

(a) Remark 10.
(b) Sec. 4.1: Example 1. The symbol b(z) = z−1 + az, where a ∈ C\{0}, belongs

to the class R, if and only if a > 0.
(c) Sec. 4.2: Example 2. The symbol b(z) = z−1 + αz + βz2, where α ∈ C and

β ∈ C\{0}, belongs to the classR, if and only if β ∈ R\{0} and α3 ≥ 27β2.
(d) Sec. 4.3: Example 3. The symbol b(z) = z−r (1 + az)r+s , where r , s ∈ N and

a ∈ R\{0}, belongs to the class R.
(e) The second paragraph of Sec. 4.4.

The claim of [3, Rem. 10] was drawn as a direct consequence of Theorem 8 and
remains open, too. The other points (b)–(e) comprise concrete examples of symbols,
which belong to R for specific restrictions of the parameters. As the main argument
for these claims, we found in [3] an explicit parametrization of the Jordan curve γ ,
for which b ◦ γ is real-valued in each of the cases. We will prove at least partly the
claims without using Theorem 8.

The equivalence in (b) can be verified directly since the eigenvalues of Tn(b) can
be computed fully explicitly

λk = 2(−1)n
√
a cos

πk

n + 1
, k = 1, 2, . . . , n,

with the standard branch of the square root. This example also exhibits (iii), if a > 0.
The point (c) is left conjectural as inessential for the paper in its generality. Its

relevant particular case, b ∈ R for α = 3a2 and β = a3, with a ∈ R\{0}, will be
checked as a a special case of the point (d) in the end of this corrigendum. Lastly, a
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description of a possible construction of further examples of not necessarily banded
Toeplitz matrices with real spectra from the point (e) is heavily based on the falsely
proven Theorem 8 and also remains open at this point.

As a final correction, we briefly indicate the proof of the implication

b(z) = 1

zr
(1 + az)r+s with r , s ∈ N and a ∈ R\{0} ⇒ b ∈ R.

without using the fact that b is real on a Jordan curve. This is the claim (d). In fact, one
can prove the stronger claim that the eigenvalues of Tn(b) are all real, for all n ∈ N,
i.e. (iii). The argument relies on the theory of osciallatory matrices [2] and has been
used for the special case r = s = 1 in the proof of [1, Thm. 2.8]. Without loss of
generality, wemay assume a = 1 since two Toeplitz matrices Tn(b) and Tn(ba), where
ba(z) := b(az), are similar, if a 
= 0. Thus, suppose b(z) = z−r (1+ z)r+s . Notice the
bidiagonal matrix Tn(1+ z) is totally non-negative, see [2, Def. 4, p. 74]. Since Tn(b)
is a submatrix of T r+s

n+r+s(1+ z), it is also totally non-negative; see [2, p. 74]. Further,
without going into details, let us mention the determinant of Tn(b) ban be explicitly
computed in terms of binomial coefficients as follows:

det Tn(b) =
r−1∏
j=0

(
n + s + j

s

)/(
s + j

j

)
=

r−1∏
j=0

(n + s + j)! j !
(n + j)!(s + j)! .

The determinant is obviously non-vanishing and therefore Tn(b) is non-singular.
By [2, Thm. 10, p. 100], Tn(b) is oscillatory and hence eigenvalues of Tn(b) are all
positive (and simple), see [2, Thm. 6, p. 87].
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